xref: /linux/arch/x86/xen/mmu.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/fixmap.h>
52 #include <asm/mmu_context.h>
53 #include <asm/setup.h>
54 #include <asm/paravirt.h>
55 #include <asm/e820.h>
56 #include <asm/linkage.h>
57 #include <asm/page.h>
58 
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 
62 #include <xen/xen.h>
63 #include <xen/page.h>
64 #include <xen/interface/xen.h>
65 #include <xen/interface/hvm/hvm_op.h>
66 #include <xen/interface/version.h>
67 #include <xen/interface/memory.h>
68 #include <xen/hvc-console.h>
69 
70 #include "multicalls.h"
71 #include "mmu.h"
72 #include "debugfs.h"
73 
74 #define MMU_UPDATE_HISTO	30
75 
76 /*
77  * Protects atomic reservation decrease/increase against concurrent increases.
78  * Also protects non-atomic updates of current_pages and driver_pages, and
79  * balloon lists.
80  */
81 DEFINE_SPINLOCK(xen_reservation_lock);
82 
83 #ifdef CONFIG_XEN_DEBUG_FS
84 
85 static struct {
86 	u32 pgd_update;
87 	u32 pgd_update_pinned;
88 	u32 pgd_update_batched;
89 
90 	u32 pud_update;
91 	u32 pud_update_pinned;
92 	u32 pud_update_batched;
93 
94 	u32 pmd_update;
95 	u32 pmd_update_pinned;
96 	u32 pmd_update_batched;
97 
98 	u32 pte_update;
99 	u32 pte_update_pinned;
100 	u32 pte_update_batched;
101 
102 	u32 mmu_update;
103 	u32 mmu_update_extended;
104 	u32 mmu_update_histo[MMU_UPDATE_HISTO];
105 
106 	u32 prot_commit;
107 	u32 prot_commit_batched;
108 
109 	u32 set_pte_at;
110 	u32 set_pte_at_batched;
111 	u32 set_pte_at_pinned;
112 	u32 set_pte_at_current;
113 	u32 set_pte_at_kernel;
114 } mmu_stats;
115 
116 static u8 zero_stats;
117 
118 static inline void check_zero(void)
119 {
120 	if (unlikely(zero_stats)) {
121 		memset(&mmu_stats, 0, sizeof(mmu_stats));
122 		zero_stats = 0;
123 	}
124 }
125 
126 #define ADD_STATS(elem, val)			\
127 	do { check_zero(); mmu_stats.elem += (val); } while(0)
128 
129 #else  /* !CONFIG_XEN_DEBUG_FS */
130 
131 #define ADD_STATS(elem, val)	do { (void)(val); } while(0)
132 
133 #endif /* CONFIG_XEN_DEBUG_FS */
134 
135 
136 /*
137  * Identity map, in addition to plain kernel map.  This needs to be
138  * large enough to allocate page table pages to allocate the rest.
139  * Each page can map 2MB.
140  */
141 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
142 
143 #ifdef CONFIG_X86_64
144 /* l3 pud for userspace vsyscall mapping */
145 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
146 #endif /* CONFIG_X86_64 */
147 
148 /*
149  * Note about cr3 (pagetable base) values:
150  *
151  * xen_cr3 contains the current logical cr3 value; it contains the
152  * last set cr3.  This may not be the current effective cr3, because
153  * its update may be being lazily deferred.  However, a vcpu looking
154  * at its own cr3 can use this value knowing that it everything will
155  * be self-consistent.
156  *
157  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
158  * hypercall to set the vcpu cr3 is complete (so it may be a little
159  * out of date, but it will never be set early).  If one vcpu is
160  * looking at another vcpu's cr3 value, it should use this variable.
161  */
162 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
163 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
164 
165 
166 /*
167  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
168  * redzone above it, so round it up to a PGD boundary.
169  */
170 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
171 
172 
173 #define P2M_ENTRIES_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long))
174 #define TOP_ENTRIES		(MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
175 
176 /* Placeholder for holes in the address space */
177 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
178 		{ [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
179 
180  /* Array of pointers to pages containing p2m entries */
181 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
182 		{ [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
183 
184 /* Arrays of p2m arrays expressed in mfns used for save/restore */
185 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
186 
187 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
188 	__page_aligned_bss;
189 
190 static inline unsigned p2m_top_index(unsigned long pfn)
191 {
192 	BUG_ON(pfn >= MAX_DOMAIN_PAGES);
193 	return pfn / P2M_ENTRIES_PER_PAGE;
194 }
195 
196 static inline unsigned p2m_index(unsigned long pfn)
197 {
198 	return pfn % P2M_ENTRIES_PER_PAGE;
199 }
200 
201 /* Build the parallel p2m_top_mfn structures */
202 void xen_build_mfn_list_list(void)
203 {
204 	unsigned pfn, idx;
205 
206 	for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
207 		unsigned topidx = p2m_top_index(pfn);
208 
209 		p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
210 	}
211 
212 	for (idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
213 		unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
214 		p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
215 	}
216 }
217 
218 void xen_setup_mfn_list_list(void)
219 {
220 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
221 
222 	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
223 		virt_to_mfn(p2m_top_mfn_list);
224 	HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
225 }
226 
227 /* Set up p2m_top to point to the domain-builder provided p2m pages */
228 void __init xen_build_dynamic_phys_to_machine(void)
229 {
230 	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
231 	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
232 	unsigned pfn;
233 
234 	for (pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
235 		unsigned topidx = p2m_top_index(pfn);
236 
237 		p2m_top[topidx] = &mfn_list[pfn];
238 	}
239 
240 	xen_build_mfn_list_list();
241 }
242 
243 unsigned long get_phys_to_machine(unsigned long pfn)
244 {
245 	unsigned topidx, idx;
246 
247 	if (unlikely(pfn >= MAX_DOMAIN_PAGES))
248 		return INVALID_P2M_ENTRY;
249 
250 	topidx = p2m_top_index(pfn);
251 	idx = p2m_index(pfn);
252 	return p2m_top[topidx][idx];
253 }
254 EXPORT_SYMBOL_GPL(get_phys_to_machine);
255 
256 /* install a  new p2m_top page */
257 bool install_p2mtop_page(unsigned long pfn, unsigned long *p)
258 {
259 	unsigned topidx = p2m_top_index(pfn);
260 	unsigned long **pfnp, *mfnp;
261 	unsigned i;
262 
263 	pfnp = &p2m_top[topidx];
264 	mfnp = &p2m_top_mfn[topidx];
265 
266 	for (i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
267 		p[i] = INVALID_P2M_ENTRY;
268 
269 	if (cmpxchg(pfnp, p2m_missing, p) == p2m_missing) {
270 		*mfnp = virt_to_mfn(p);
271 		return true;
272 	}
273 
274 	return false;
275 }
276 
277 static void alloc_p2m(unsigned long pfn)
278 {
279 	unsigned long *p;
280 
281 	p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
282 	BUG_ON(p == NULL);
283 
284 	if (!install_p2mtop_page(pfn, p))
285 		free_page((unsigned long)p);
286 }
287 
288 /* Try to install p2m mapping; fail if intermediate bits missing */
289 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
290 {
291 	unsigned topidx, idx;
292 
293 	if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
294 		BUG_ON(mfn != INVALID_P2M_ENTRY);
295 		return true;
296 	}
297 
298 	topidx = p2m_top_index(pfn);
299 	if (p2m_top[topidx] == p2m_missing) {
300 		if (mfn == INVALID_P2M_ENTRY)
301 			return true;
302 		return false;
303 	}
304 
305 	idx = p2m_index(pfn);
306 	p2m_top[topidx][idx] = mfn;
307 
308 	return true;
309 }
310 
311 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
312 {
313 	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
314 		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
315 		return;
316 	}
317 
318 	if (unlikely(!__set_phys_to_machine(pfn, mfn)))  {
319 		alloc_p2m(pfn);
320 
321 		if (!__set_phys_to_machine(pfn, mfn))
322 			BUG();
323 	}
324 }
325 
326 unsigned long arbitrary_virt_to_mfn(void *vaddr)
327 {
328 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
329 
330 	return PFN_DOWN(maddr.maddr);
331 }
332 
333 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
334 {
335 	unsigned long address = (unsigned long)vaddr;
336 	unsigned int level;
337 	pte_t *pte;
338 	unsigned offset;
339 
340 	/*
341 	 * if the PFN is in the linear mapped vaddr range, we can just use
342 	 * the (quick) virt_to_machine() p2m lookup
343 	 */
344 	if (virt_addr_valid(vaddr))
345 		return virt_to_machine(vaddr);
346 
347 	/* otherwise we have to do a (slower) full page-table walk */
348 
349 	pte = lookup_address(address, &level);
350 	BUG_ON(pte == NULL);
351 	offset = address & ~PAGE_MASK;
352 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
353 }
354 
355 void make_lowmem_page_readonly(void *vaddr)
356 {
357 	pte_t *pte, ptev;
358 	unsigned long address = (unsigned long)vaddr;
359 	unsigned int level;
360 
361 	pte = lookup_address(address, &level);
362 	BUG_ON(pte == NULL);
363 
364 	ptev = pte_wrprotect(*pte);
365 
366 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
367 		BUG();
368 }
369 
370 void make_lowmem_page_readwrite(void *vaddr)
371 {
372 	pte_t *pte, ptev;
373 	unsigned long address = (unsigned long)vaddr;
374 	unsigned int level;
375 
376 	pte = lookup_address(address, &level);
377 	BUG_ON(pte == NULL);
378 
379 	ptev = pte_mkwrite(*pte);
380 
381 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
382 		BUG();
383 }
384 
385 
386 static bool xen_page_pinned(void *ptr)
387 {
388 	struct page *page = virt_to_page(ptr);
389 
390 	return PagePinned(page);
391 }
392 
393 static bool xen_iomap_pte(pte_t pte)
394 {
395 	return pte_flags(pte) & _PAGE_IOMAP;
396 }
397 
398 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
399 {
400 	struct multicall_space mcs;
401 	struct mmu_update *u;
402 
403 	mcs = xen_mc_entry(sizeof(*u));
404 	u = mcs.args;
405 
406 	/* ptep might be kmapped when using 32-bit HIGHPTE */
407 	u->ptr = arbitrary_virt_to_machine(ptep).maddr;
408 	u->val = pte_val_ma(pteval);
409 
410 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_IO);
411 
412 	xen_mc_issue(PARAVIRT_LAZY_MMU);
413 }
414 
415 static void xen_extend_mmu_update(const struct mmu_update *update)
416 {
417 	struct multicall_space mcs;
418 	struct mmu_update *u;
419 
420 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
421 
422 	if (mcs.mc != NULL) {
423 		ADD_STATS(mmu_update_extended, 1);
424 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
425 
426 		mcs.mc->args[1]++;
427 
428 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
429 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
430 		else
431 			ADD_STATS(mmu_update_histo[0], 1);
432 	} else {
433 		ADD_STATS(mmu_update, 1);
434 		mcs = __xen_mc_entry(sizeof(*u));
435 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
436 		ADD_STATS(mmu_update_histo[1], 1);
437 	}
438 
439 	u = mcs.args;
440 	*u = *update;
441 }
442 
443 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
444 {
445 	struct mmu_update u;
446 
447 	preempt_disable();
448 
449 	xen_mc_batch();
450 
451 	/* ptr may be ioremapped for 64-bit pagetable setup */
452 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
453 	u.val = pmd_val_ma(val);
454 	xen_extend_mmu_update(&u);
455 
456 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
457 
458 	xen_mc_issue(PARAVIRT_LAZY_MMU);
459 
460 	preempt_enable();
461 }
462 
463 void xen_set_pmd(pmd_t *ptr, pmd_t val)
464 {
465 	ADD_STATS(pmd_update, 1);
466 
467 	/* If page is not pinned, we can just update the entry
468 	   directly */
469 	if (!xen_page_pinned(ptr)) {
470 		*ptr = val;
471 		return;
472 	}
473 
474 	ADD_STATS(pmd_update_pinned, 1);
475 
476 	xen_set_pmd_hyper(ptr, val);
477 }
478 
479 /*
480  * Associate a virtual page frame with a given physical page frame
481  * and protection flags for that frame.
482  */
483 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
484 {
485 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
486 }
487 
488 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
489 		    pte_t *ptep, pte_t pteval)
490 {
491 	if (xen_iomap_pte(pteval)) {
492 		xen_set_iomap_pte(ptep, pteval);
493 		goto out;
494 	}
495 
496 	ADD_STATS(set_pte_at, 1);
497 //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
498 	ADD_STATS(set_pte_at_current, mm == current->mm);
499 	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
500 
501 	if (mm == current->mm || mm == &init_mm) {
502 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
503 			struct multicall_space mcs;
504 			mcs = xen_mc_entry(0);
505 
506 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
507 			ADD_STATS(set_pte_at_batched, 1);
508 			xen_mc_issue(PARAVIRT_LAZY_MMU);
509 			goto out;
510 		} else
511 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
512 				goto out;
513 	}
514 	xen_set_pte(ptep, pteval);
515 
516 out:	return;
517 }
518 
519 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
520 				 unsigned long addr, pte_t *ptep)
521 {
522 	/* Just return the pte as-is.  We preserve the bits on commit */
523 	return *ptep;
524 }
525 
526 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
527 				 pte_t *ptep, pte_t pte)
528 {
529 	struct mmu_update u;
530 
531 	xen_mc_batch();
532 
533 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
534 	u.val = pte_val_ma(pte);
535 	xen_extend_mmu_update(&u);
536 
537 	ADD_STATS(prot_commit, 1);
538 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
539 
540 	xen_mc_issue(PARAVIRT_LAZY_MMU);
541 }
542 
543 /* Assume pteval_t is equivalent to all the other *val_t types. */
544 static pteval_t pte_mfn_to_pfn(pteval_t val)
545 {
546 	if (val & _PAGE_PRESENT) {
547 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
548 		pteval_t flags = val & PTE_FLAGS_MASK;
549 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
550 	}
551 
552 	return val;
553 }
554 
555 static pteval_t pte_pfn_to_mfn(pteval_t val)
556 {
557 	if (val & _PAGE_PRESENT) {
558 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
559 		pteval_t flags = val & PTE_FLAGS_MASK;
560 		val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
561 	}
562 
563 	return val;
564 }
565 
566 static pteval_t iomap_pte(pteval_t val)
567 {
568 	if (val & _PAGE_PRESENT) {
569 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
570 		pteval_t flags = val & PTE_FLAGS_MASK;
571 
572 		/* We assume the pte frame number is a MFN, so
573 		   just use it as-is. */
574 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
575 	}
576 
577 	return val;
578 }
579 
580 pteval_t xen_pte_val(pte_t pte)
581 {
582 	if (xen_initial_domain() && (pte.pte & _PAGE_IOMAP))
583 		return pte.pte;
584 
585 	return pte_mfn_to_pfn(pte.pte);
586 }
587 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
588 
589 pgdval_t xen_pgd_val(pgd_t pgd)
590 {
591 	return pte_mfn_to_pfn(pgd.pgd);
592 }
593 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
594 
595 pte_t xen_make_pte(pteval_t pte)
596 {
597 	phys_addr_t addr = (pte & PTE_PFN_MASK);
598 
599 	/*
600 	 * Unprivileged domains are allowed to do IOMAPpings for
601 	 * PCI passthrough, but not map ISA space.  The ISA
602 	 * mappings are just dummy local mappings to keep other
603 	 * parts of the kernel happy.
604 	 */
605 	if (unlikely(pte & _PAGE_IOMAP) &&
606 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
607 		pte = iomap_pte(pte);
608 	} else {
609 		pte &= ~_PAGE_IOMAP;
610 		pte = pte_pfn_to_mfn(pte);
611 	}
612 
613 	return native_make_pte(pte);
614 }
615 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
616 
617 pgd_t xen_make_pgd(pgdval_t pgd)
618 {
619 	pgd = pte_pfn_to_mfn(pgd);
620 	return native_make_pgd(pgd);
621 }
622 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
623 
624 pmdval_t xen_pmd_val(pmd_t pmd)
625 {
626 	return pte_mfn_to_pfn(pmd.pmd);
627 }
628 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
629 
630 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
631 {
632 	struct mmu_update u;
633 
634 	preempt_disable();
635 
636 	xen_mc_batch();
637 
638 	/* ptr may be ioremapped for 64-bit pagetable setup */
639 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
640 	u.val = pud_val_ma(val);
641 	xen_extend_mmu_update(&u);
642 
643 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644 
645 	xen_mc_issue(PARAVIRT_LAZY_MMU);
646 
647 	preempt_enable();
648 }
649 
650 void xen_set_pud(pud_t *ptr, pud_t val)
651 {
652 	ADD_STATS(pud_update, 1);
653 
654 	/* If page is not pinned, we can just update the entry
655 	   directly */
656 	if (!xen_page_pinned(ptr)) {
657 		*ptr = val;
658 		return;
659 	}
660 
661 	ADD_STATS(pud_update_pinned, 1);
662 
663 	xen_set_pud_hyper(ptr, val);
664 }
665 
666 void xen_set_pte(pte_t *ptep, pte_t pte)
667 {
668 	if (xen_iomap_pte(pte)) {
669 		xen_set_iomap_pte(ptep, pte);
670 		return;
671 	}
672 
673 	ADD_STATS(pte_update, 1);
674 //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
675 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
676 
677 #ifdef CONFIG_X86_PAE
678 	ptep->pte_high = pte.pte_high;
679 	smp_wmb();
680 	ptep->pte_low = pte.pte_low;
681 #else
682 	*ptep = pte;
683 #endif
684 }
685 
686 #ifdef CONFIG_X86_PAE
687 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
688 {
689 	if (xen_iomap_pte(pte)) {
690 		xen_set_iomap_pte(ptep, pte);
691 		return;
692 	}
693 
694 	set_64bit((u64 *)ptep, native_pte_val(pte));
695 }
696 
697 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
698 {
699 	ptep->pte_low = 0;
700 	smp_wmb();		/* make sure low gets written first */
701 	ptep->pte_high = 0;
702 }
703 
704 void xen_pmd_clear(pmd_t *pmdp)
705 {
706 	set_pmd(pmdp, __pmd(0));
707 }
708 #endif	/* CONFIG_X86_PAE */
709 
710 pmd_t xen_make_pmd(pmdval_t pmd)
711 {
712 	pmd = pte_pfn_to_mfn(pmd);
713 	return native_make_pmd(pmd);
714 }
715 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
716 
717 #if PAGETABLE_LEVELS == 4
718 pudval_t xen_pud_val(pud_t pud)
719 {
720 	return pte_mfn_to_pfn(pud.pud);
721 }
722 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
723 
724 pud_t xen_make_pud(pudval_t pud)
725 {
726 	pud = pte_pfn_to_mfn(pud);
727 
728 	return native_make_pud(pud);
729 }
730 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
731 
732 pgd_t *xen_get_user_pgd(pgd_t *pgd)
733 {
734 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
735 	unsigned offset = pgd - pgd_page;
736 	pgd_t *user_ptr = NULL;
737 
738 	if (offset < pgd_index(USER_LIMIT)) {
739 		struct page *page = virt_to_page(pgd_page);
740 		user_ptr = (pgd_t *)page->private;
741 		if (user_ptr)
742 			user_ptr += offset;
743 	}
744 
745 	return user_ptr;
746 }
747 
748 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
749 {
750 	struct mmu_update u;
751 
752 	u.ptr = virt_to_machine(ptr).maddr;
753 	u.val = pgd_val_ma(val);
754 	xen_extend_mmu_update(&u);
755 }
756 
757 /*
758  * Raw hypercall-based set_pgd, intended for in early boot before
759  * there's a page structure.  This implies:
760  *  1. The only existing pagetable is the kernel's
761  *  2. It is always pinned
762  *  3. It has no user pagetable attached to it
763  */
764 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
765 {
766 	preempt_disable();
767 
768 	xen_mc_batch();
769 
770 	__xen_set_pgd_hyper(ptr, val);
771 
772 	xen_mc_issue(PARAVIRT_LAZY_MMU);
773 
774 	preempt_enable();
775 }
776 
777 void xen_set_pgd(pgd_t *ptr, pgd_t val)
778 {
779 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
780 
781 	ADD_STATS(pgd_update, 1);
782 
783 	/* If page is not pinned, we can just update the entry
784 	   directly */
785 	if (!xen_page_pinned(ptr)) {
786 		*ptr = val;
787 		if (user_ptr) {
788 			WARN_ON(xen_page_pinned(user_ptr));
789 			*user_ptr = val;
790 		}
791 		return;
792 	}
793 
794 	ADD_STATS(pgd_update_pinned, 1);
795 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
796 
797 	/* If it's pinned, then we can at least batch the kernel and
798 	   user updates together. */
799 	xen_mc_batch();
800 
801 	__xen_set_pgd_hyper(ptr, val);
802 	if (user_ptr)
803 		__xen_set_pgd_hyper(user_ptr, val);
804 
805 	xen_mc_issue(PARAVIRT_LAZY_MMU);
806 }
807 #endif	/* PAGETABLE_LEVELS == 4 */
808 
809 /*
810  * (Yet another) pagetable walker.  This one is intended for pinning a
811  * pagetable.  This means that it walks a pagetable and calls the
812  * callback function on each page it finds making up the page table,
813  * at every level.  It walks the entire pagetable, but it only bothers
814  * pinning pte pages which are below limit.  In the normal case this
815  * will be STACK_TOP_MAX, but at boot we need to pin up to
816  * FIXADDR_TOP.
817  *
818  * For 32-bit the important bit is that we don't pin beyond there,
819  * because then we start getting into Xen's ptes.
820  *
821  * For 64-bit, we must skip the Xen hole in the middle of the address
822  * space, just after the big x86-64 virtual hole.
823  */
824 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
825 			  int (*func)(struct mm_struct *mm, struct page *,
826 				      enum pt_level),
827 			  unsigned long limit)
828 {
829 	int flush = 0;
830 	unsigned hole_low, hole_high;
831 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
832 	unsigned pgdidx, pudidx, pmdidx;
833 
834 	/* The limit is the last byte to be touched */
835 	limit--;
836 	BUG_ON(limit >= FIXADDR_TOP);
837 
838 	if (xen_feature(XENFEAT_auto_translated_physmap))
839 		return 0;
840 
841 	/*
842 	 * 64-bit has a great big hole in the middle of the address
843 	 * space, which contains the Xen mappings.  On 32-bit these
844 	 * will end up making a zero-sized hole and so is a no-op.
845 	 */
846 	hole_low = pgd_index(USER_LIMIT);
847 	hole_high = pgd_index(PAGE_OFFSET);
848 
849 	pgdidx_limit = pgd_index(limit);
850 #if PTRS_PER_PUD > 1
851 	pudidx_limit = pud_index(limit);
852 #else
853 	pudidx_limit = 0;
854 #endif
855 #if PTRS_PER_PMD > 1
856 	pmdidx_limit = pmd_index(limit);
857 #else
858 	pmdidx_limit = 0;
859 #endif
860 
861 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
862 		pud_t *pud;
863 
864 		if (pgdidx >= hole_low && pgdidx < hole_high)
865 			continue;
866 
867 		if (!pgd_val(pgd[pgdidx]))
868 			continue;
869 
870 		pud = pud_offset(&pgd[pgdidx], 0);
871 
872 		if (PTRS_PER_PUD > 1) /* not folded */
873 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
874 
875 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
876 			pmd_t *pmd;
877 
878 			if (pgdidx == pgdidx_limit &&
879 			    pudidx > pudidx_limit)
880 				goto out;
881 
882 			if (pud_none(pud[pudidx]))
883 				continue;
884 
885 			pmd = pmd_offset(&pud[pudidx], 0);
886 
887 			if (PTRS_PER_PMD > 1) /* not folded */
888 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
889 
890 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
891 				struct page *pte;
892 
893 				if (pgdidx == pgdidx_limit &&
894 				    pudidx == pudidx_limit &&
895 				    pmdidx > pmdidx_limit)
896 					goto out;
897 
898 				if (pmd_none(pmd[pmdidx]))
899 					continue;
900 
901 				pte = pmd_page(pmd[pmdidx]);
902 				flush |= (*func)(mm, pte, PT_PTE);
903 			}
904 		}
905 	}
906 
907 out:
908 	/* Do the top level last, so that the callbacks can use it as
909 	   a cue to do final things like tlb flushes. */
910 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
911 
912 	return flush;
913 }
914 
915 static int xen_pgd_walk(struct mm_struct *mm,
916 			int (*func)(struct mm_struct *mm, struct page *,
917 				    enum pt_level),
918 			unsigned long limit)
919 {
920 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
921 }
922 
923 /* If we're using split pte locks, then take the page's lock and
924    return a pointer to it.  Otherwise return NULL. */
925 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
926 {
927 	spinlock_t *ptl = NULL;
928 
929 #if USE_SPLIT_PTLOCKS
930 	ptl = __pte_lockptr(page);
931 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
932 #endif
933 
934 	return ptl;
935 }
936 
937 static void xen_pte_unlock(void *v)
938 {
939 	spinlock_t *ptl = v;
940 	spin_unlock(ptl);
941 }
942 
943 static void xen_do_pin(unsigned level, unsigned long pfn)
944 {
945 	struct mmuext_op *op;
946 	struct multicall_space mcs;
947 
948 	mcs = __xen_mc_entry(sizeof(*op));
949 	op = mcs.args;
950 	op->cmd = level;
951 	op->arg1.mfn = pfn_to_mfn(pfn);
952 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
953 }
954 
955 static int xen_pin_page(struct mm_struct *mm, struct page *page,
956 			enum pt_level level)
957 {
958 	unsigned pgfl = TestSetPagePinned(page);
959 	int flush;
960 
961 	if (pgfl)
962 		flush = 0;		/* already pinned */
963 	else if (PageHighMem(page))
964 		/* kmaps need flushing if we found an unpinned
965 		   highpage */
966 		flush = 1;
967 	else {
968 		void *pt = lowmem_page_address(page);
969 		unsigned long pfn = page_to_pfn(page);
970 		struct multicall_space mcs = __xen_mc_entry(0);
971 		spinlock_t *ptl;
972 
973 		flush = 0;
974 
975 		/*
976 		 * We need to hold the pagetable lock between the time
977 		 * we make the pagetable RO and when we actually pin
978 		 * it.  If we don't, then other users may come in and
979 		 * attempt to update the pagetable by writing it,
980 		 * which will fail because the memory is RO but not
981 		 * pinned, so Xen won't do the trap'n'emulate.
982 		 *
983 		 * If we're using split pte locks, we can't hold the
984 		 * entire pagetable's worth of locks during the
985 		 * traverse, because we may wrap the preempt count (8
986 		 * bits).  The solution is to mark RO and pin each PTE
987 		 * page while holding the lock.  This means the number
988 		 * of locks we end up holding is never more than a
989 		 * batch size (~32 entries, at present).
990 		 *
991 		 * If we're not using split pte locks, we needn't pin
992 		 * the PTE pages independently, because we're
993 		 * protected by the overall pagetable lock.
994 		 */
995 		ptl = NULL;
996 		if (level == PT_PTE)
997 			ptl = xen_pte_lock(page, mm);
998 
999 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 					pfn_pte(pfn, PAGE_KERNEL_RO),
1001 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002 
1003 		if (ptl) {
1004 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
1005 
1006 			/* Queue a deferred unlock for when this batch
1007 			   is completed. */
1008 			xen_mc_callback(xen_pte_unlock, ptl);
1009 		}
1010 	}
1011 
1012 	return flush;
1013 }
1014 
1015 /* This is called just after a mm has been created, but it has not
1016    been used yet.  We need to make sure that its pagetable is all
1017    read-only, and can be pinned. */
1018 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
1019 {
1020 	xen_mc_batch();
1021 
1022 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1023 		/* re-enable interrupts for flushing */
1024 		xen_mc_issue(0);
1025 
1026 		kmap_flush_unused();
1027 
1028 		xen_mc_batch();
1029 	}
1030 
1031 #ifdef CONFIG_X86_64
1032 	{
1033 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1034 
1035 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1036 
1037 		if (user_pgd) {
1038 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1039 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
1040 				   PFN_DOWN(__pa(user_pgd)));
1041 		}
1042 	}
1043 #else /* CONFIG_X86_32 */
1044 #ifdef CONFIG_X86_PAE
1045 	/* Need to make sure unshared kernel PMD is pinnable */
1046 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1047 		     PT_PMD);
1048 #endif
1049 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1050 #endif /* CONFIG_X86_64 */
1051 	xen_mc_issue(0);
1052 }
1053 
1054 static void xen_pgd_pin(struct mm_struct *mm)
1055 {
1056 	__xen_pgd_pin(mm, mm->pgd);
1057 }
1058 
1059 /*
1060  * On save, we need to pin all pagetables to make sure they get their
1061  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
1062  * them (unpinned pgds are not currently in use, probably because the
1063  * process is under construction or destruction).
1064  *
1065  * Expected to be called in stop_machine() ("equivalent to taking
1066  * every spinlock in the system"), so the locking doesn't really
1067  * matter all that much.
1068  */
1069 void xen_mm_pin_all(void)
1070 {
1071 	unsigned long flags;
1072 	struct page *page;
1073 
1074 	spin_lock_irqsave(&pgd_lock, flags);
1075 
1076 	list_for_each_entry(page, &pgd_list, lru) {
1077 		if (!PagePinned(page)) {
1078 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1079 			SetPageSavePinned(page);
1080 		}
1081 	}
1082 
1083 	spin_unlock_irqrestore(&pgd_lock, flags);
1084 }
1085 
1086 /*
1087  * The init_mm pagetable is really pinned as soon as its created, but
1088  * that's before we have page structures to store the bits.  So do all
1089  * the book-keeping now.
1090  */
1091 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1092 				  enum pt_level level)
1093 {
1094 	SetPagePinned(page);
1095 	return 0;
1096 }
1097 
1098 static void __init xen_mark_init_mm_pinned(void)
1099 {
1100 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1101 }
1102 
1103 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1104 			  enum pt_level level)
1105 {
1106 	unsigned pgfl = TestClearPagePinned(page);
1107 
1108 	if (pgfl && !PageHighMem(page)) {
1109 		void *pt = lowmem_page_address(page);
1110 		unsigned long pfn = page_to_pfn(page);
1111 		spinlock_t *ptl = NULL;
1112 		struct multicall_space mcs;
1113 
1114 		/*
1115 		 * Do the converse to pin_page.  If we're using split
1116 		 * pte locks, we must be holding the lock for while
1117 		 * the pte page is unpinned but still RO to prevent
1118 		 * concurrent updates from seeing it in this
1119 		 * partially-pinned state.
1120 		 */
1121 		if (level == PT_PTE) {
1122 			ptl = xen_pte_lock(page, mm);
1123 
1124 			if (ptl)
1125 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1126 		}
1127 
1128 		mcs = __xen_mc_entry(0);
1129 
1130 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1131 					pfn_pte(pfn, PAGE_KERNEL),
1132 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1133 
1134 		if (ptl) {
1135 			/* unlock when batch completed */
1136 			xen_mc_callback(xen_pte_unlock, ptl);
1137 		}
1138 	}
1139 
1140 	return 0;		/* never need to flush on unpin */
1141 }
1142 
1143 /* Release a pagetables pages back as normal RW */
1144 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1145 {
1146 	xen_mc_batch();
1147 
1148 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1149 
1150 #ifdef CONFIG_X86_64
1151 	{
1152 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1153 
1154 		if (user_pgd) {
1155 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1156 				   PFN_DOWN(__pa(user_pgd)));
1157 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1158 		}
1159 	}
1160 #endif
1161 
1162 #ifdef CONFIG_X86_PAE
1163 	/* Need to make sure unshared kernel PMD is unpinned */
1164 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1165 		       PT_PMD);
1166 #endif
1167 
1168 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1169 
1170 	xen_mc_issue(0);
1171 }
1172 
1173 static void xen_pgd_unpin(struct mm_struct *mm)
1174 {
1175 	__xen_pgd_unpin(mm, mm->pgd);
1176 }
1177 
1178 /*
1179  * On resume, undo any pinning done at save, so that the rest of the
1180  * kernel doesn't see any unexpected pinned pagetables.
1181  */
1182 void xen_mm_unpin_all(void)
1183 {
1184 	unsigned long flags;
1185 	struct page *page;
1186 
1187 	spin_lock_irqsave(&pgd_lock, flags);
1188 
1189 	list_for_each_entry(page, &pgd_list, lru) {
1190 		if (PageSavePinned(page)) {
1191 			BUG_ON(!PagePinned(page));
1192 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1193 			ClearPageSavePinned(page);
1194 		}
1195 	}
1196 
1197 	spin_unlock_irqrestore(&pgd_lock, flags);
1198 }
1199 
1200 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1201 {
1202 	spin_lock(&next->page_table_lock);
1203 	xen_pgd_pin(next);
1204 	spin_unlock(&next->page_table_lock);
1205 }
1206 
1207 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1208 {
1209 	spin_lock(&mm->page_table_lock);
1210 	xen_pgd_pin(mm);
1211 	spin_unlock(&mm->page_table_lock);
1212 }
1213 
1214 
1215 #ifdef CONFIG_SMP
1216 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1217    we need to repoint it somewhere else before we can unpin it. */
1218 static void drop_other_mm_ref(void *info)
1219 {
1220 	struct mm_struct *mm = info;
1221 	struct mm_struct *active_mm;
1222 
1223 	active_mm = percpu_read(cpu_tlbstate.active_mm);
1224 
1225 	if (active_mm == mm)
1226 		leave_mm(smp_processor_id());
1227 
1228 	/* If this cpu still has a stale cr3 reference, then make sure
1229 	   it has been flushed. */
1230 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1231 		load_cr3(swapper_pg_dir);
1232 }
1233 
1234 static void xen_drop_mm_ref(struct mm_struct *mm)
1235 {
1236 	cpumask_var_t mask;
1237 	unsigned cpu;
1238 
1239 	if (current->active_mm == mm) {
1240 		if (current->mm == mm)
1241 			load_cr3(swapper_pg_dir);
1242 		else
1243 			leave_mm(smp_processor_id());
1244 	}
1245 
1246 	/* Get the "official" set of cpus referring to our pagetable. */
1247 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1248 		for_each_online_cpu(cpu) {
1249 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1250 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1251 				continue;
1252 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1253 		}
1254 		return;
1255 	}
1256 	cpumask_copy(mask, mm_cpumask(mm));
1257 
1258 	/* It's possible that a vcpu may have a stale reference to our
1259 	   cr3, because its in lazy mode, and it hasn't yet flushed
1260 	   its set of pending hypercalls yet.  In this case, we can
1261 	   look at its actual current cr3 value, and force it to flush
1262 	   if needed. */
1263 	for_each_online_cpu(cpu) {
1264 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1265 			cpumask_set_cpu(cpu, mask);
1266 	}
1267 
1268 	if (!cpumask_empty(mask))
1269 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1270 	free_cpumask_var(mask);
1271 }
1272 #else
1273 static void xen_drop_mm_ref(struct mm_struct *mm)
1274 {
1275 	if (current->active_mm == mm)
1276 		load_cr3(swapper_pg_dir);
1277 }
1278 #endif
1279 
1280 /*
1281  * While a process runs, Xen pins its pagetables, which means that the
1282  * hypervisor forces it to be read-only, and it controls all updates
1283  * to it.  This means that all pagetable updates have to go via the
1284  * hypervisor, which is moderately expensive.
1285  *
1286  * Since we're pulling the pagetable down, we switch to use init_mm,
1287  * unpin old process pagetable and mark it all read-write, which
1288  * allows further operations on it to be simple memory accesses.
1289  *
1290  * The only subtle point is that another CPU may be still using the
1291  * pagetable because of lazy tlb flushing.  This means we need need to
1292  * switch all CPUs off this pagetable before we can unpin it.
1293  */
1294 void xen_exit_mmap(struct mm_struct *mm)
1295 {
1296 	get_cpu();		/* make sure we don't move around */
1297 	xen_drop_mm_ref(mm);
1298 	put_cpu();
1299 
1300 	spin_lock(&mm->page_table_lock);
1301 
1302 	/* pgd may not be pinned in the error exit path of execve */
1303 	if (xen_page_pinned(mm->pgd))
1304 		xen_pgd_unpin(mm);
1305 
1306 	spin_unlock(&mm->page_table_lock);
1307 }
1308 
1309 static __init void xen_pagetable_setup_start(pgd_t *base)
1310 {
1311 }
1312 
1313 static void xen_post_allocator_init(void);
1314 
1315 static __init void xen_pagetable_setup_done(pgd_t *base)
1316 {
1317 	xen_setup_shared_info();
1318 	xen_post_allocator_init();
1319 }
1320 
1321 static void xen_write_cr2(unsigned long cr2)
1322 {
1323 	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1324 }
1325 
1326 static unsigned long xen_read_cr2(void)
1327 {
1328 	return percpu_read(xen_vcpu)->arch.cr2;
1329 }
1330 
1331 unsigned long xen_read_cr2_direct(void)
1332 {
1333 	return percpu_read(xen_vcpu_info.arch.cr2);
1334 }
1335 
1336 static void xen_flush_tlb(void)
1337 {
1338 	struct mmuext_op *op;
1339 	struct multicall_space mcs;
1340 
1341 	preempt_disable();
1342 
1343 	mcs = xen_mc_entry(sizeof(*op));
1344 
1345 	op = mcs.args;
1346 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348 
1349 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1350 
1351 	preempt_enable();
1352 }
1353 
1354 static void xen_flush_tlb_single(unsigned long addr)
1355 {
1356 	struct mmuext_op *op;
1357 	struct multicall_space mcs;
1358 
1359 	preempt_disable();
1360 
1361 	mcs = xen_mc_entry(sizeof(*op));
1362 	op = mcs.args;
1363 	op->cmd = MMUEXT_INVLPG_LOCAL;
1364 	op->arg1.linear_addr = addr & PAGE_MASK;
1365 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1366 
1367 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1368 
1369 	preempt_enable();
1370 }
1371 
1372 static void xen_flush_tlb_others(const struct cpumask *cpus,
1373 				 struct mm_struct *mm, unsigned long va)
1374 {
1375 	struct {
1376 		struct mmuext_op op;
1377 		DECLARE_BITMAP(mask, NR_CPUS);
1378 	} *args;
1379 	struct multicall_space mcs;
1380 
1381 	if (cpumask_empty(cpus))
1382 		return;		/* nothing to do */
1383 
1384 	mcs = xen_mc_entry(sizeof(*args));
1385 	args = mcs.args;
1386 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1387 
1388 	/* Remove us, and any offline CPUS. */
1389 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1390 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1391 
1392 	if (va == TLB_FLUSH_ALL) {
1393 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1394 	} else {
1395 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1396 		args->op.arg1.linear_addr = va;
1397 	}
1398 
1399 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1400 
1401 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1402 }
1403 
1404 static unsigned long xen_read_cr3(void)
1405 {
1406 	return percpu_read(xen_cr3);
1407 }
1408 
1409 static void set_current_cr3(void *v)
1410 {
1411 	percpu_write(xen_current_cr3, (unsigned long)v);
1412 }
1413 
1414 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1415 {
1416 	struct mmuext_op *op;
1417 	struct multicall_space mcs;
1418 	unsigned long mfn;
1419 
1420 	if (cr3)
1421 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1422 	else
1423 		mfn = 0;
1424 
1425 	WARN_ON(mfn == 0 && kernel);
1426 
1427 	mcs = __xen_mc_entry(sizeof(*op));
1428 
1429 	op = mcs.args;
1430 	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1431 	op->arg1.mfn = mfn;
1432 
1433 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1434 
1435 	if (kernel) {
1436 		percpu_write(xen_cr3, cr3);
1437 
1438 		/* Update xen_current_cr3 once the batch has actually
1439 		   been submitted. */
1440 		xen_mc_callback(set_current_cr3, (void *)cr3);
1441 	}
1442 }
1443 
1444 static void xen_write_cr3(unsigned long cr3)
1445 {
1446 	BUG_ON(preemptible());
1447 
1448 	xen_mc_batch();  /* disables interrupts */
1449 
1450 	/* Update while interrupts are disabled, so its atomic with
1451 	   respect to ipis */
1452 	percpu_write(xen_cr3, cr3);
1453 
1454 	__xen_write_cr3(true, cr3);
1455 
1456 #ifdef CONFIG_X86_64
1457 	{
1458 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1459 		if (user_pgd)
1460 			__xen_write_cr3(false, __pa(user_pgd));
1461 		else
1462 			__xen_write_cr3(false, 0);
1463 	}
1464 #endif
1465 
1466 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1467 }
1468 
1469 static int xen_pgd_alloc(struct mm_struct *mm)
1470 {
1471 	pgd_t *pgd = mm->pgd;
1472 	int ret = 0;
1473 
1474 	BUG_ON(PagePinned(virt_to_page(pgd)));
1475 
1476 #ifdef CONFIG_X86_64
1477 	{
1478 		struct page *page = virt_to_page(pgd);
1479 		pgd_t *user_pgd;
1480 
1481 		BUG_ON(page->private != 0);
1482 
1483 		ret = -ENOMEM;
1484 
1485 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1486 		page->private = (unsigned long)user_pgd;
1487 
1488 		if (user_pgd != NULL) {
1489 			user_pgd[pgd_index(VSYSCALL_START)] =
1490 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1491 			ret = 0;
1492 		}
1493 
1494 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1495 	}
1496 #endif
1497 
1498 	return ret;
1499 }
1500 
1501 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1502 {
1503 #ifdef CONFIG_X86_64
1504 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1505 
1506 	if (user_pgd)
1507 		free_page((unsigned long)user_pgd);
1508 #endif
1509 }
1510 
1511 #ifdef CONFIG_X86_32
1512 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1513 {
1514 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1515 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1516 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1517 			       pte_val_ma(pte));
1518 
1519 	return pte;
1520 }
1521 
1522 /* Init-time set_pte while constructing initial pagetables, which
1523    doesn't allow RO pagetable pages to be remapped RW */
1524 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1525 {
1526 	pte = mask_rw_pte(ptep, pte);
1527 
1528 	xen_set_pte(ptep, pte);
1529 }
1530 #endif
1531 
1532 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1533 {
1534 	struct mmuext_op op;
1535 	op.cmd = cmd;
1536 	op.arg1.mfn = pfn_to_mfn(pfn);
1537 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1538 		BUG();
1539 }
1540 
1541 /* Early in boot, while setting up the initial pagetable, assume
1542    everything is pinned. */
1543 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1544 {
1545 #ifdef CONFIG_FLATMEM
1546 	BUG_ON(mem_map);	/* should only be used early */
1547 #endif
1548 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1549 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1550 }
1551 
1552 /* Used for pmd and pud */
1553 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1554 {
1555 #ifdef CONFIG_FLATMEM
1556 	BUG_ON(mem_map);	/* should only be used early */
1557 #endif
1558 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1559 }
1560 
1561 /* Early release_pte assumes that all pts are pinned, since there's
1562    only init_mm and anything attached to that is pinned. */
1563 static __init void xen_release_pte_init(unsigned long pfn)
1564 {
1565 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1566 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1567 }
1568 
1569 static __init void xen_release_pmd_init(unsigned long pfn)
1570 {
1571 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1572 }
1573 
1574 /* This needs to make sure the new pte page is pinned iff its being
1575    attached to a pinned pagetable. */
1576 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1577 {
1578 	struct page *page = pfn_to_page(pfn);
1579 
1580 	if (PagePinned(virt_to_page(mm->pgd))) {
1581 		SetPagePinned(page);
1582 
1583 		if (!PageHighMem(page)) {
1584 			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1585 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1586 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1587 		} else {
1588 			/* make sure there are no stray mappings of
1589 			   this page */
1590 			kmap_flush_unused();
1591 		}
1592 	}
1593 }
1594 
1595 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1596 {
1597 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1598 }
1599 
1600 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1601 {
1602 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1603 }
1604 
1605 /* This should never happen until we're OK to use struct page */
1606 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1607 {
1608 	struct page *page = pfn_to_page(pfn);
1609 
1610 	if (PagePinned(page)) {
1611 		if (!PageHighMem(page)) {
1612 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1613 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1614 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1615 		}
1616 		ClearPagePinned(page);
1617 	}
1618 }
1619 
1620 static void xen_release_pte(unsigned long pfn)
1621 {
1622 	xen_release_ptpage(pfn, PT_PTE);
1623 }
1624 
1625 static void xen_release_pmd(unsigned long pfn)
1626 {
1627 	xen_release_ptpage(pfn, PT_PMD);
1628 }
1629 
1630 #if PAGETABLE_LEVELS == 4
1631 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1632 {
1633 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1634 }
1635 
1636 static void xen_release_pud(unsigned long pfn)
1637 {
1638 	xen_release_ptpage(pfn, PT_PUD);
1639 }
1640 #endif
1641 
1642 void __init xen_reserve_top(void)
1643 {
1644 #ifdef CONFIG_X86_32
1645 	unsigned long top = HYPERVISOR_VIRT_START;
1646 	struct xen_platform_parameters pp;
1647 
1648 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1649 		top = pp.virt_start;
1650 
1651 	reserve_top_address(-top);
1652 #endif	/* CONFIG_X86_32 */
1653 }
1654 
1655 /*
1656  * Like __va(), but returns address in the kernel mapping (which is
1657  * all we have until the physical memory mapping has been set up.
1658  */
1659 static void *__ka(phys_addr_t paddr)
1660 {
1661 #ifdef CONFIG_X86_64
1662 	return (void *)(paddr + __START_KERNEL_map);
1663 #else
1664 	return __va(paddr);
1665 #endif
1666 }
1667 
1668 /* Convert a machine address to physical address */
1669 static unsigned long m2p(phys_addr_t maddr)
1670 {
1671 	phys_addr_t paddr;
1672 
1673 	maddr &= PTE_PFN_MASK;
1674 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1675 
1676 	return paddr;
1677 }
1678 
1679 /* Convert a machine address to kernel virtual */
1680 static void *m2v(phys_addr_t maddr)
1681 {
1682 	return __ka(m2p(maddr));
1683 }
1684 
1685 static void set_page_prot(void *addr, pgprot_t prot)
1686 {
1687 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1688 	pte_t pte = pfn_pte(pfn, prot);
1689 
1690 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1691 		BUG();
1692 }
1693 
1694 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1695 {
1696 	unsigned pmdidx, pteidx;
1697 	unsigned ident_pte;
1698 	unsigned long pfn;
1699 
1700 	ident_pte = 0;
1701 	pfn = 0;
1702 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1703 		pte_t *pte_page;
1704 
1705 		/* Reuse or allocate a page of ptes */
1706 		if (pmd_present(pmd[pmdidx]))
1707 			pte_page = m2v(pmd[pmdidx].pmd);
1708 		else {
1709 			/* Check for free pte pages */
1710 			if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1711 				break;
1712 
1713 			pte_page = &level1_ident_pgt[ident_pte];
1714 			ident_pte += PTRS_PER_PTE;
1715 
1716 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1717 		}
1718 
1719 		/* Install mappings */
1720 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1721 			pte_t pte;
1722 
1723 			if (pfn > max_pfn_mapped)
1724 				max_pfn_mapped = pfn;
1725 
1726 			if (!pte_none(pte_page[pteidx]))
1727 				continue;
1728 
1729 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1730 			pte_page[pteidx] = pte;
1731 		}
1732 	}
1733 
1734 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1735 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1736 
1737 	set_page_prot(pmd, PAGE_KERNEL_RO);
1738 }
1739 
1740 #ifdef CONFIG_X86_64
1741 static void convert_pfn_mfn(void *v)
1742 {
1743 	pte_t *pte = v;
1744 	int i;
1745 
1746 	/* All levels are converted the same way, so just treat them
1747 	   as ptes. */
1748 	for (i = 0; i < PTRS_PER_PTE; i++)
1749 		pte[i] = xen_make_pte(pte[i].pte);
1750 }
1751 
1752 /*
1753  * Set up the inital kernel pagetable.
1754  *
1755  * We can construct this by grafting the Xen provided pagetable into
1756  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1757  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1758  * means that only the kernel has a physical mapping to start with -
1759  * but that's enough to get __va working.  We need to fill in the rest
1760  * of the physical mapping once some sort of allocator has been set
1761  * up.
1762  */
1763 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1764 					 unsigned long max_pfn)
1765 {
1766 	pud_t *l3;
1767 	pmd_t *l2;
1768 
1769 	/* Zap identity mapping */
1770 	init_level4_pgt[0] = __pgd(0);
1771 
1772 	/* Pre-constructed entries are in pfn, so convert to mfn */
1773 	convert_pfn_mfn(init_level4_pgt);
1774 	convert_pfn_mfn(level3_ident_pgt);
1775 	convert_pfn_mfn(level3_kernel_pgt);
1776 
1777 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1778 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1779 
1780 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1782 
1783 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1784 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1785 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1786 
1787 	/* Set up identity map */
1788 	xen_map_identity_early(level2_ident_pgt, max_pfn);
1789 
1790 	/* Make pagetable pieces RO */
1791 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1792 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1793 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1794 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1795 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1796 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1797 
1798 	/* Pin down new L4 */
1799 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1800 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1801 
1802 	/* Unpin Xen-provided one */
1803 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1804 
1805 	/* Switch over */
1806 	pgd = init_level4_pgt;
1807 
1808 	/*
1809 	 * At this stage there can be no user pgd, and no page
1810 	 * structure to attach it to, so make sure we just set kernel
1811 	 * pgd.
1812 	 */
1813 	xen_mc_batch();
1814 	__xen_write_cr3(true, __pa(pgd));
1815 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1816 
1817 	reserve_early(__pa(xen_start_info->pt_base),
1818 		      __pa(xen_start_info->pt_base +
1819 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1820 		      "XEN PAGETABLES");
1821 
1822 	return pgd;
1823 }
1824 #else	/* !CONFIG_X86_64 */
1825 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1826 
1827 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1828 					 unsigned long max_pfn)
1829 {
1830 	pmd_t *kernel_pmd;
1831 
1832 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1833 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1834 				  512*1024);
1835 
1836 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1837 	memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1838 
1839 	xen_map_identity_early(level2_kernel_pgt, max_pfn);
1840 
1841 	memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1842 	set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1843 			__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1844 
1845 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1846 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1847 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1848 
1849 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1850 
1851 	xen_write_cr3(__pa(swapper_pg_dir));
1852 
1853 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1854 
1855 	reserve_early(__pa(xen_start_info->pt_base),
1856 		      __pa(xen_start_info->pt_base +
1857 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1858 		      "XEN PAGETABLES");
1859 
1860 	return swapper_pg_dir;
1861 }
1862 #endif	/* CONFIG_X86_64 */
1863 
1864 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1865 {
1866 	pte_t pte;
1867 
1868 	phys >>= PAGE_SHIFT;
1869 
1870 	switch (idx) {
1871 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1872 #ifdef CONFIG_X86_F00F_BUG
1873 	case FIX_F00F_IDT:
1874 #endif
1875 #ifdef CONFIG_X86_32
1876 	case FIX_WP_TEST:
1877 	case FIX_VDSO:
1878 # ifdef CONFIG_HIGHMEM
1879 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1880 # endif
1881 #else
1882 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1883 #endif
1884 #ifdef CONFIG_X86_LOCAL_APIC
1885 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1886 #endif
1887 	case FIX_TEXT_POKE0:
1888 	case FIX_TEXT_POKE1:
1889 		/* All local page mappings */
1890 		pte = pfn_pte(phys, prot);
1891 		break;
1892 
1893 	case FIX_PARAVIRT_BOOTMAP:
1894 		/* This is an MFN, but it isn't an IO mapping from the
1895 		   IO domain */
1896 		pte = mfn_pte(phys, prot);
1897 		break;
1898 
1899 	default:
1900 		/* By default, set_fixmap is used for hardware mappings */
1901 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1902 		break;
1903 	}
1904 
1905 	__native_set_fixmap(idx, pte);
1906 
1907 #ifdef CONFIG_X86_64
1908 	/* Replicate changes to map the vsyscall page into the user
1909 	   pagetable vsyscall mapping. */
1910 	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1911 		unsigned long vaddr = __fix_to_virt(idx);
1912 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1913 	}
1914 #endif
1915 }
1916 
1917 static __init void xen_post_allocator_init(void)
1918 {
1919 	pv_mmu_ops.set_pte = xen_set_pte;
1920 	pv_mmu_ops.set_pmd = xen_set_pmd;
1921 	pv_mmu_ops.set_pud = xen_set_pud;
1922 #if PAGETABLE_LEVELS == 4
1923 	pv_mmu_ops.set_pgd = xen_set_pgd;
1924 #endif
1925 
1926 	/* This will work as long as patching hasn't happened yet
1927 	   (which it hasn't) */
1928 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
1929 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1930 	pv_mmu_ops.release_pte = xen_release_pte;
1931 	pv_mmu_ops.release_pmd = xen_release_pmd;
1932 #if PAGETABLE_LEVELS == 4
1933 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
1934 	pv_mmu_ops.release_pud = xen_release_pud;
1935 #endif
1936 
1937 #ifdef CONFIG_X86_64
1938 	SetPagePinned(virt_to_page(level3_user_vsyscall));
1939 #endif
1940 	xen_mark_init_mm_pinned();
1941 }
1942 
1943 static void xen_leave_lazy_mmu(void)
1944 {
1945 	preempt_disable();
1946 	xen_mc_flush();
1947 	paravirt_leave_lazy_mmu();
1948 	preempt_enable();
1949 }
1950 
1951 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1952 	.read_cr2 = xen_read_cr2,
1953 	.write_cr2 = xen_write_cr2,
1954 
1955 	.read_cr3 = xen_read_cr3,
1956 	.write_cr3 = xen_write_cr3,
1957 
1958 	.flush_tlb_user = xen_flush_tlb,
1959 	.flush_tlb_kernel = xen_flush_tlb,
1960 	.flush_tlb_single = xen_flush_tlb_single,
1961 	.flush_tlb_others = xen_flush_tlb_others,
1962 
1963 	.pte_update = paravirt_nop,
1964 	.pte_update_defer = paravirt_nop,
1965 
1966 	.pgd_alloc = xen_pgd_alloc,
1967 	.pgd_free = xen_pgd_free,
1968 
1969 	.alloc_pte = xen_alloc_pte_init,
1970 	.release_pte = xen_release_pte_init,
1971 	.alloc_pmd = xen_alloc_pmd_init,
1972 	.alloc_pmd_clone = paravirt_nop,
1973 	.release_pmd = xen_release_pmd_init,
1974 
1975 #ifdef CONFIG_X86_64
1976 	.set_pte = xen_set_pte,
1977 #else
1978 	.set_pte = xen_set_pte_init,
1979 #endif
1980 	.set_pte_at = xen_set_pte_at,
1981 	.set_pmd = xen_set_pmd_hyper,
1982 
1983 	.ptep_modify_prot_start = __ptep_modify_prot_start,
1984 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
1985 
1986 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
1987 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
1988 
1989 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
1990 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
1991 
1992 #ifdef CONFIG_X86_PAE
1993 	.set_pte_atomic = xen_set_pte_atomic,
1994 	.pte_clear = xen_pte_clear,
1995 	.pmd_clear = xen_pmd_clear,
1996 #endif	/* CONFIG_X86_PAE */
1997 	.set_pud = xen_set_pud_hyper,
1998 
1999 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2000 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2001 
2002 #if PAGETABLE_LEVELS == 4
2003 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2004 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2005 	.set_pgd = xen_set_pgd_hyper,
2006 
2007 	.alloc_pud = xen_alloc_pmd_init,
2008 	.release_pud = xen_release_pmd_init,
2009 #endif	/* PAGETABLE_LEVELS == 4 */
2010 
2011 	.activate_mm = xen_activate_mm,
2012 	.dup_mmap = xen_dup_mmap,
2013 	.exit_mmap = xen_exit_mmap,
2014 
2015 	.lazy_mode = {
2016 		.enter = paravirt_enter_lazy_mmu,
2017 		.leave = xen_leave_lazy_mmu,
2018 	},
2019 
2020 	.set_fixmap = xen_set_fixmap,
2021 };
2022 
2023 void __init xen_init_mmu_ops(void)
2024 {
2025 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2026 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2027 	pv_mmu_ops = xen_mmu_ops;
2028 
2029 	vmap_lazy_unmap = false;
2030 }
2031 
2032 /* Protected by xen_reservation_lock. */
2033 #define MAX_CONTIG_ORDER 9 /* 2MB */
2034 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2035 
2036 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2037 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2038 				unsigned long *in_frames,
2039 				unsigned long *out_frames)
2040 {
2041 	int i;
2042 	struct multicall_space mcs;
2043 
2044 	xen_mc_batch();
2045 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2046 		mcs = __xen_mc_entry(0);
2047 
2048 		if (in_frames)
2049 			in_frames[i] = virt_to_mfn(vaddr);
2050 
2051 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2052 		set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2053 
2054 		if (out_frames)
2055 			out_frames[i] = virt_to_pfn(vaddr);
2056 	}
2057 	xen_mc_issue(0);
2058 }
2059 
2060 /*
2061  * Update the pfn-to-mfn mappings for a virtual address range, either to
2062  * point to an array of mfns, or contiguously from a single starting
2063  * mfn.
2064  */
2065 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2066 				     unsigned long *mfns,
2067 				     unsigned long first_mfn)
2068 {
2069 	unsigned i, limit;
2070 	unsigned long mfn;
2071 
2072 	xen_mc_batch();
2073 
2074 	limit = 1u << order;
2075 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2076 		struct multicall_space mcs;
2077 		unsigned flags;
2078 
2079 		mcs = __xen_mc_entry(0);
2080 		if (mfns)
2081 			mfn = mfns[i];
2082 		else
2083 			mfn = first_mfn + i;
2084 
2085 		if (i < (limit - 1))
2086 			flags = 0;
2087 		else {
2088 			if (order == 0)
2089 				flags = UVMF_INVLPG | UVMF_ALL;
2090 			else
2091 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2092 		}
2093 
2094 		MULTI_update_va_mapping(mcs.mc, vaddr,
2095 				mfn_pte(mfn, PAGE_KERNEL), flags);
2096 
2097 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2098 	}
2099 
2100 	xen_mc_issue(0);
2101 }
2102 
2103 /*
2104  * Perform the hypercall to exchange a region of our pfns to point to
2105  * memory with the required contiguous alignment.  Takes the pfns as
2106  * input, and populates mfns as output.
2107  *
2108  * Returns a success code indicating whether the hypervisor was able to
2109  * satisfy the request or not.
2110  */
2111 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2112 			       unsigned long *pfns_in,
2113 			       unsigned long extents_out,
2114 			       unsigned int order_out,
2115 			       unsigned long *mfns_out,
2116 			       unsigned int address_bits)
2117 {
2118 	long rc;
2119 	int success;
2120 
2121 	struct xen_memory_exchange exchange = {
2122 		.in = {
2123 			.nr_extents   = extents_in,
2124 			.extent_order = order_in,
2125 			.extent_start = pfns_in,
2126 			.domid        = DOMID_SELF
2127 		},
2128 		.out = {
2129 			.nr_extents   = extents_out,
2130 			.extent_order = order_out,
2131 			.extent_start = mfns_out,
2132 			.address_bits = address_bits,
2133 			.domid        = DOMID_SELF
2134 		}
2135 	};
2136 
2137 	BUG_ON(extents_in << order_in != extents_out << order_out);
2138 
2139 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2140 	success = (exchange.nr_exchanged == extents_in);
2141 
2142 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2143 	BUG_ON(success && (rc != 0));
2144 
2145 	return success;
2146 }
2147 
2148 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2149 				 unsigned int address_bits)
2150 {
2151 	unsigned long *in_frames = discontig_frames, out_frame;
2152 	unsigned long  flags;
2153 	int            success;
2154 
2155 	/*
2156 	 * Currently an auto-translated guest will not perform I/O, nor will
2157 	 * it require PAE page directories below 4GB. Therefore any calls to
2158 	 * this function are redundant and can be ignored.
2159 	 */
2160 
2161 	if (xen_feature(XENFEAT_auto_translated_physmap))
2162 		return 0;
2163 
2164 	if (unlikely(order > MAX_CONTIG_ORDER))
2165 		return -ENOMEM;
2166 
2167 	memset((void *) vstart, 0, PAGE_SIZE << order);
2168 
2169 	spin_lock_irqsave(&xen_reservation_lock, flags);
2170 
2171 	/* 1. Zap current PTEs, remembering MFNs. */
2172 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2173 
2174 	/* 2. Get a new contiguous memory extent. */
2175 	out_frame = virt_to_pfn(vstart);
2176 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2177 				      1, order, &out_frame,
2178 				      address_bits);
2179 
2180 	/* 3. Map the new extent in place of old pages. */
2181 	if (success)
2182 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2183 	else
2184 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2185 
2186 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2187 
2188 	return success ? 0 : -ENOMEM;
2189 }
2190 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2191 
2192 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2193 {
2194 	unsigned long *out_frames = discontig_frames, in_frame;
2195 	unsigned long  flags;
2196 	int success;
2197 
2198 	if (xen_feature(XENFEAT_auto_translated_physmap))
2199 		return;
2200 
2201 	if (unlikely(order > MAX_CONTIG_ORDER))
2202 		return;
2203 
2204 	memset((void *) vstart, 0, PAGE_SIZE << order);
2205 
2206 	spin_lock_irqsave(&xen_reservation_lock, flags);
2207 
2208 	/* 1. Find start MFN of contiguous extent. */
2209 	in_frame = virt_to_mfn(vstart);
2210 
2211 	/* 2. Zap current PTEs. */
2212 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2213 
2214 	/* 3. Do the exchange for non-contiguous MFNs. */
2215 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2216 					0, out_frames, 0);
2217 
2218 	/* 4. Map new pages in place of old pages. */
2219 	if (success)
2220 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2221 	else
2222 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2223 
2224 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2225 }
2226 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2227 
2228 #ifdef CONFIG_XEN_PVHVM
2229 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2230 {
2231 	struct xen_hvm_pagetable_dying a;
2232 	int rc;
2233 
2234 	a.domid = DOMID_SELF;
2235 	a.gpa = __pa(mm->pgd);
2236 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2237 	WARN_ON_ONCE(rc < 0);
2238 }
2239 
2240 static int is_pagetable_dying_supported(void)
2241 {
2242 	struct xen_hvm_pagetable_dying a;
2243 	int rc = 0;
2244 
2245 	a.domid = DOMID_SELF;
2246 	a.gpa = 0x00;
2247 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2248 	if (rc < 0) {
2249 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2250 		return 0;
2251 	}
2252 	return 1;
2253 }
2254 
2255 void __init xen_hvm_init_mmu_ops(void)
2256 {
2257 	if (is_pagetable_dying_supported())
2258 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2259 }
2260 #endif
2261 
2262 #ifdef CONFIG_XEN_DEBUG_FS
2263 
2264 static struct dentry *d_mmu_debug;
2265 
2266 static int __init xen_mmu_debugfs(void)
2267 {
2268 	struct dentry *d_xen = xen_init_debugfs();
2269 
2270 	if (d_xen == NULL)
2271 		return -ENOMEM;
2272 
2273 	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2274 
2275 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2276 
2277 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2278 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2279 			   &mmu_stats.pgd_update_pinned);
2280 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2281 			   &mmu_stats.pgd_update_pinned);
2282 
2283 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2284 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2285 			   &mmu_stats.pud_update_pinned);
2286 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2287 			   &mmu_stats.pud_update_pinned);
2288 
2289 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2290 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2291 			   &mmu_stats.pmd_update_pinned);
2292 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2293 			   &mmu_stats.pmd_update_pinned);
2294 
2295 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2296 //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2297 //			   &mmu_stats.pte_update_pinned);
2298 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2299 			   &mmu_stats.pte_update_pinned);
2300 
2301 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2302 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2303 			   &mmu_stats.mmu_update_extended);
2304 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2305 				     mmu_stats.mmu_update_histo, 20);
2306 
2307 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2308 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2309 			   &mmu_stats.set_pte_at_batched);
2310 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2311 			   &mmu_stats.set_pte_at_current);
2312 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2313 			   &mmu_stats.set_pte_at_kernel);
2314 
2315 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2316 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2317 			   &mmu_stats.prot_commit_batched);
2318 
2319 	return 0;
2320 }
2321 fs_initcall(xen_mmu_debugfs);
2322 
2323 #endif	/* CONFIG_XEN_DEBUG_FS */
2324