1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 51 #include <trace/events/xen.h> 52 53 #include <asm/pgtable.h> 54 #include <asm/tlbflush.h> 55 #include <asm/fixmap.h> 56 #include <asm/mmu_context.h> 57 #include <asm/setup.h> 58 #include <asm/paravirt.h> 59 #include <asm/e820.h> 60 #include <asm/linkage.h> 61 #include <asm/page.h> 62 #include <asm/init.h> 63 #include <asm/pat.h> 64 #include <asm/smp.h> 65 66 #include <asm/xen/hypercall.h> 67 #include <asm/xen/hypervisor.h> 68 69 #include <xen/xen.h> 70 #include <xen/page.h> 71 #include <xen/interface/xen.h> 72 #include <xen/interface/hvm/hvm_op.h> 73 #include <xen/interface/version.h> 74 #include <xen/interface/memory.h> 75 #include <xen/hvc-console.h> 76 77 #include "multicalls.h" 78 #include "mmu.h" 79 #include "debugfs.h" 80 81 /* 82 * Protects atomic reservation decrease/increase against concurrent increases. 83 * Also protects non-atomic updates of current_pages and balloon lists. 84 */ 85 DEFINE_SPINLOCK(xen_reservation_lock); 86 87 /* 88 * Identity map, in addition to plain kernel map. This needs to be 89 * large enough to allocate page table pages to allocate the rest. 90 * Each page can map 2MB. 91 */ 92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 94 95 #ifdef CONFIG_X86_64 96 /* l3 pud for userspace vsyscall mapping */ 97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 98 #endif /* CONFIG_X86_64 */ 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 118 /* 119 * Just beyond the highest usermode address. STACK_TOP_MAX has a 120 * redzone above it, so round it up to a PGD boundary. 121 */ 122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 123 124 unsigned long arbitrary_virt_to_mfn(void *vaddr) 125 { 126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 127 128 return PFN_DOWN(maddr.maddr); 129 } 130 131 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 132 { 133 unsigned long address = (unsigned long)vaddr; 134 unsigned int level; 135 pte_t *pte; 136 unsigned offset; 137 138 /* 139 * if the PFN is in the linear mapped vaddr range, we can just use 140 * the (quick) virt_to_machine() p2m lookup 141 */ 142 if (virt_addr_valid(vaddr)) 143 return virt_to_machine(vaddr); 144 145 /* otherwise we have to do a (slower) full page-table walk */ 146 147 pte = lookup_address(address, &level); 148 BUG_ON(pte == NULL); 149 offset = address & ~PAGE_MASK; 150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 151 } 152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 153 154 void make_lowmem_page_readonly(void *vaddr) 155 { 156 pte_t *pte, ptev; 157 unsigned long address = (unsigned long)vaddr; 158 unsigned int level; 159 160 pte = lookup_address(address, &level); 161 if (pte == NULL) 162 return; /* vaddr missing */ 163 164 ptev = pte_wrprotect(*pte); 165 166 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 167 BUG(); 168 } 169 170 void make_lowmem_page_readwrite(void *vaddr) 171 { 172 pte_t *pte, ptev; 173 unsigned long address = (unsigned long)vaddr; 174 unsigned int level; 175 176 pte = lookup_address(address, &level); 177 if (pte == NULL) 178 return; /* vaddr missing */ 179 180 ptev = pte_mkwrite(*pte); 181 182 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 183 BUG(); 184 } 185 186 187 static bool xen_page_pinned(void *ptr) 188 { 189 struct page *page = virt_to_page(ptr); 190 191 return PagePinned(page); 192 } 193 194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 195 { 196 struct multicall_space mcs; 197 struct mmu_update *u; 198 199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 200 201 mcs = xen_mc_entry(sizeof(*u)); 202 u = mcs.args; 203 204 /* ptep might be kmapped when using 32-bit HIGHPTE */ 205 u->ptr = virt_to_machine(ptep).maddr; 206 u->val = pte_val_ma(pteval); 207 208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 209 210 xen_mc_issue(PARAVIRT_LAZY_MMU); 211 } 212 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 213 214 static void xen_extend_mmu_update(const struct mmu_update *update) 215 { 216 struct multicall_space mcs; 217 struct mmu_update *u; 218 219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 220 221 if (mcs.mc != NULL) { 222 mcs.mc->args[1]++; 223 } else { 224 mcs = __xen_mc_entry(sizeof(*u)); 225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 226 } 227 228 u = mcs.args; 229 *u = *update; 230 } 231 232 static void xen_extend_mmuext_op(const struct mmuext_op *op) 233 { 234 struct multicall_space mcs; 235 struct mmuext_op *u; 236 237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 238 239 if (mcs.mc != NULL) { 240 mcs.mc->args[1]++; 241 } else { 242 mcs = __xen_mc_entry(sizeof(*u)); 243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 244 } 245 246 u = mcs.args; 247 *u = *op; 248 } 249 250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 251 { 252 struct mmu_update u; 253 254 preempt_disable(); 255 256 xen_mc_batch(); 257 258 /* ptr may be ioremapped for 64-bit pagetable setup */ 259 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 260 u.val = pmd_val_ma(val); 261 xen_extend_mmu_update(&u); 262 263 xen_mc_issue(PARAVIRT_LAZY_MMU); 264 265 preempt_enable(); 266 } 267 268 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 269 { 270 trace_xen_mmu_set_pmd(ptr, val); 271 272 /* If page is not pinned, we can just update the entry 273 directly */ 274 if (!xen_page_pinned(ptr)) { 275 *ptr = val; 276 return; 277 } 278 279 xen_set_pmd_hyper(ptr, val); 280 } 281 282 /* 283 * Associate a virtual page frame with a given physical page frame 284 * and protection flags for that frame. 285 */ 286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 287 { 288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 289 } 290 291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 292 { 293 struct mmu_update u; 294 295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 296 return false; 297 298 xen_mc_batch(); 299 300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 301 u.val = pte_val_ma(pteval); 302 xen_extend_mmu_update(&u); 303 304 xen_mc_issue(PARAVIRT_LAZY_MMU); 305 306 return true; 307 } 308 309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 310 { 311 if (!xen_batched_set_pte(ptep, pteval)) 312 native_set_pte(ptep, pteval); 313 } 314 315 static void xen_set_pte(pte_t *ptep, pte_t pteval) 316 { 317 trace_xen_mmu_set_pte(ptep, pteval); 318 __xen_set_pte(ptep, pteval); 319 } 320 321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 322 pte_t *ptep, pte_t pteval) 323 { 324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 325 __xen_set_pte(ptep, pteval); 326 } 327 328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 329 unsigned long addr, pte_t *ptep) 330 { 331 /* Just return the pte as-is. We preserve the bits on commit */ 332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 333 return *ptep; 334 } 335 336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 337 pte_t *ptep, pte_t pte) 338 { 339 struct mmu_update u; 340 341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 342 xen_mc_batch(); 343 344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 345 u.val = pte_val_ma(pte); 346 xen_extend_mmu_update(&u); 347 348 xen_mc_issue(PARAVIRT_LAZY_MMU); 349 } 350 351 /* Assume pteval_t is equivalent to all the other *val_t types. */ 352 static pteval_t pte_mfn_to_pfn(pteval_t val) 353 { 354 if (val & _PAGE_PRESENT) { 355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 356 pteval_t flags = val & PTE_FLAGS_MASK; 357 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; 358 } 359 360 return val; 361 } 362 363 static pteval_t pte_pfn_to_mfn(pteval_t val) 364 { 365 if (val & _PAGE_PRESENT) { 366 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 367 pteval_t flags = val & PTE_FLAGS_MASK; 368 unsigned long mfn; 369 370 if (!xen_feature(XENFEAT_auto_translated_physmap)) 371 mfn = get_phys_to_machine(pfn); 372 else 373 mfn = pfn; 374 /* 375 * If there's no mfn for the pfn, then just create an 376 * empty non-present pte. Unfortunately this loses 377 * information about the original pfn, so 378 * pte_mfn_to_pfn is asymmetric. 379 */ 380 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 381 mfn = 0; 382 flags = 0; 383 } else { 384 /* 385 * Paramount to do this test _after_ the 386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & 387 * IDENTITY_FRAME_BIT resolves to true. 388 */ 389 mfn &= ~FOREIGN_FRAME_BIT; 390 if (mfn & IDENTITY_FRAME_BIT) { 391 mfn &= ~IDENTITY_FRAME_BIT; 392 flags |= _PAGE_IOMAP; 393 } 394 } 395 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 396 } 397 398 return val; 399 } 400 401 static pteval_t iomap_pte(pteval_t val) 402 { 403 if (val & _PAGE_PRESENT) { 404 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 405 pteval_t flags = val & PTE_FLAGS_MASK; 406 407 /* We assume the pte frame number is a MFN, so 408 just use it as-is. */ 409 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 410 } 411 412 return val; 413 } 414 415 static pteval_t xen_pte_val(pte_t pte) 416 { 417 pteval_t pteval = pte.pte; 418 419 /* If this is a WC pte, convert back from Xen WC to Linux WC */ 420 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { 421 WARN_ON(!pat_enabled); 422 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; 423 } 424 425 if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) 426 return pteval; 427 428 return pte_mfn_to_pfn(pteval); 429 } 430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 431 432 static pgdval_t xen_pgd_val(pgd_t pgd) 433 { 434 return pte_mfn_to_pfn(pgd.pgd); 435 } 436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 437 438 /* 439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 440 * are reserved for now, to correspond to the Intel-reserved PAT 441 * types. 442 * 443 * We expect Linux's PAT set as follows: 444 * 445 * Idx PTE flags Linux Xen Default 446 * 0 WB WB WB 447 * 1 PWT WC WT WT 448 * 2 PCD UC- UC- UC- 449 * 3 PCD PWT UC UC UC 450 * 4 PAT WB WC WB 451 * 5 PAT PWT WC WP WT 452 * 6 PAT PCD UC- UC UC- 453 * 7 PAT PCD PWT UC UC UC 454 */ 455 456 void xen_set_pat(u64 pat) 457 { 458 /* We expect Linux to use a PAT setting of 459 * UC UC- WC WB (ignoring the PAT flag) */ 460 WARN_ON(pat != 0x0007010600070106ull); 461 } 462 463 static pte_t xen_make_pte(pteval_t pte) 464 { 465 phys_addr_t addr = (pte & PTE_PFN_MASK); 466 467 /* If Linux is trying to set a WC pte, then map to the Xen WC. 468 * If _PAGE_PAT is set, then it probably means it is really 469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope 470 * things work out OK... 471 * 472 * (We should never see kernel mappings with _PAGE_PSE set, 473 * but we could see hugetlbfs mappings, I think.). 474 */ 475 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { 476 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) 477 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; 478 } 479 480 /* 481 * Unprivileged domains are allowed to do IOMAPpings for 482 * PCI passthrough, but not map ISA space. The ISA 483 * mappings are just dummy local mappings to keep other 484 * parts of the kernel happy. 485 */ 486 if (unlikely(pte & _PAGE_IOMAP) && 487 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 488 pte = iomap_pte(pte); 489 } else { 490 pte &= ~_PAGE_IOMAP; 491 pte = pte_pfn_to_mfn(pte); 492 } 493 494 return native_make_pte(pte); 495 } 496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 497 498 static pgd_t xen_make_pgd(pgdval_t pgd) 499 { 500 pgd = pte_pfn_to_mfn(pgd); 501 return native_make_pgd(pgd); 502 } 503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 504 505 static pmdval_t xen_pmd_val(pmd_t pmd) 506 { 507 return pte_mfn_to_pfn(pmd.pmd); 508 } 509 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 510 511 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 512 { 513 struct mmu_update u; 514 515 preempt_disable(); 516 517 xen_mc_batch(); 518 519 /* ptr may be ioremapped for 64-bit pagetable setup */ 520 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 521 u.val = pud_val_ma(val); 522 xen_extend_mmu_update(&u); 523 524 xen_mc_issue(PARAVIRT_LAZY_MMU); 525 526 preempt_enable(); 527 } 528 529 static void xen_set_pud(pud_t *ptr, pud_t val) 530 { 531 trace_xen_mmu_set_pud(ptr, val); 532 533 /* If page is not pinned, we can just update the entry 534 directly */ 535 if (!xen_page_pinned(ptr)) { 536 *ptr = val; 537 return; 538 } 539 540 xen_set_pud_hyper(ptr, val); 541 } 542 543 #ifdef CONFIG_X86_PAE 544 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 545 { 546 trace_xen_mmu_set_pte_atomic(ptep, pte); 547 set_64bit((u64 *)ptep, native_pte_val(pte)); 548 } 549 550 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 551 { 552 trace_xen_mmu_pte_clear(mm, addr, ptep); 553 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 554 native_pte_clear(mm, addr, ptep); 555 } 556 557 static void xen_pmd_clear(pmd_t *pmdp) 558 { 559 trace_xen_mmu_pmd_clear(pmdp); 560 set_pmd(pmdp, __pmd(0)); 561 } 562 #endif /* CONFIG_X86_PAE */ 563 564 static pmd_t xen_make_pmd(pmdval_t pmd) 565 { 566 pmd = pte_pfn_to_mfn(pmd); 567 return native_make_pmd(pmd); 568 } 569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 570 571 #if PAGETABLE_LEVELS == 4 572 static pudval_t xen_pud_val(pud_t pud) 573 { 574 return pte_mfn_to_pfn(pud.pud); 575 } 576 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 577 578 static pud_t xen_make_pud(pudval_t pud) 579 { 580 pud = pte_pfn_to_mfn(pud); 581 582 return native_make_pud(pud); 583 } 584 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 585 586 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 587 { 588 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 589 unsigned offset = pgd - pgd_page; 590 pgd_t *user_ptr = NULL; 591 592 if (offset < pgd_index(USER_LIMIT)) { 593 struct page *page = virt_to_page(pgd_page); 594 user_ptr = (pgd_t *)page->private; 595 if (user_ptr) 596 user_ptr += offset; 597 } 598 599 return user_ptr; 600 } 601 602 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 603 { 604 struct mmu_update u; 605 606 u.ptr = virt_to_machine(ptr).maddr; 607 u.val = pgd_val_ma(val); 608 xen_extend_mmu_update(&u); 609 } 610 611 /* 612 * Raw hypercall-based set_pgd, intended for in early boot before 613 * there's a page structure. This implies: 614 * 1. The only existing pagetable is the kernel's 615 * 2. It is always pinned 616 * 3. It has no user pagetable attached to it 617 */ 618 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 619 { 620 preempt_disable(); 621 622 xen_mc_batch(); 623 624 __xen_set_pgd_hyper(ptr, val); 625 626 xen_mc_issue(PARAVIRT_LAZY_MMU); 627 628 preempt_enable(); 629 } 630 631 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 632 { 633 pgd_t *user_ptr = xen_get_user_pgd(ptr); 634 635 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 636 637 /* If page is not pinned, we can just update the entry 638 directly */ 639 if (!xen_page_pinned(ptr)) { 640 *ptr = val; 641 if (user_ptr) { 642 WARN_ON(xen_page_pinned(user_ptr)); 643 *user_ptr = val; 644 } 645 return; 646 } 647 648 /* If it's pinned, then we can at least batch the kernel and 649 user updates together. */ 650 xen_mc_batch(); 651 652 __xen_set_pgd_hyper(ptr, val); 653 if (user_ptr) 654 __xen_set_pgd_hyper(user_ptr, val); 655 656 xen_mc_issue(PARAVIRT_LAZY_MMU); 657 } 658 #endif /* PAGETABLE_LEVELS == 4 */ 659 660 /* 661 * (Yet another) pagetable walker. This one is intended for pinning a 662 * pagetable. This means that it walks a pagetable and calls the 663 * callback function on each page it finds making up the page table, 664 * at every level. It walks the entire pagetable, but it only bothers 665 * pinning pte pages which are below limit. In the normal case this 666 * will be STACK_TOP_MAX, but at boot we need to pin up to 667 * FIXADDR_TOP. 668 * 669 * For 32-bit the important bit is that we don't pin beyond there, 670 * because then we start getting into Xen's ptes. 671 * 672 * For 64-bit, we must skip the Xen hole in the middle of the address 673 * space, just after the big x86-64 virtual hole. 674 */ 675 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 676 int (*func)(struct mm_struct *mm, struct page *, 677 enum pt_level), 678 unsigned long limit) 679 { 680 int flush = 0; 681 unsigned hole_low, hole_high; 682 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 683 unsigned pgdidx, pudidx, pmdidx; 684 685 /* The limit is the last byte to be touched */ 686 limit--; 687 BUG_ON(limit >= FIXADDR_TOP); 688 689 if (xen_feature(XENFEAT_auto_translated_physmap)) 690 return 0; 691 692 /* 693 * 64-bit has a great big hole in the middle of the address 694 * space, which contains the Xen mappings. On 32-bit these 695 * will end up making a zero-sized hole and so is a no-op. 696 */ 697 hole_low = pgd_index(USER_LIMIT); 698 hole_high = pgd_index(PAGE_OFFSET); 699 700 pgdidx_limit = pgd_index(limit); 701 #if PTRS_PER_PUD > 1 702 pudidx_limit = pud_index(limit); 703 #else 704 pudidx_limit = 0; 705 #endif 706 #if PTRS_PER_PMD > 1 707 pmdidx_limit = pmd_index(limit); 708 #else 709 pmdidx_limit = 0; 710 #endif 711 712 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 713 pud_t *pud; 714 715 if (pgdidx >= hole_low && pgdidx < hole_high) 716 continue; 717 718 if (!pgd_val(pgd[pgdidx])) 719 continue; 720 721 pud = pud_offset(&pgd[pgdidx], 0); 722 723 if (PTRS_PER_PUD > 1) /* not folded */ 724 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 725 726 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 727 pmd_t *pmd; 728 729 if (pgdidx == pgdidx_limit && 730 pudidx > pudidx_limit) 731 goto out; 732 733 if (pud_none(pud[pudidx])) 734 continue; 735 736 pmd = pmd_offset(&pud[pudidx], 0); 737 738 if (PTRS_PER_PMD > 1) /* not folded */ 739 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 740 741 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 742 struct page *pte; 743 744 if (pgdidx == pgdidx_limit && 745 pudidx == pudidx_limit && 746 pmdidx > pmdidx_limit) 747 goto out; 748 749 if (pmd_none(pmd[pmdidx])) 750 continue; 751 752 pte = pmd_page(pmd[pmdidx]); 753 flush |= (*func)(mm, pte, PT_PTE); 754 } 755 } 756 } 757 758 out: 759 /* Do the top level last, so that the callbacks can use it as 760 a cue to do final things like tlb flushes. */ 761 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 762 763 return flush; 764 } 765 766 static int xen_pgd_walk(struct mm_struct *mm, 767 int (*func)(struct mm_struct *mm, struct page *, 768 enum pt_level), 769 unsigned long limit) 770 { 771 return __xen_pgd_walk(mm, mm->pgd, func, limit); 772 } 773 774 /* If we're using split pte locks, then take the page's lock and 775 return a pointer to it. Otherwise return NULL. */ 776 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 777 { 778 spinlock_t *ptl = NULL; 779 780 #if USE_SPLIT_PTLOCKS 781 ptl = __pte_lockptr(page); 782 spin_lock_nest_lock(ptl, &mm->page_table_lock); 783 #endif 784 785 return ptl; 786 } 787 788 static void xen_pte_unlock(void *v) 789 { 790 spinlock_t *ptl = v; 791 spin_unlock(ptl); 792 } 793 794 static void xen_do_pin(unsigned level, unsigned long pfn) 795 { 796 struct mmuext_op op; 797 798 op.cmd = level; 799 op.arg1.mfn = pfn_to_mfn(pfn); 800 801 xen_extend_mmuext_op(&op); 802 } 803 804 static int xen_pin_page(struct mm_struct *mm, struct page *page, 805 enum pt_level level) 806 { 807 unsigned pgfl = TestSetPagePinned(page); 808 int flush; 809 810 if (pgfl) 811 flush = 0; /* already pinned */ 812 else if (PageHighMem(page)) 813 /* kmaps need flushing if we found an unpinned 814 highpage */ 815 flush = 1; 816 else { 817 void *pt = lowmem_page_address(page); 818 unsigned long pfn = page_to_pfn(page); 819 struct multicall_space mcs = __xen_mc_entry(0); 820 spinlock_t *ptl; 821 822 flush = 0; 823 824 /* 825 * We need to hold the pagetable lock between the time 826 * we make the pagetable RO and when we actually pin 827 * it. If we don't, then other users may come in and 828 * attempt to update the pagetable by writing it, 829 * which will fail because the memory is RO but not 830 * pinned, so Xen won't do the trap'n'emulate. 831 * 832 * If we're using split pte locks, we can't hold the 833 * entire pagetable's worth of locks during the 834 * traverse, because we may wrap the preempt count (8 835 * bits). The solution is to mark RO and pin each PTE 836 * page while holding the lock. This means the number 837 * of locks we end up holding is never more than a 838 * batch size (~32 entries, at present). 839 * 840 * If we're not using split pte locks, we needn't pin 841 * the PTE pages independently, because we're 842 * protected by the overall pagetable lock. 843 */ 844 ptl = NULL; 845 if (level == PT_PTE) 846 ptl = xen_pte_lock(page, mm); 847 848 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 849 pfn_pte(pfn, PAGE_KERNEL_RO), 850 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 851 852 if (ptl) { 853 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 854 855 /* Queue a deferred unlock for when this batch 856 is completed. */ 857 xen_mc_callback(xen_pte_unlock, ptl); 858 } 859 } 860 861 return flush; 862 } 863 864 /* This is called just after a mm has been created, but it has not 865 been used yet. We need to make sure that its pagetable is all 866 read-only, and can be pinned. */ 867 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 868 { 869 trace_xen_mmu_pgd_pin(mm, pgd); 870 871 xen_mc_batch(); 872 873 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 874 /* re-enable interrupts for flushing */ 875 xen_mc_issue(0); 876 877 kmap_flush_unused(); 878 879 xen_mc_batch(); 880 } 881 882 #ifdef CONFIG_X86_64 883 { 884 pgd_t *user_pgd = xen_get_user_pgd(pgd); 885 886 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 887 888 if (user_pgd) { 889 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 890 xen_do_pin(MMUEXT_PIN_L4_TABLE, 891 PFN_DOWN(__pa(user_pgd))); 892 } 893 } 894 #else /* CONFIG_X86_32 */ 895 #ifdef CONFIG_X86_PAE 896 /* Need to make sure unshared kernel PMD is pinnable */ 897 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 898 PT_PMD); 899 #endif 900 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 901 #endif /* CONFIG_X86_64 */ 902 xen_mc_issue(0); 903 } 904 905 static void xen_pgd_pin(struct mm_struct *mm) 906 { 907 __xen_pgd_pin(mm, mm->pgd); 908 } 909 910 /* 911 * On save, we need to pin all pagetables to make sure they get their 912 * mfns turned into pfns. Search the list for any unpinned pgds and pin 913 * them (unpinned pgds are not currently in use, probably because the 914 * process is under construction or destruction). 915 * 916 * Expected to be called in stop_machine() ("equivalent to taking 917 * every spinlock in the system"), so the locking doesn't really 918 * matter all that much. 919 */ 920 void xen_mm_pin_all(void) 921 { 922 struct page *page; 923 924 spin_lock(&pgd_lock); 925 926 list_for_each_entry(page, &pgd_list, lru) { 927 if (!PagePinned(page)) { 928 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 929 SetPageSavePinned(page); 930 } 931 } 932 933 spin_unlock(&pgd_lock); 934 } 935 936 /* 937 * The init_mm pagetable is really pinned as soon as its created, but 938 * that's before we have page structures to store the bits. So do all 939 * the book-keeping now. 940 */ 941 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 942 enum pt_level level) 943 { 944 SetPagePinned(page); 945 return 0; 946 } 947 948 static void __init xen_mark_init_mm_pinned(void) 949 { 950 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 951 } 952 953 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 954 enum pt_level level) 955 { 956 unsigned pgfl = TestClearPagePinned(page); 957 958 if (pgfl && !PageHighMem(page)) { 959 void *pt = lowmem_page_address(page); 960 unsigned long pfn = page_to_pfn(page); 961 spinlock_t *ptl = NULL; 962 struct multicall_space mcs; 963 964 /* 965 * Do the converse to pin_page. If we're using split 966 * pte locks, we must be holding the lock for while 967 * the pte page is unpinned but still RO to prevent 968 * concurrent updates from seeing it in this 969 * partially-pinned state. 970 */ 971 if (level == PT_PTE) { 972 ptl = xen_pte_lock(page, mm); 973 974 if (ptl) 975 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 976 } 977 978 mcs = __xen_mc_entry(0); 979 980 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 981 pfn_pte(pfn, PAGE_KERNEL), 982 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 983 984 if (ptl) { 985 /* unlock when batch completed */ 986 xen_mc_callback(xen_pte_unlock, ptl); 987 } 988 } 989 990 return 0; /* never need to flush on unpin */ 991 } 992 993 /* Release a pagetables pages back as normal RW */ 994 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 995 { 996 trace_xen_mmu_pgd_unpin(mm, pgd); 997 998 xen_mc_batch(); 999 1000 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1001 1002 #ifdef CONFIG_X86_64 1003 { 1004 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1005 1006 if (user_pgd) { 1007 xen_do_pin(MMUEXT_UNPIN_TABLE, 1008 PFN_DOWN(__pa(user_pgd))); 1009 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 1010 } 1011 } 1012 #endif 1013 1014 #ifdef CONFIG_X86_PAE 1015 /* Need to make sure unshared kernel PMD is unpinned */ 1016 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1017 PT_PMD); 1018 #endif 1019 1020 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 1021 1022 xen_mc_issue(0); 1023 } 1024 1025 static void xen_pgd_unpin(struct mm_struct *mm) 1026 { 1027 __xen_pgd_unpin(mm, mm->pgd); 1028 } 1029 1030 /* 1031 * On resume, undo any pinning done at save, so that the rest of the 1032 * kernel doesn't see any unexpected pinned pagetables. 1033 */ 1034 void xen_mm_unpin_all(void) 1035 { 1036 struct page *page; 1037 1038 spin_lock(&pgd_lock); 1039 1040 list_for_each_entry(page, &pgd_list, lru) { 1041 if (PageSavePinned(page)) { 1042 BUG_ON(!PagePinned(page)); 1043 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 1044 ClearPageSavePinned(page); 1045 } 1046 } 1047 1048 spin_unlock(&pgd_lock); 1049 } 1050 1051 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1052 { 1053 spin_lock(&next->page_table_lock); 1054 xen_pgd_pin(next); 1055 spin_unlock(&next->page_table_lock); 1056 } 1057 1058 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1059 { 1060 spin_lock(&mm->page_table_lock); 1061 xen_pgd_pin(mm); 1062 spin_unlock(&mm->page_table_lock); 1063 } 1064 1065 1066 #ifdef CONFIG_SMP 1067 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1068 we need to repoint it somewhere else before we can unpin it. */ 1069 static void drop_other_mm_ref(void *info) 1070 { 1071 struct mm_struct *mm = info; 1072 struct mm_struct *active_mm; 1073 1074 active_mm = percpu_read(cpu_tlbstate.active_mm); 1075 1076 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1077 leave_mm(smp_processor_id()); 1078 1079 /* If this cpu still has a stale cr3 reference, then make sure 1080 it has been flushed. */ 1081 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) 1082 load_cr3(swapper_pg_dir); 1083 } 1084 1085 static void xen_drop_mm_ref(struct mm_struct *mm) 1086 { 1087 cpumask_var_t mask; 1088 unsigned cpu; 1089 1090 if (current->active_mm == mm) { 1091 if (current->mm == mm) 1092 load_cr3(swapper_pg_dir); 1093 else 1094 leave_mm(smp_processor_id()); 1095 } 1096 1097 /* Get the "official" set of cpus referring to our pagetable. */ 1098 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1099 for_each_online_cpu(cpu) { 1100 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1101 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1102 continue; 1103 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1104 } 1105 return; 1106 } 1107 cpumask_copy(mask, mm_cpumask(mm)); 1108 1109 /* It's possible that a vcpu may have a stale reference to our 1110 cr3, because its in lazy mode, and it hasn't yet flushed 1111 its set of pending hypercalls yet. In this case, we can 1112 look at its actual current cr3 value, and force it to flush 1113 if needed. */ 1114 for_each_online_cpu(cpu) { 1115 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1116 cpumask_set_cpu(cpu, mask); 1117 } 1118 1119 if (!cpumask_empty(mask)) 1120 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1121 free_cpumask_var(mask); 1122 } 1123 #else 1124 static void xen_drop_mm_ref(struct mm_struct *mm) 1125 { 1126 if (current->active_mm == mm) 1127 load_cr3(swapper_pg_dir); 1128 } 1129 #endif 1130 1131 /* 1132 * While a process runs, Xen pins its pagetables, which means that the 1133 * hypervisor forces it to be read-only, and it controls all updates 1134 * to it. This means that all pagetable updates have to go via the 1135 * hypervisor, which is moderately expensive. 1136 * 1137 * Since we're pulling the pagetable down, we switch to use init_mm, 1138 * unpin old process pagetable and mark it all read-write, which 1139 * allows further operations on it to be simple memory accesses. 1140 * 1141 * The only subtle point is that another CPU may be still using the 1142 * pagetable because of lazy tlb flushing. This means we need need to 1143 * switch all CPUs off this pagetable before we can unpin it. 1144 */ 1145 static void xen_exit_mmap(struct mm_struct *mm) 1146 { 1147 get_cpu(); /* make sure we don't move around */ 1148 xen_drop_mm_ref(mm); 1149 put_cpu(); 1150 1151 spin_lock(&mm->page_table_lock); 1152 1153 /* pgd may not be pinned in the error exit path of execve */ 1154 if (xen_page_pinned(mm->pgd)) 1155 xen_pgd_unpin(mm); 1156 1157 spin_unlock(&mm->page_table_lock); 1158 } 1159 1160 static void __init xen_pagetable_setup_start(pgd_t *base) 1161 { 1162 } 1163 1164 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) 1165 { 1166 /* reserve the range used */ 1167 native_pagetable_reserve(start, end); 1168 1169 /* set as RW the rest */ 1170 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, 1171 PFN_PHYS(pgt_buf_top)); 1172 while (end < PFN_PHYS(pgt_buf_top)) { 1173 make_lowmem_page_readwrite(__va(end)); 1174 end += PAGE_SIZE; 1175 } 1176 } 1177 1178 static void xen_post_allocator_init(void); 1179 1180 static void __init xen_pagetable_setup_done(pgd_t *base) 1181 { 1182 xen_setup_shared_info(); 1183 xen_post_allocator_init(); 1184 } 1185 1186 static void xen_write_cr2(unsigned long cr2) 1187 { 1188 percpu_read(xen_vcpu)->arch.cr2 = cr2; 1189 } 1190 1191 static unsigned long xen_read_cr2(void) 1192 { 1193 return percpu_read(xen_vcpu)->arch.cr2; 1194 } 1195 1196 unsigned long xen_read_cr2_direct(void) 1197 { 1198 return percpu_read(xen_vcpu_info.arch.cr2); 1199 } 1200 1201 static void xen_flush_tlb(void) 1202 { 1203 struct mmuext_op *op; 1204 struct multicall_space mcs; 1205 1206 trace_xen_mmu_flush_tlb(0); 1207 1208 preempt_disable(); 1209 1210 mcs = xen_mc_entry(sizeof(*op)); 1211 1212 op = mcs.args; 1213 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1214 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1215 1216 xen_mc_issue(PARAVIRT_LAZY_MMU); 1217 1218 preempt_enable(); 1219 } 1220 1221 static void xen_flush_tlb_single(unsigned long addr) 1222 { 1223 struct mmuext_op *op; 1224 struct multicall_space mcs; 1225 1226 trace_xen_mmu_flush_tlb_single(addr); 1227 1228 preempt_disable(); 1229 1230 mcs = xen_mc_entry(sizeof(*op)); 1231 op = mcs.args; 1232 op->cmd = MMUEXT_INVLPG_LOCAL; 1233 op->arg1.linear_addr = addr & PAGE_MASK; 1234 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1235 1236 xen_mc_issue(PARAVIRT_LAZY_MMU); 1237 1238 preempt_enable(); 1239 } 1240 1241 static void xen_flush_tlb_others(const struct cpumask *cpus, 1242 struct mm_struct *mm, unsigned long va) 1243 { 1244 struct { 1245 struct mmuext_op op; 1246 #ifdef CONFIG_SMP 1247 DECLARE_BITMAP(mask, num_processors); 1248 #else 1249 DECLARE_BITMAP(mask, NR_CPUS); 1250 #endif 1251 } *args; 1252 struct multicall_space mcs; 1253 1254 trace_xen_mmu_flush_tlb_others(cpus, mm, va); 1255 1256 if (cpumask_empty(cpus)) 1257 return; /* nothing to do */ 1258 1259 mcs = xen_mc_entry(sizeof(*args)); 1260 args = mcs.args; 1261 args->op.arg2.vcpumask = to_cpumask(args->mask); 1262 1263 /* Remove us, and any offline CPUS. */ 1264 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1265 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1266 1267 if (va == TLB_FLUSH_ALL) { 1268 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1269 } else { 1270 args->op.cmd = MMUEXT_INVLPG_MULTI; 1271 args->op.arg1.linear_addr = va; 1272 } 1273 1274 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1275 1276 xen_mc_issue(PARAVIRT_LAZY_MMU); 1277 } 1278 1279 static unsigned long xen_read_cr3(void) 1280 { 1281 return percpu_read(xen_cr3); 1282 } 1283 1284 static void set_current_cr3(void *v) 1285 { 1286 percpu_write(xen_current_cr3, (unsigned long)v); 1287 } 1288 1289 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1290 { 1291 struct mmuext_op op; 1292 unsigned long mfn; 1293 1294 trace_xen_mmu_write_cr3(kernel, cr3); 1295 1296 if (cr3) 1297 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1298 else 1299 mfn = 0; 1300 1301 WARN_ON(mfn == 0 && kernel); 1302 1303 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1304 op.arg1.mfn = mfn; 1305 1306 xen_extend_mmuext_op(&op); 1307 1308 if (kernel) { 1309 percpu_write(xen_cr3, cr3); 1310 1311 /* Update xen_current_cr3 once the batch has actually 1312 been submitted. */ 1313 xen_mc_callback(set_current_cr3, (void *)cr3); 1314 } 1315 } 1316 1317 static void xen_write_cr3(unsigned long cr3) 1318 { 1319 BUG_ON(preemptible()); 1320 1321 xen_mc_batch(); /* disables interrupts */ 1322 1323 /* Update while interrupts are disabled, so its atomic with 1324 respect to ipis */ 1325 percpu_write(xen_cr3, cr3); 1326 1327 __xen_write_cr3(true, cr3); 1328 1329 #ifdef CONFIG_X86_64 1330 { 1331 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1332 if (user_pgd) 1333 __xen_write_cr3(false, __pa(user_pgd)); 1334 else 1335 __xen_write_cr3(false, 0); 1336 } 1337 #endif 1338 1339 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1340 } 1341 1342 static int xen_pgd_alloc(struct mm_struct *mm) 1343 { 1344 pgd_t *pgd = mm->pgd; 1345 int ret = 0; 1346 1347 BUG_ON(PagePinned(virt_to_page(pgd))); 1348 1349 #ifdef CONFIG_X86_64 1350 { 1351 struct page *page = virt_to_page(pgd); 1352 pgd_t *user_pgd; 1353 1354 BUG_ON(page->private != 0); 1355 1356 ret = -ENOMEM; 1357 1358 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1359 page->private = (unsigned long)user_pgd; 1360 1361 if (user_pgd != NULL) { 1362 user_pgd[pgd_index(VSYSCALL_START)] = 1363 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1364 ret = 0; 1365 } 1366 1367 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1368 } 1369 #endif 1370 1371 return ret; 1372 } 1373 1374 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1375 { 1376 #ifdef CONFIG_X86_64 1377 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1378 1379 if (user_pgd) 1380 free_page((unsigned long)user_pgd); 1381 #endif 1382 } 1383 1384 #ifdef CONFIG_X86_32 1385 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1386 { 1387 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1388 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1389 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1390 pte_val_ma(pte)); 1391 1392 return pte; 1393 } 1394 #else /* CONFIG_X86_64 */ 1395 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1396 { 1397 unsigned long pfn = pte_pfn(pte); 1398 1399 /* 1400 * If the new pfn is within the range of the newly allocated 1401 * kernel pagetable, and it isn't being mapped into an 1402 * early_ioremap fixmap slot as a freshly allocated page, make sure 1403 * it is RO. 1404 */ 1405 if (((!is_early_ioremap_ptep(ptep) && 1406 pfn >= pgt_buf_start && pfn < pgt_buf_top)) || 1407 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) 1408 pte = pte_wrprotect(pte); 1409 1410 return pte; 1411 } 1412 #endif /* CONFIG_X86_64 */ 1413 1414 /* Init-time set_pte while constructing initial pagetables, which 1415 doesn't allow RO pagetable pages to be remapped RW */ 1416 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1417 { 1418 pte = mask_rw_pte(ptep, pte); 1419 1420 xen_set_pte(ptep, pte); 1421 } 1422 1423 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1424 { 1425 struct mmuext_op op; 1426 op.cmd = cmd; 1427 op.arg1.mfn = pfn_to_mfn(pfn); 1428 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1429 BUG(); 1430 } 1431 1432 /* Early in boot, while setting up the initial pagetable, assume 1433 everything is pinned. */ 1434 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1435 { 1436 #ifdef CONFIG_FLATMEM 1437 BUG_ON(mem_map); /* should only be used early */ 1438 #endif 1439 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1440 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1441 } 1442 1443 /* Used for pmd and pud */ 1444 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1445 { 1446 #ifdef CONFIG_FLATMEM 1447 BUG_ON(mem_map); /* should only be used early */ 1448 #endif 1449 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1450 } 1451 1452 /* Early release_pte assumes that all pts are pinned, since there's 1453 only init_mm and anything attached to that is pinned. */ 1454 static void __init xen_release_pte_init(unsigned long pfn) 1455 { 1456 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1457 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1458 } 1459 1460 static void __init xen_release_pmd_init(unsigned long pfn) 1461 { 1462 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1463 } 1464 1465 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1466 { 1467 struct multicall_space mcs; 1468 struct mmuext_op *op; 1469 1470 mcs = __xen_mc_entry(sizeof(*op)); 1471 op = mcs.args; 1472 op->cmd = cmd; 1473 op->arg1.mfn = pfn_to_mfn(pfn); 1474 1475 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1476 } 1477 1478 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1479 { 1480 struct multicall_space mcs; 1481 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1482 1483 mcs = __xen_mc_entry(0); 1484 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1485 pfn_pte(pfn, prot), 0); 1486 } 1487 1488 /* This needs to make sure the new pte page is pinned iff its being 1489 attached to a pinned pagetable. */ 1490 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1491 unsigned level) 1492 { 1493 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1494 1495 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1496 1497 if (pinned) { 1498 struct page *page = pfn_to_page(pfn); 1499 1500 SetPagePinned(page); 1501 1502 if (!PageHighMem(page)) { 1503 xen_mc_batch(); 1504 1505 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1506 1507 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1508 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1509 1510 xen_mc_issue(PARAVIRT_LAZY_MMU); 1511 } else { 1512 /* make sure there are no stray mappings of 1513 this page */ 1514 kmap_flush_unused(); 1515 } 1516 } 1517 } 1518 1519 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1520 { 1521 xen_alloc_ptpage(mm, pfn, PT_PTE); 1522 } 1523 1524 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1525 { 1526 xen_alloc_ptpage(mm, pfn, PT_PMD); 1527 } 1528 1529 /* This should never happen until we're OK to use struct page */ 1530 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1531 { 1532 struct page *page = pfn_to_page(pfn); 1533 bool pinned = PagePinned(page); 1534 1535 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1536 1537 if (pinned) { 1538 if (!PageHighMem(page)) { 1539 xen_mc_batch(); 1540 1541 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1542 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1543 1544 __set_pfn_prot(pfn, PAGE_KERNEL); 1545 1546 xen_mc_issue(PARAVIRT_LAZY_MMU); 1547 } 1548 ClearPagePinned(page); 1549 } 1550 } 1551 1552 static void xen_release_pte(unsigned long pfn) 1553 { 1554 xen_release_ptpage(pfn, PT_PTE); 1555 } 1556 1557 static void xen_release_pmd(unsigned long pfn) 1558 { 1559 xen_release_ptpage(pfn, PT_PMD); 1560 } 1561 1562 #if PAGETABLE_LEVELS == 4 1563 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1564 { 1565 xen_alloc_ptpage(mm, pfn, PT_PUD); 1566 } 1567 1568 static void xen_release_pud(unsigned long pfn) 1569 { 1570 xen_release_ptpage(pfn, PT_PUD); 1571 } 1572 #endif 1573 1574 void __init xen_reserve_top(void) 1575 { 1576 #ifdef CONFIG_X86_32 1577 unsigned long top = HYPERVISOR_VIRT_START; 1578 struct xen_platform_parameters pp; 1579 1580 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1581 top = pp.virt_start; 1582 1583 reserve_top_address(-top); 1584 #endif /* CONFIG_X86_32 */ 1585 } 1586 1587 /* 1588 * Like __va(), but returns address in the kernel mapping (which is 1589 * all we have until the physical memory mapping has been set up. 1590 */ 1591 static void *__ka(phys_addr_t paddr) 1592 { 1593 #ifdef CONFIG_X86_64 1594 return (void *)(paddr + __START_KERNEL_map); 1595 #else 1596 return __va(paddr); 1597 #endif 1598 } 1599 1600 /* Convert a machine address to physical address */ 1601 static unsigned long m2p(phys_addr_t maddr) 1602 { 1603 phys_addr_t paddr; 1604 1605 maddr &= PTE_PFN_MASK; 1606 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1607 1608 return paddr; 1609 } 1610 1611 /* Convert a machine address to kernel virtual */ 1612 static void *m2v(phys_addr_t maddr) 1613 { 1614 return __ka(m2p(maddr)); 1615 } 1616 1617 /* Set the page permissions on an identity-mapped pages */ 1618 static void set_page_prot(void *addr, pgprot_t prot) 1619 { 1620 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1621 pte_t pte = pfn_pte(pfn, prot); 1622 1623 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) 1624 BUG(); 1625 } 1626 1627 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1628 { 1629 unsigned pmdidx, pteidx; 1630 unsigned ident_pte; 1631 unsigned long pfn; 1632 1633 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1634 PAGE_SIZE); 1635 1636 ident_pte = 0; 1637 pfn = 0; 1638 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1639 pte_t *pte_page; 1640 1641 /* Reuse or allocate a page of ptes */ 1642 if (pmd_present(pmd[pmdidx])) 1643 pte_page = m2v(pmd[pmdidx].pmd); 1644 else { 1645 /* Check for free pte pages */ 1646 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1647 break; 1648 1649 pte_page = &level1_ident_pgt[ident_pte]; 1650 ident_pte += PTRS_PER_PTE; 1651 1652 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1653 } 1654 1655 /* Install mappings */ 1656 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1657 pte_t pte; 1658 1659 #ifdef CONFIG_X86_32 1660 if (pfn > max_pfn_mapped) 1661 max_pfn_mapped = pfn; 1662 #endif 1663 1664 if (!pte_none(pte_page[pteidx])) 1665 continue; 1666 1667 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1668 pte_page[pteidx] = pte; 1669 } 1670 } 1671 1672 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1673 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1674 1675 set_page_prot(pmd, PAGE_KERNEL_RO); 1676 } 1677 1678 void __init xen_setup_machphys_mapping(void) 1679 { 1680 struct xen_machphys_mapping mapping; 1681 1682 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1683 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1684 machine_to_phys_nr = mapping.max_mfn + 1; 1685 } else { 1686 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1687 } 1688 #ifdef CONFIG_X86_32 1689 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1690 < machine_to_phys_mapping); 1691 #endif 1692 } 1693 1694 #ifdef CONFIG_X86_64 1695 static void convert_pfn_mfn(void *v) 1696 { 1697 pte_t *pte = v; 1698 int i; 1699 1700 /* All levels are converted the same way, so just treat them 1701 as ptes. */ 1702 for (i = 0; i < PTRS_PER_PTE; i++) 1703 pte[i] = xen_make_pte(pte[i].pte); 1704 } 1705 1706 /* 1707 * Set up the initial kernel pagetable. 1708 * 1709 * We can construct this by grafting the Xen provided pagetable into 1710 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1711 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This 1712 * means that only the kernel has a physical mapping to start with - 1713 * but that's enough to get __va working. We need to fill in the rest 1714 * of the physical mapping once some sort of allocator has been set 1715 * up. 1716 */ 1717 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1718 unsigned long max_pfn) 1719 { 1720 pud_t *l3; 1721 pmd_t *l2; 1722 1723 /* max_pfn_mapped is the last pfn mapped in the initial memory 1724 * mappings. Considering that on Xen after the kernel mappings we 1725 * have the mappings of some pages that don't exist in pfn space, we 1726 * set max_pfn_mapped to the last real pfn mapped. */ 1727 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1728 1729 /* Zap identity mapping */ 1730 init_level4_pgt[0] = __pgd(0); 1731 1732 /* Pre-constructed entries are in pfn, so convert to mfn */ 1733 convert_pfn_mfn(init_level4_pgt); 1734 convert_pfn_mfn(level3_ident_pgt); 1735 convert_pfn_mfn(level3_kernel_pgt); 1736 1737 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1738 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1739 1740 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1741 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1742 1743 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); 1744 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); 1745 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1746 1747 /* Set up identity map */ 1748 xen_map_identity_early(level2_ident_pgt, max_pfn); 1749 1750 /* Make pagetable pieces RO */ 1751 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1752 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1753 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1754 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1755 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1756 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1757 1758 /* Pin down new L4 */ 1759 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1760 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1761 1762 /* Unpin Xen-provided one */ 1763 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1764 1765 /* Switch over */ 1766 pgd = init_level4_pgt; 1767 1768 /* 1769 * At this stage there can be no user pgd, and no page 1770 * structure to attach it to, so make sure we just set kernel 1771 * pgd. 1772 */ 1773 xen_mc_batch(); 1774 __xen_write_cr3(true, __pa(pgd)); 1775 xen_mc_issue(PARAVIRT_LAZY_CPU); 1776 1777 memblock_reserve(__pa(xen_start_info->pt_base), 1778 xen_start_info->nr_pt_frames * PAGE_SIZE); 1779 1780 return pgd; 1781 } 1782 #else /* !CONFIG_X86_64 */ 1783 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 1784 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 1785 1786 static void __init xen_write_cr3_init(unsigned long cr3) 1787 { 1788 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 1789 1790 BUG_ON(read_cr3() != __pa(initial_page_table)); 1791 BUG_ON(cr3 != __pa(swapper_pg_dir)); 1792 1793 /* 1794 * We are switching to swapper_pg_dir for the first time (from 1795 * initial_page_table) and therefore need to mark that page 1796 * read-only and then pin it. 1797 * 1798 * Xen disallows sharing of kernel PMDs for PAE 1799 * guests. Therefore we must copy the kernel PMD from 1800 * initial_page_table into a new kernel PMD to be used in 1801 * swapper_pg_dir. 1802 */ 1803 swapper_kernel_pmd = 1804 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1805 memcpy(swapper_kernel_pmd, initial_kernel_pmd, 1806 sizeof(pmd_t) * PTRS_PER_PMD); 1807 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 1808 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 1809 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 1810 1811 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 1812 xen_write_cr3(cr3); 1813 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 1814 1815 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 1816 PFN_DOWN(__pa(initial_page_table))); 1817 set_page_prot(initial_page_table, PAGE_KERNEL); 1818 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 1819 1820 pv_mmu_ops.write_cr3 = &xen_write_cr3; 1821 } 1822 1823 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1824 unsigned long max_pfn) 1825 { 1826 pmd_t *kernel_pmd; 1827 1828 initial_kernel_pmd = 1829 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1830 1831 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 1832 xen_start_info->nr_pt_frames * PAGE_SIZE + 1833 512*1024); 1834 1835 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 1836 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); 1837 1838 xen_map_identity_early(initial_kernel_pmd, max_pfn); 1839 1840 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); 1841 initial_page_table[KERNEL_PGD_BOUNDARY] = 1842 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 1843 1844 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 1845 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 1846 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 1847 1848 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1849 1850 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1851 PFN_DOWN(__pa(initial_page_table))); 1852 xen_write_cr3(__pa(initial_page_table)); 1853 1854 memblock_reserve(__pa(xen_start_info->pt_base), 1855 xen_start_info->nr_pt_frames * PAGE_SIZE); 1856 1857 return initial_page_table; 1858 } 1859 #endif /* CONFIG_X86_64 */ 1860 1861 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 1862 1863 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 1864 { 1865 pte_t pte; 1866 1867 phys >>= PAGE_SHIFT; 1868 1869 switch (idx) { 1870 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 1871 #ifdef CONFIG_X86_F00F_BUG 1872 case FIX_F00F_IDT: 1873 #endif 1874 #ifdef CONFIG_X86_32 1875 case FIX_WP_TEST: 1876 case FIX_VDSO: 1877 # ifdef CONFIG_HIGHMEM 1878 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 1879 # endif 1880 #else 1881 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: 1882 case VVAR_PAGE: 1883 #endif 1884 case FIX_TEXT_POKE0: 1885 case FIX_TEXT_POKE1: 1886 /* All local page mappings */ 1887 pte = pfn_pte(phys, prot); 1888 break; 1889 1890 #ifdef CONFIG_X86_LOCAL_APIC 1891 case FIX_APIC_BASE: /* maps dummy local APIC */ 1892 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1893 break; 1894 #endif 1895 1896 #ifdef CONFIG_X86_IO_APIC 1897 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 1898 /* 1899 * We just don't map the IO APIC - all access is via 1900 * hypercalls. Keep the address in the pte for reference. 1901 */ 1902 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1903 break; 1904 #endif 1905 1906 case FIX_PARAVIRT_BOOTMAP: 1907 /* This is an MFN, but it isn't an IO mapping from the 1908 IO domain */ 1909 pte = mfn_pte(phys, prot); 1910 break; 1911 1912 default: 1913 /* By default, set_fixmap is used for hardware mappings */ 1914 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); 1915 break; 1916 } 1917 1918 __native_set_fixmap(idx, pte); 1919 1920 #ifdef CONFIG_X86_64 1921 /* Replicate changes to map the vsyscall page into the user 1922 pagetable vsyscall mapping. */ 1923 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || 1924 idx == VVAR_PAGE) { 1925 unsigned long vaddr = __fix_to_virt(idx); 1926 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 1927 } 1928 #endif 1929 } 1930 1931 void __init xen_ident_map_ISA(void) 1932 { 1933 unsigned long pa; 1934 1935 /* 1936 * If we're dom0, then linear map the ISA machine addresses into 1937 * the kernel's address space. 1938 */ 1939 if (!xen_initial_domain()) 1940 return; 1941 1942 xen_raw_printk("Xen: setup ISA identity maps\n"); 1943 1944 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { 1945 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); 1946 1947 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) 1948 BUG(); 1949 } 1950 1951 xen_flush_tlb(); 1952 } 1953 1954 static void __init xen_post_allocator_init(void) 1955 { 1956 pv_mmu_ops.set_pte = xen_set_pte; 1957 pv_mmu_ops.set_pmd = xen_set_pmd; 1958 pv_mmu_ops.set_pud = xen_set_pud; 1959 #if PAGETABLE_LEVELS == 4 1960 pv_mmu_ops.set_pgd = xen_set_pgd; 1961 #endif 1962 1963 /* This will work as long as patching hasn't happened yet 1964 (which it hasn't) */ 1965 pv_mmu_ops.alloc_pte = xen_alloc_pte; 1966 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 1967 pv_mmu_ops.release_pte = xen_release_pte; 1968 pv_mmu_ops.release_pmd = xen_release_pmd; 1969 #if PAGETABLE_LEVELS == 4 1970 pv_mmu_ops.alloc_pud = xen_alloc_pud; 1971 pv_mmu_ops.release_pud = xen_release_pud; 1972 #endif 1973 1974 #ifdef CONFIG_X86_64 1975 SetPagePinned(virt_to_page(level3_user_vsyscall)); 1976 #endif 1977 xen_mark_init_mm_pinned(); 1978 } 1979 1980 static void xen_leave_lazy_mmu(void) 1981 { 1982 preempt_disable(); 1983 xen_mc_flush(); 1984 paravirt_leave_lazy_mmu(); 1985 preempt_enable(); 1986 } 1987 1988 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 1989 .read_cr2 = xen_read_cr2, 1990 .write_cr2 = xen_write_cr2, 1991 1992 .read_cr3 = xen_read_cr3, 1993 #ifdef CONFIG_X86_32 1994 .write_cr3 = xen_write_cr3_init, 1995 #else 1996 .write_cr3 = xen_write_cr3, 1997 #endif 1998 1999 .flush_tlb_user = xen_flush_tlb, 2000 .flush_tlb_kernel = xen_flush_tlb, 2001 .flush_tlb_single = xen_flush_tlb_single, 2002 .flush_tlb_others = xen_flush_tlb_others, 2003 2004 .pte_update = paravirt_nop, 2005 .pte_update_defer = paravirt_nop, 2006 2007 .pgd_alloc = xen_pgd_alloc, 2008 .pgd_free = xen_pgd_free, 2009 2010 .alloc_pte = xen_alloc_pte_init, 2011 .release_pte = xen_release_pte_init, 2012 .alloc_pmd = xen_alloc_pmd_init, 2013 .release_pmd = xen_release_pmd_init, 2014 2015 .set_pte = xen_set_pte_init, 2016 .set_pte_at = xen_set_pte_at, 2017 .set_pmd = xen_set_pmd_hyper, 2018 2019 .ptep_modify_prot_start = __ptep_modify_prot_start, 2020 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2021 2022 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2023 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2024 2025 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2026 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2027 2028 #ifdef CONFIG_X86_PAE 2029 .set_pte_atomic = xen_set_pte_atomic, 2030 .pte_clear = xen_pte_clear, 2031 .pmd_clear = xen_pmd_clear, 2032 #endif /* CONFIG_X86_PAE */ 2033 .set_pud = xen_set_pud_hyper, 2034 2035 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2036 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2037 2038 #if PAGETABLE_LEVELS == 4 2039 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2040 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2041 .set_pgd = xen_set_pgd_hyper, 2042 2043 .alloc_pud = xen_alloc_pmd_init, 2044 .release_pud = xen_release_pmd_init, 2045 #endif /* PAGETABLE_LEVELS == 4 */ 2046 2047 .activate_mm = xen_activate_mm, 2048 .dup_mmap = xen_dup_mmap, 2049 .exit_mmap = xen_exit_mmap, 2050 2051 .lazy_mode = { 2052 .enter = paravirt_enter_lazy_mmu, 2053 .leave = xen_leave_lazy_mmu, 2054 }, 2055 2056 .set_fixmap = xen_set_fixmap, 2057 }; 2058 2059 void __init xen_init_mmu_ops(void) 2060 { 2061 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; 2062 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; 2063 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; 2064 pv_mmu_ops = xen_mmu_ops; 2065 2066 memset(dummy_mapping, 0xff, PAGE_SIZE); 2067 } 2068 2069 /* Protected by xen_reservation_lock. */ 2070 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2071 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2072 2073 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2074 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2075 unsigned long *in_frames, 2076 unsigned long *out_frames) 2077 { 2078 int i; 2079 struct multicall_space mcs; 2080 2081 xen_mc_batch(); 2082 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2083 mcs = __xen_mc_entry(0); 2084 2085 if (in_frames) 2086 in_frames[i] = virt_to_mfn(vaddr); 2087 2088 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2089 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2090 2091 if (out_frames) 2092 out_frames[i] = virt_to_pfn(vaddr); 2093 } 2094 xen_mc_issue(0); 2095 } 2096 2097 /* 2098 * Update the pfn-to-mfn mappings for a virtual address range, either to 2099 * point to an array of mfns, or contiguously from a single starting 2100 * mfn. 2101 */ 2102 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2103 unsigned long *mfns, 2104 unsigned long first_mfn) 2105 { 2106 unsigned i, limit; 2107 unsigned long mfn; 2108 2109 xen_mc_batch(); 2110 2111 limit = 1u << order; 2112 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2113 struct multicall_space mcs; 2114 unsigned flags; 2115 2116 mcs = __xen_mc_entry(0); 2117 if (mfns) 2118 mfn = mfns[i]; 2119 else 2120 mfn = first_mfn + i; 2121 2122 if (i < (limit - 1)) 2123 flags = 0; 2124 else { 2125 if (order == 0) 2126 flags = UVMF_INVLPG | UVMF_ALL; 2127 else 2128 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2129 } 2130 2131 MULTI_update_va_mapping(mcs.mc, vaddr, 2132 mfn_pte(mfn, PAGE_KERNEL), flags); 2133 2134 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2135 } 2136 2137 xen_mc_issue(0); 2138 } 2139 2140 /* 2141 * Perform the hypercall to exchange a region of our pfns to point to 2142 * memory with the required contiguous alignment. Takes the pfns as 2143 * input, and populates mfns as output. 2144 * 2145 * Returns a success code indicating whether the hypervisor was able to 2146 * satisfy the request or not. 2147 */ 2148 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2149 unsigned long *pfns_in, 2150 unsigned long extents_out, 2151 unsigned int order_out, 2152 unsigned long *mfns_out, 2153 unsigned int address_bits) 2154 { 2155 long rc; 2156 int success; 2157 2158 struct xen_memory_exchange exchange = { 2159 .in = { 2160 .nr_extents = extents_in, 2161 .extent_order = order_in, 2162 .extent_start = pfns_in, 2163 .domid = DOMID_SELF 2164 }, 2165 .out = { 2166 .nr_extents = extents_out, 2167 .extent_order = order_out, 2168 .extent_start = mfns_out, 2169 .address_bits = address_bits, 2170 .domid = DOMID_SELF 2171 } 2172 }; 2173 2174 BUG_ON(extents_in << order_in != extents_out << order_out); 2175 2176 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2177 success = (exchange.nr_exchanged == extents_in); 2178 2179 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2180 BUG_ON(success && (rc != 0)); 2181 2182 return success; 2183 } 2184 2185 int xen_create_contiguous_region(unsigned long vstart, unsigned int order, 2186 unsigned int address_bits) 2187 { 2188 unsigned long *in_frames = discontig_frames, out_frame; 2189 unsigned long flags; 2190 int success; 2191 2192 /* 2193 * Currently an auto-translated guest will not perform I/O, nor will 2194 * it require PAE page directories below 4GB. Therefore any calls to 2195 * this function are redundant and can be ignored. 2196 */ 2197 2198 if (xen_feature(XENFEAT_auto_translated_physmap)) 2199 return 0; 2200 2201 if (unlikely(order > MAX_CONTIG_ORDER)) 2202 return -ENOMEM; 2203 2204 memset((void *) vstart, 0, PAGE_SIZE << order); 2205 2206 spin_lock_irqsave(&xen_reservation_lock, flags); 2207 2208 /* 1. Zap current PTEs, remembering MFNs. */ 2209 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2210 2211 /* 2. Get a new contiguous memory extent. */ 2212 out_frame = virt_to_pfn(vstart); 2213 success = xen_exchange_memory(1UL << order, 0, in_frames, 2214 1, order, &out_frame, 2215 address_bits); 2216 2217 /* 3. Map the new extent in place of old pages. */ 2218 if (success) 2219 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2220 else 2221 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2222 2223 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2224 2225 return success ? 0 : -ENOMEM; 2226 } 2227 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2228 2229 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) 2230 { 2231 unsigned long *out_frames = discontig_frames, in_frame; 2232 unsigned long flags; 2233 int success; 2234 2235 if (xen_feature(XENFEAT_auto_translated_physmap)) 2236 return; 2237 2238 if (unlikely(order > MAX_CONTIG_ORDER)) 2239 return; 2240 2241 memset((void *) vstart, 0, PAGE_SIZE << order); 2242 2243 spin_lock_irqsave(&xen_reservation_lock, flags); 2244 2245 /* 1. Find start MFN of contiguous extent. */ 2246 in_frame = virt_to_mfn(vstart); 2247 2248 /* 2. Zap current PTEs. */ 2249 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2250 2251 /* 3. Do the exchange for non-contiguous MFNs. */ 2252 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2253 0, out_frames, 0); 2254 2255 /* 4. Map new pages in place of old pages. */ 2256 if (success) 2257 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2258 else 2259 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2260 2261 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2262 } 2263 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2264 2265 #ifdef CONFIG_XEN_PVHVM 2266 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2267 { 2268 struct xen_hvm_pagetable_dying a; 2269 int rc; 2270 2271 a.domid = DOMID_SELF; 2272 a.gpa = __pa(mm->pgd); 2273 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2274 WARN_ON_ONCE(rc < 0); 2275 } 2276 2277 static int is_pagetable_dying_supported(void) 2278 { 2279 struct xen_hvm_pagetable_dying a; 2280 int rc = 0; 2281 2282 a.domid = DOMID_SELF; 2283 a.gpa = 0x00; 2284 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2285 if (rc < 0) { 2286 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2287 return 0; 2288 } 2289 return 1; 2290 } 2291 2292 void __init xen_hvm_init_mmu_ops(void) 2293 { 2294 if (is_pagetable_dying_supported()) 2295 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2296 } 2297 #endif 2298 2299 #define REMAP_BATCH_SIZE 16 2300 2301 struct remap_data { 2302 unsigned long mfn; 2303 pgprot_t prot; 2304 struct mmu_update *mmu_update; 2305 }; 2306 2307 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2308 unsigned long addr, void *data) 2309 { 2310 struct remap_data *rmd = data; 2311 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); 2312 2313 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2314 rmd->mmu_update->val = pte_val_ma(pte); 2315 rmd->mmu_update++; 2316 2317 return 0; 2318 } 2319 2320 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2321 unsigned long addr, 2322 unsigned long mfn, int nr, 2323 pgprot_t prot, unsigned domid) 2324 { 2325 struct remap_data rmd; 2326 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2327 int batch; 2328 unsigned long range; 2329 int err = 0; 2330 2331 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); 2332 2333 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == 2334 (VM_PFNMAP | VM_RESERVED | VM_IO))); 2335 2336 rmd.mfn = mfn; 2337 rmd.prot = prot; 2338 2339 while (nr) { 2340 batch = min(REMAP_BATCH_SIZE, nr); 2341 range = (unsigned long)batch << PAGE_SHIFT; 2342 2343 rmd.mmu_update = mmu_update; 2344 err = apply_to_page_range(vma->vm_mm, addr, range, 2345 remap_area_mfn_pte_fn, &rmd); 2346 if (err) 2347 goto out; 2348 2349 err = -EFAULT; 2350 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) 2351 goto out; 2352 2353 nr -= batch; 2354 addr += range; 2355 } 2356 2357 err = 0; 2358 out: 2359 2360 flush_tlb_all(); 2361 2362 return err; 2363 } 2364 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2365