xref: /linux/arch/x86/xen/mmu.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 
51 #include <trace/events/xen.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
65 
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
68 
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
76 
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
80 
81 /*
82  * Protects atomic reservation decrease/increase against concurrent increases.
83  * Also protects non-atomic updates of current_pages and balloon lists.
84  */
85 DEFINE_SPINLOCK(xen_reservation_lock);
86 
87 /*
88  * Identity map, in addition to plain kernel map.  This needs to be
89  * large enough to allocate page table pages to allocate the rest.
90  * Each page can map 2MB.
91  */
92 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99 
100 /*
101  * Note about cr3 (pagetable base) values:
102  *
103  * xen_cr3 contains the current logical cr3 value; it contains the
104  * last set cr3.  This may not be the current effective cr3, because
105  * its update may be being lazily deferred.  However, a vcpu looking
106  * at its own cr3 can use this value knowing that it everything will
107  * be self-consistent.
108  *
109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110  * hypercall to set the vcpu cr3 is complete (so it may be a little
111  * out of date, but it will never be set early).  If one vcpu is
112  * looking at another vcpu's cr3 value, it should use this variable.
113  */
114 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
116 
117 
118 /*
119  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
120  * redzone above it, so round it up to a PGD boundary.
121  */
122 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
123 
124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
125 {
126 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
127 
128 	return PFN_DOWN(maddr.maddr);
129 }
130 
131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
132 {
133 	unsigned long address = (unsigned long)vaddr;
134 	unsigned int level;
135 	pte_t *pte;
136 	unsigned offset;
137 
138 	/*
139 	 * if the PFN is in the linear mapped vaddr range, we can just use
140 	 * the (quick) virt_to_machine() p2m lookup
141 	 */
142 	if (virt_addr_valid(vaddr))
143 		return virt_to_machine(vaddr);
144 
145 	/* otherwise we have to do a (slower) full page-table walk */
146 
147 	pte = lookup_address(address, &level);
148 	BUG_ON(pte == NULL);
149 	offset = address & ~PAGE_MASK;
150 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
151 }
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
153 
154 void make_lowmem_page_readonly(void *vaddr)
155 {
156 	pte_t *pte, ptev;
157 	unsigned long address = (unsigned long)vaddr;
158 	unsigned int level;
159 
160 	pte = lookup_address(address, &level);
161 	if (pte == NULL)
162 		return;		/* vaddr missing */
163 
164 	ptev = pte_wrprotect(*pte);
165 
166 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 		BUG();
168 }
169 
170 void make_lowmem_page_readwrite(void *vaddr)
171 {
172 	pte_t *pte, ptev;
173 	unsigned long address = (unsigned long)vaddr;
174 	unsigned int level;
175 
176 	pte = lookup_address(address, &level);
177 	if (pte == NULL)
178 		return;		/* vaddr missing */
179 
180 	ptev = pte_mkwrite(*pte);
181 
182 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 		BUG();
184 }
185 
186 
187 static bool xen_page_pinned(void *ptr)
188 {
189 	struct page *page = virt_to_page(ptr);
190 
191 	return PagePinned(page);
192 }
193 
194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 {
196 	struct multicall_space mcs;
197 	struct mmu_update *u;
198 
199 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
200 
201 	mcs = xen_mc_entry(sizeof(*u));
202 	u = mcs.args;
203 
204 	/* ptep might be kmapped when using 32-bit HIGHPTE */
205 	u->ptr = virt_to_machine(ptep).maddr;
206 	u->val = pte_val_ma(pteval);
207 
208 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209 
210 	xen_mc_issue(PARAVIRT_LAZY_MMU);
211 }
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
213 
214 static void xen_extend_mmu_update(const struct mmu_update *update)
215 {
216 	struct multicall_space mcs;
217 	struct mmu_update *u;
218 
219 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
220 
221 	if (mcs.mc != NULL) {
222 		mcs.mc->args[1]++;
223 	} else {
224 		mcs = __xen_mc_entry(sizeof(*u));
225 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
226 	}
227 
228 	u = mcs.args;
229 	*u = *update;
230 }
231 
232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
233 {
234 	struct multicall_space mcs;
235 	struct mmuext_op *u;
236 
237 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
238 
239 	if (mcs.mc != NULL) {
240 		mcs.mc->args[1]++;
241 	} else {
242 		mcs = __xen_mc_entry(sizeof(*u));
243 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 	}
245 
246 	u = mcs.args;
247 	*u = *op;
248 }
249 
250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251 {
252 	struct mmu_update u;
253 
254 	preempt_disable();
255 
256 	xen_mc_batch();
257 
258 	/* ptr may be ioremapped for 64-bit pagetable setup */
259 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 	u.val = pmd_val_ma(val);
261 	xen_extend_mmu_update(&u);
262 
263 	xen_mc_issue(PARAVIRT_LAZY_MMU);
264 
265 	preempt_enable();
266 }
267 
268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269 {
270 	trace_xen_mmu_set_pmd(ptr, val);
271 
272 	/* If page is not pinned, we can just update the entry
273 	   directly */
274 	if (!xen_page_pinned(ptr)) {
275 		*ptr = val;
276 		return;
277 	}
278 
279 	xen_set_pmd_hyper(ptr, val);
280 }
281 
282 /*
283  * Associate a virtual page frame with a given physical page frame
284  * and protection flags for that frame.
285  */
286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
287 {
288 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289 }
290 
291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
292 {
293 	struct mmu_update u;
294 
295 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 		return false;
297 
298 	xen_mc_batch();
299 
300 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 	u.val = pte_val_ma(pteval);
302 	xen_extend_mmu_update(&u);
303 
304 	xen_mc_issue(PARAVIRT_LAZY_MMU);
305 
306 	return true;
307 }
308 
309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310 {
311 	if (!xen_batched_set_pte(ptep, pteval))
312 		native_set_pte(ptep, pteval);
313 }
314 
315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
316 {
317 	trace_xen_mmu_set_pte(ptep, pteval);
318 	__xen_set_pte(ptep, pteval);
319 }
320 
321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 		    pte_t *ptep, pte_t pteval)
323 {
324 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 	__xen_set_pte(ptep, pteval);
326 }
327 
328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 				 unsigned long addr, pte_t *ptep)
330 {
331 	/* Just return the pte as-is.  We preserve the bits on commit */
332 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 	return *ptep;
334 }
335 
336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 				 pte_t *ptep, pte_t pte)
338 {
339 	struct mmu_update u;
340 
341 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 	xen_mc_batch();
343 
344 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 	u.val = pte_val_ma(pte);
346 	xen_extend_mmu_update(&u);
347 
348 	xen_mc_issue(PARAVIRT_LAZY_MMU);
349 }
350 
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
352 static pteval_t pte_mfn_to_pfn(pteval_t val)
353 {
354 	if (val & _PAGE_PRESENT) {
355 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 		pteval_t flags = val & PTE_FLAGS_MASK;
357 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
358 	}
359 
360 	return val;
361 }
362 
363 static pteval_t pte_pfn_to_mfn(pteval_t val)
364 {
365 	if (val & _PAGE_PRESENT) {
366 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
367 		pteval_t flags = val & PTE_FLAGS_MASK;
368 		unsigned long mfn;
369 
370 		if (!xen_feature(XENFEAT_auto_translated_physmap))
371 			mfn = get_phys_to_machine(pfn);
372 		else
373 			mfn = pfn;
374 		/*
375 		 * If there's no mfn for the pfn, then just create an
376 		 * empty non-present pte.  Unfortunately this loses
377 		 * information about the original pfn, so
378 		 * pte_mfn_to_pfn is asymmetric.
379 		 */
380 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
381 			mfn = 0;
382 			flags = 0;
383 		} else {
384 			/*
385 			 * Paramount to do this test _after_ the
386 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
387 			 * IDENTITY_FRAME_BIT resolves to true.
388 			 */
389 			mfn &= ~FOREIGN_FRAME_BIT;
390 			if (mfn & IDENTITY_FRAME_BIT) {
391 				mfn &= ~IDENTITY_FRAME_BIT;
392 				flags |= _PAGE_IOMAP;
393 			}
394 		}
395 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
396 	}
397 
398 	return val;
399 }
400 
401 static pteval_t iomap_pte(pteval_t val)
402 {
403 	if (val & _PAGE_PRESENT) {
404 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
405 		pteval_t flags = val & PTE_FLAGS_MASK;
406 
407 		/* We assume the pte frame number is a MFN, so
408 		   just use it as-is. */
409 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
410 	}
411 
412 	return val;
413 }
414 
415 static pteval_t xen_pte_val(pte_t pte)
416 {
417 	pteval_t pteval = pte.pte;
418 
419 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
420 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
421 		WARN_ON(!pat_enabled);
422 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
423 	}
424 
425 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
426 		return pteval;
427 
428 	return pte_mfn_to_pfn(pteval);
429 }
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
431 
432 static pgdval_t xen_pgd_val(pgd_t pgd)
433 {
434 	return pte_mfn_to_pfn(pgd.pgd);
435 }
436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
437 
438 /*
439  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
440  * are reserved for now, to correspond to the Intel-reserved PAT
441  * types.
442  *
443  * We expect Linux's PAT set as follows:
444  *
445  * Idx  PTE flags        Linux    Xen    Default
446  * 0                     WB       WB     WB
447  * 1            PWT      WC       WT     WT
448  * 2        PCD          UC-      UC-    UC-
449  * 3        PCD PWT      UC       UC     UC
450  * 4    PAT              WB       WC     WB
451  * 5    PAT     PWT      WC       WP     WT
452  * 6    PAT PCD          UC-      UC     UC-
453  * 7    PAT PCD PWT      UC       UC     UC
454  */
455 
456 void xen_set_pat(u64 pat)
457 {
458 	/* We expect Linux to use a PAT setting of
459 	 * UC UC- WC WB (ignoring the PAT flag) */
460 	WARN_ON(pat != 0x0007010600070106ull);
461 }
462 
463 static pte_t xen_make_pte(pteval_t pte)
464 {
465 	phys_addr_t addr = (pte & PTE_PFN_MASK);
466 
467 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
468 	 * If _PAGE_PAT is set, then it probably means it is really
469 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
470 	 * things work out OK...
471 	 *
472 	 * (We should never see kernel mappings with _PAGE_PSE set,
473 	 * but we could see hugetlbfs mappings, I think.).
474 	 */
475 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
476 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
477 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
478 	}
479 
480 	/*
481 	 * Unprivileged domains are allowed to do IOMAPpings for
482 	 * PCI passthrough, but not map ISA space.  The ISA
483 	 * mappings are just dummy local mappings to keep other
484 	 * parts of the kernel happy.
485 	 */
486 	if (unlikely(pte & _PAGE_IOMAP) &&
487 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
488 		pte = iomap_pte(pte);
489 	} else {
490 		pte &= ~_PAGE_IOMAP;
491 		pte = pte_pfn_to_mfn(pte);
492 	}
493 
494 	return native_make_pte(pte);
495 }
496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
497 
498 static pgd_t xen_make_pgd(pgdval_t pgd)
499 {
500 	pgd = pte_pfn_to_mfn(pgd);
501 	return native_make_pgd(pgd);
502 }
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
504 
505 static pmdval_t xen_pmd_val(pmd_t pmd)
506 {
507 	return pte_mfn_to_pfn(pmd.pmd);
508 }
509 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
510 
511 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
512 {
513 	struct mmu_update u;
514 
515 	preempt_disable();
516 
517 	xen_mc_batch();
518 
519 	/* ptr may be ioremapped for 64-bit pagetable setup */
520 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
521 	u.val = pud_val_ma(val);
522 	xen_extend_mmu_update(&u);
523 
524 	xen_mc_issue(PARAVIRT_LAZY_MMU);
525 
526 	preempt_enable();
527 }
528 
529 static void xen_set_pud(pud_t *ptr, pud_t val)
530 {
531 	trace_xen_mmu_set_pud(ptr, val);
532 
533 	/* If page is not pinned, we can just update the entry
534 	   directly */
535 	if (!xen_page_pinned(ptr)) {
536 		*ptr = val;
537 		return;
538 	}
539 
540 	xen_set_pud_hyper(ptr, val);
541 }
542 
543 #ifdef CONFIG_X86_PAE
544 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
545 {
546 	trace_xen_mmu_set_pte_atomic(ptep, pte);
547 	set_64bit((u64 *)ptep, native_pte_val(pte));
548 }
549 
550 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
551 {
552 	trace_xen_mmu_pte_clear(mm, addr, ptep);
553 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
554 		native_pte_clear(mm, addr, ptep);
555 }
556 
557 static void xen_pmd_clear(pmd_t *pmdp)
558 {
559 	trace_xen_mmu_pmd_clear(pmdp);
560 	set_pmd(pmdp, __pmd(0));
561 }
562 #endif	/* CONFIG_X86_PAE */
563 
564 static pmd_t xen_make_pmd(pmdval_t pmd)
565 {
566 	pmd = pte_pfn_to_mfn(pmd);
567 	return native_make_pmd(pmd);
568 }
569 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
570 
571 #if PAGETABLE_LEVELS == 4
572 static pudval_t xen_pud_val(pud_t pud)
573 {
574 	return pte_mfn_to_pfn(pud.pud);
575 }
576 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
577 
578 static pud_t xen_make_pud(pudval_t pud)
579 {
580 	pud = pte_pfn_to_mfn(pud);
581 
582 	return native_make_pud(pud);
583 }
584 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
585 
586 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
587 {
588 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
589 	unsigned offset = pgd - pgd_page;
590 	pgd_t *user_ptr = NULL;
591 
592 	if (offset < pgd_index(USER_LIMIT)) {
593 		struct page *page = virt_to_page(pgd_page);
594 		user_ptr = (pgd_t *)page->private;
595 		if (user_ptr)
596 			user_ptr += offset;
597 	}
598 
599 	return user_ptr;
600 }
601 
602 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
603 {
604 	struct mmu_update u;
605 
606 	u.ptr = virt_to_machine(ptr).maddr;
607 	u.val = pgd_val_ma(val);
608 	xen_extend_mmu_update(&u);
609 }
610 
611 /*
612  * Raw hypercall-based set_pgd, intended for in early boot before
613  * there's a page structure.  This implies:
614  *  1. The only existing pagetable is the kernel's
615  *  2. It is always pinned
616  *  3. It has no user pagetable attached to it
617  */
618 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
619 {
620 	preempt_disable();
621 
622 	xen_mc_batch();
623 
624 	__xen_set_pgd_hyper(ptr, val);
625 
626 	xen_mc_issue(PARAVIRT_LAZY_MMU);
627 
628 	preempt_enable();
629 }
630 
631 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
632 {
633 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
634 
635 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
636 
637 	/* If page is not pinned, we can just update the entry
638 	   directly */
639 	if (!xen_page_pinned(ptr)) {
640 		*ptr = val;
641 		if (user_ptr) {
642 			WARN_ON(xen_page_pinned(user_ptr));
643 			*user_ptr = val;
644 		}
645 		return;
646 	}
647 
648 	/* If it's pinned, then we can at least batch the kernel and
649 	   user updates together. */
650 	xen_mc_batch();
651 
652 	__xen_set_pgd_hyper(ptr, val);
653 	if (user_ptr)
654 		__xen_set_pgd_hyper(user_ptr, val);
655 
656 	xen_mc_issue(PARAVIRT_LAZY_MMU);
657 }
658 #endif	/* PAGETABLE_LEVELS == 4 */
659 
660 /*
661  * (Yet another) pagetable walker.  This one is intended for pinning a
662  * pagetable.  This means that it walks a pagetable and calls the
663  * callback function on each page it finds making up the page table,
664  * at every level.  It walks the entire pagetable, but it only bothers
665  * pinning pte pages which are below limit.  In the normal case this
666  * will be STACK_TOP_MAX, but at boot we need to pin up to
667  * FIXADDR_TOP.
668  *
669  * For 32-bit the important bit is that we don't pin beyond there,
670  * because then we start getting into Xen's ptes.
671  *
672  * For 64-bit, we must skip the Xen hole in the middle of the address
673  * space, just after the big x86-64 virtual hole.
674  */
675 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
676 			  int (*func)(struct mm_struct *mm, struct page *,
677 				      enum pt_level),
678 			  unsigned long limit)
679 {
680 	int flush = 0;
681 	unsigned hole_low, hole_high;
682 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
683 	unsigned pgdidx, pudidx, pmdidx;
684 
685 	/* The limit is the last byte to be touched */
686 	limit--;
687 	BUG_ON(limit >= FIXADDR_TOP);
688 
689 	if (xen_feature(XENFEAT_auto_translated_physmap))
690 		return 0;
691 
692 	/*
693 	 * 64-bit has a great big hole in the middle of the address
694 	 * space, which contains the Xen mappings.  On 32-bit these
695 	 * will end up making a zero-sized hole and so is a no-op.
696 	 */
697 	hole_low = pgd_index(USER_LIMIT);
698 	hole_high = pgd_index(PAGE_OFFSET);
699 
700 	pgdidx_limit = pgd_index(limit);
701 #if PTRS_PER_PUD > 1
702 	pudidx_limit = pud_index(limit);
703 #else
704 	pudidx_limit = 0;
705 #endif
706 #if PTRS_PER_PMD > 1
707 	pmdidx_limit = pmd_index(limit);
708 #else
709 	pmdidx_limit = 0;
710 #endif
711 
712 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
713 		pud_t *pud;
714 
715 		if (pgdidx >= hole_low && pgdidx < hole_high)
716 			continue;
717 
718 		if (!pgd_val(pgd[pgdidx]))
719 			continue;
720 
721 		pud = pud_offset(&pgd[pgdidx], 0);
722 
723 		if (PTRS_PER_PUD > 1) /* not folded */
724 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
725 
726 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
727 			pmd_t *pmd;
728 
729 			if (pgdidx == pgdidx_limit &&
730 			    pudidx > pudidx_limit)
731 				goto out;
732 
733 			if (pud_none(pud[pudidx]))
734 				continue;
735 
736 			pmd = pmd_offset(&pud[pudidx], 0);
737 
738 			if (PTRS_PER_PMD > 1) /* not folded */
739 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
740 
741 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
742 				struct page *pte;
743 
744 				if (pgdidx == pgdidx_limit &&
745 				    pudidx == pudidx_limit &&
746 				    pmdidx > pmdidx_limit)
747 					goto out;
748 
749 				if (pmd_none(pmd[pmdidx]))
750 					continue;
751 
752 				pte = pmd_page(pmd[pmdidx]);
753 				flush |= (*func)(mm, pte, PT_PTE);
754 			}
755 		}
756 	}
757 
758 out:
759 	/* Do the top level last, so that the callbacks can use it as
760 	   a cue to do final things like tlb flushes. */
761 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
762 
763 	return flush;
764 }
765 
766 static int xen_pgd_walk(struct mm_struct *mm,
767 			int (*func)(struct mm_struct *mm, struct page *,
768 				    enum pt_level),
769 			unsigned long limit)
770 {
771 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
772 }
773 
774 /* If we're using split pte locks, then take the page's lock and
775    return a pointer to it.  Otherwise return NULL. */
776 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
777 {
778 	spinlock_t *ptl = NULL;
779 
780 #if USE_SPLIT_PTLOCKS
781 	ptl = __pte_lockptr(page);
782 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
783 #endif
784 
785 	return ptl;
786 }
787 
788 static void xen_pte_unlock(void *v)
789 {
790 	spinlock_t *ptl = v;
791 	spin_unlock(ptl);
792 }
793 
794 static void xen_do_pin(unsigned level, unsigned long pfn)
795 {
796 	struct mmuext_op op;
797 
798 	op.cmd = level;
799 	op.arg1.mfn = pfn_to_mfn(pfn);
800 
801 	xen_extend_mmuext_op(&op);
802 }
803 
804 static int xen_pin_page(struct mm_struct *mm, struct page *page,
805 			enum pt_level level)
806 {
807 	unsigned pgfl = TestSetPagePinned(page);
808 	int flush;
809 
810 	if (pgfl)
811 		flush = 0;		/* already pinned */
812 	else if (PageHighMem(page))
813 		/* kmaps need flushing if we found an unpinned
814 		   highpage */
815 		flush = 1;
816 	else {
817 		void *pt = lowmem_page_address(page);
818 		unsigned long pfn = page_to_pfn(page);
819 		struct multicall_space mcs = __xen_mc_entry(0);
820 		spinlock_t *ptl;
821 
822 		flush = 0;
823 
824 		/*
825 		 * We need to hold the pagetable lock between the time
826 		 * we make the pagetable RO and when we actually pin
827 		 * it.  If we don't, then other users may come in and
828 		 * attempt to update the pagetable by writing it,
829 		 * which will fail because the memory is RO but not
830 		 * pinned, so Xen won't do the trap'n'emulate.
831 		 *
832 		 * If we're using split pte locks, we can't hold the
833 		 * entire pagetable's worth of locks during the
834 		 * traverse, because we may wrap the preempt count (8
835 		 * bits).  The solution is to mark RO and pin each PTE
836 		 * page while holding the lock.  This means the number
837 		 * of locks we end up holding is never more than a
838 		 * batch size (~32 entries, at present).
839 		 *
840 		 * If we're not using split pte locks, we needn't pin
841 		 * the PTE pages independently, because we're
842 		 * protected by the overall pagetable lock.
843 		 */
844 		ptl = NULL;
845 		if (level == PT_PTE)
846 			ptl = xen_pte_lock(page, mm);
847 
848 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
849 					pfn_pte(pfn, PAGE_KERNEL_RO),
850 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
851 
852 		if (ptl) {
853 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
854 
855 			/* Queue a deferred unlock for when this batch
856 			   is completed. */
857 			xen_mc_callback(xen_pte_unlock, ptl);
858 		}
859 	}
860 
861 	return flush;
862 }
863 
864 /* This is called just after a mm has been created, but it has not
865    been used yet.  We need to make sure that its pagetable is all
866    read-only, and can be pinned. */
867 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
868 {
869 	trace_xen_mmu_pgd_pin(mm, pgd);
870 
871 	xen_mc_batch();
872 
873 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
874 		/* re-enable interrupts for flushing */
875 		xen_mc_issue(0);
876 
877 		kmap_flush_unused();
878 
879 		xen_mc_batch();
880 	}
881 
882 #ifdef CONFIG_X86_64
883 	{
884 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
885 
886 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
887 
888 		if (user_pgd) {
889 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
890 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
891 				   PFN_DOWN(__pa(user_pgd)));
892 		}
893 	}
894 #else /* CONFIG_X86_32 */
895 #ifdef CONFIG_X86_PAE
896 	/* Need to make sure unshared kernel PMD is pinnable */
897 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
898 		     PT_PMD);
899 #endif
900 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
901 #endif /* CONFIG_X86_64 */
902 	xen_mc_issue(0);
903 }
904 
905 static void xen_pgd_pin(struct mm_struct *mm)
906 {
907 	__xen_pgd_pin(mm, mm->pgd);
908 }
909 
910 /*
911  * On save, we need to pin all pagetables to make sure they get their
912  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
913  * them (unpinned pgds are not currently in use, probably because the
914  * process is under construction or destruction).
915  *
916  * Expected to be called in stop_machine() ("equivalent to taking
917  * every spinlock in the system"), so the locking doesn't really
918  * matter all that much.
919  */
920 void xen_mm_pin_all(void)
921 {
922 	struct page *page;
923 
924 	spin_lock(&pgd_lock);
925 
926 	list_for_each_entry(page, &pgd_list, lru) {
927 		if (!PagePinned(page)) {
928 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
929 			SetPageSavePinned(page);
930 		}
931 	}
932 
933 	spin_unlock(&pgd_lock);
934 }
935 
936 /*
937  * The init_mm pagetable is really pinned as soon as its created, but
938  * that's before we have page structures to store the bits.  So do all
939  * the book-keeping now.
940  */
941 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
942 				  enum pt_level level)
943 {
944 	SetPagePinned(page);
945 	return 0;
946 }
947 
948 static void __init xen_mark_init_mm_pinned(void)
949 {
950 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
951 }
952 
953 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
954 			  enum pt_level level)
955 {
956 	unsigned pgfl = TestClearPagePinned(page);
957 
958 	if (pgfl && !PageHighMem(page)) {
959 		void *pt = lowmem_page_address(page);
960 		unsigned long pfn = page_to_pfn(page);
961 		spinlock_t *ptl = NULL;
962 		struct multicall_space mcs;
963 
964 		/*
965 		 * Do the converse to pin_page.  If we're using split
966 		 * pte locks, we must be holding the lock for while
967 		 * the pte page is unpinned but still RO to prevent
968 		 * concurrent updates from seeing it in this
969 		 * partially-pinned state.
970 		 */
971 		if (level == PT_PTE) {
972 			ptl = xen_pte_lock(page, mm);
973 
974 			if (ptl)
975 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
976 		}
977 
978 		mcs = __xen_mc_entry(0);
979 
980 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
981 					pfn_pte(pfn, PAGE_KERNEL),
982 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
983 
984 		if (ptl) {
985 			/* unlock when batch completed */
986 			xen_mc_callback(xen_pte_unlock, ptl);
987 		}
988 	}
989 
990 	return 0;		/* never need to flush on unpin */
991 }
992 
993 /* Release a pagetables pages back as normal RW */
994 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
995 {
996 	trace_xen_mmu_pgd_unpin(mm, pgd);
997 
998 	xen_mc_batch();
999 
1000 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1001 
1002 #ifdef CONFIG_X86_64
1003 	{
1004 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1005 
1006 		if (user_pgd) {
1007 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1008 				   PFN_DOWN(__pa(user_pgd)));
1009 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1010 		}
1011 	}
1012 #endif
1013 
1014 #ifdef CONFIG_X86_PAE
1015 	/* Need to make sure unshared kernel PMD is unpinned */
1016 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1017 		       PT_PMD);
1018 #endif
1019 
1020 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1021 
1022 	xen_mc_issue(0);
1023 }
1024 
1025 static void xen_pgd_unpin(struct mm_struct *mm)
1026 {
1027 	__xen_pgd_unpin(mm, mm->pgd);
1028 }
1029 
1030 /*
1031  * On resume, undo any pinning done at save, so that the rest of the
1032  * kernel doesn't see any unexpected pinned pagetables.
1033  */
1034 void xen_mm_unpin_all(void)
1035 {
1036 	struct page *page;
1037 
1038 	spin_lock(&pgd_lock);
1039 
1040 	list_for_each_entry(page, &pgd_list, lru) {
1041 		if (PageSavePinned(page)) {
1042 			BUG_ON(!PagePinned(page));
1043 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1044 			ClearPageSavePinned(page);
1045 		}
1046 	}
1047 
1048 	spin_unlock(&pgd_lock);
1049 }
1050 
1051 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1052 {
1053 	spin_lock(&next->page_table_lock);
1054 	xen_pgd_pin(next);
1055 	spin_unlock(&next->page_table_lock);
1056 }
1057 
1058 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1059 {
1060 	spin_lock(&mm->page_table_lock);
1061 	xen_pgd_pin(mm);
1062 	spin_unlock(&mm->page_table_lock);
1063 }
1064 
1065 
1066 #ifdef CONFIG_SMP
1067 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1068    we need to repoint it somewhere else before we can unpin it. */
1069 static void drop_other_mm_ref(void *info)
1070 {
1071 	struct mm_struct *mm = info;
1072 	struct mm_struct *active_mm;
1073 
1074 	active_mm = percpu_read(cpu_tlbstate.active_mm);
1075 
1076 	if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1077 		leave_mm(smp_processor_id());
1078 
1079 	/* If this cpu still has a stale cr3 reference, then make sure
1080 	   it has been flushed. */
1081 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1082 		load_cr3(swapper_pg_dir);
1083 }
1084 
1085 static void xen_drop_mm_ref(struct mm_struct *mm)
1086 {
1087 	cpumask_var_t mask;
1088 	unsigned cpu;
1089 
1090 	if (current->active_mm == mm) {
1091 		if (current->mm == mm)
1092 			load_cr3(swapper_pg_dir);
1093 		else
1094 			leave_mm(smp_processor_id());
1095 	}
1096 
1097 	/* Get the "official" set of cpus referring to our pagetable. */
1098 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1099 		for_each_online_cpu(cpu) {
1100 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1101 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1102 				continue;
1103 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1104 		}
1105 		return;
1106 	}
1107 	cpumask_copy(mask, mm_cpumask(mm));
1108 
1109 	/* It's possible that a vcpu may have a stale reference to our
1110 	   cr3, because its in lazy mode, and it hasn't yet flushed
1111 	   its set of pending hypercalls yet.  In this case, we can
1112 	   look at its actual current cr3 value, and force it to flush
1113 	   if needed. */
1114 	for_each_online_cpu(cpu) {
1115 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1116 			cpumask_set_cpu(cpu, mask);
1117 	}
1118 
1119 	if (!cpumask_empty(mask))
1120 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1121 	free_cpumask_var(mask);
1122 }
1123 #else
1124 static void xen_drop_mm_ref(struct mm_struct *mm)
1125 {
1126 	if (current->active_mm == mm)
1127 		load_cr3(swapper_pg_dir);
1128 }
1129 #endif
1130 
1131 /*
1132  * While a process runs, Xen pins its pagetables, which means that the
1133  * hypervisor forces it to be read-only, and it controls all updates
1134  * to it.  This means that all pagetable updates have to go via the
1135  * hypervisor, which is moderately expensive.
1136  *
1137  * Since we're pulling the pagetable down, we switch to use init_mm,
1138  * unpin old process pagetable and mark it all read-write, which
1139  * allows further operations on it to be simple memory accesses.
1140  *
1141  * The only subtle point is that another CPU may be still using the
1142  * pagetable because of lazy tlb flushing.  This means we need need to
1143  * switch all CPUs off this pagetable before we can unpin it.
1144  */
1145 static void xen_exit_mmap(struct mm_struct *mm)
1146 {
1147 	get_cpu();		/* make sure we don't move around */
1148 	xen_drop_mm_ref(mm);
1149 	put_cpu();
1150 
1151 	spin_lock(&mm->page_table_lock);
1152 
1153 	/* pgd may not be pinned in the error exit path of execve */
1154 	if (xen_page_pinned(mm->pgd))
1155 		xen_pgd_unpin(mm);
1156 
1157 	spin_unlock(&mm->page_table_lock);
1158 }
1159 
1160 static void __init xen_pagetable_setup_start(pgd_t *base)
1161 {
1162 }
1163 
1164 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1165 {
1166 	/* reserve the range used */
1167 	native_pagetable_reserve(start, end);
1168 
1169 	/* set as RW the rest */
1170 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1171 			PFN_PHYS(pgt_buf_top));
1172 	while (end < PFN_PHYS(pgt_buf_top)) {
1173 		make_lowmem_page_readwrite(__va(end));
1174 		end += PAGE_SIZE;
1175 	}
1176 }
1177 
1178 static void xen_post_allocator_init(void);
1179 
1180 static void __init xen_pagetable_setup_done(pgd_t *base)
1181 {
1182 	xen_setup_shared_info();
1183 	xen_post_allocator_init();
1184 }
1185 
1186 static void xen_write_cr2(unsigned long cr2)
1187 {
1188 	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1189 }
1190 
1191 static unsigned long xen_read_cr2(void)
1192 {
1193 	return percpu_read(xen_vcpu)->arch.cr2;
1194 }
1195 
1196 unsigned long xen_read_cr2_direct(void)
1197 {
1198 	return percpu_read(xen_vcpu_info.arch.cr2);
1199 }
1200 
1201 static void xen_flush_tlb(void)
1202 {
1203 	struct mmuext_op *op;
1204 	struct multicall_space mcs;
1205 
1206 	trace_xen_mmu_flush_tlb(0);
1207 
1208 	preempt_disable();
1209 
1210 	mcs = xen_mc_entry(sizeof(*op));
1211 
1212 	op = mcs.args;
1213 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1214 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1215 
1216 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1217 
1218 	preempt_enable();
1219 }
1220 
1221 static void xen_flush_tlb_single(unsigned long addr)
1222 {
1223 	struct mmuext_op *op;
1224 	struct multicall_space mcs;
1225 
1226 	trace_xen_mmu_flush_tlb_single(addr);
1227 
1228 	preempt_disable();
1229 
1230 	mcs = xen_mc_entry(sizeof(*op));
1231 	op = mcs.args;
1232 	op->cmd = MMUEXT_INVLPG_LOCAL;
1233 	op->arg1.linear_addr = addr & PAGE_MASK;
1234 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1235 
1236 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1237 
1238 	preempt_enable();
1239 }
1240 
1241 static void xen_flush_tlb_others(const struct cpumask *cpus,
1242 				 struct mm_struct *mm, unsigned long va)
1243 {
1244 	struct {
1245 		struct mmuext_op op;
1246 #ifdef CONFIG_SMP
1247 		DECLARE_BITMAP(mask, num_processors);
1248 #else
1249 		DECLARE_BITMAP(mask, NR_CPUS);
1250 #endif
1251 	} *args;
1252 	struct multicall_space mcs;
1253 
1254 	trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1255 
1256 	if (cpumask_empty(cpus))
1257 		return;		/* nothing to do */
1258 
1259 	mcs = xen_mc_entry(sizeof(*args));
1260 	args = mcs.args;
1261 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1262 
1263 	/* Remove us, and any offline CPUS. */
1264 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1265 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1266 
1267 	if (va == TLB_FLUSH_ALL) {
1268 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1269 	} else {
1270 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1271 		args->op.arg1.linear_addr = va;
1272 	}
1273 
1274 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1275 
1276 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1277 }
1278 
1279 static unsigned long xen_read_cr3(void)
1280 {
1281 	return percpu_read(xen_cr3);
1282 }
1283 
1284 static void set_current_cr3(void *v)
1285 {
1286 	percpu_write(xen_current_cr3, (unsigned long)v);
1287 }
1288 
1289 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1290 {
1291 	struct mmuext_op op;
1292 	unsigned long mfn;
1293 
1294 	trace_xen_mmu_write_cr3(kernel, cr3);
1295 
1296 	if (cr3)
1297 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1298 	else
1299 		mfn = 0;
1300 
1301 	WARN_ON(mfn == 0 && kernel);
1302 
1303 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1304 	op.arg1.mfn = mfn;
1305 
1306 	xen_extend_mmuext_op(&op);
1307 
1308 	if (kernel) {
1309 		percpu_write(xen_cr3, cr3);
1310 
1311 		/* Update xen_current_cr3 once the batch has actually
1312 		   been submitted. */
1313 		xen_mc_callback(set_current_cr3, (void *)cr3);
1314 	}
1315 }
1316 
1317 static void xen_write_cr3(unsigned long cr3)
1318 {
1319 	BUG_ON(preemptible());
1320 
1321 	xen_mc_batch();  /* disables interrupts */
1322 
1323 	/* Update while interrupts are disabled, so its atomic with
1324 	   respect to ipis */
1325 	percpu_write(xen_cr3, cr3);
1326 
1327 	__xen_write_cr3(true, cr3);
1328 
1329 #ifdef CONFIG_X86_64
1330 	{
1331 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1332 		if (user_pgd)
1333 			__xen_write_cr3(false, __pa(user_pgd));
1334 		else
1335 			__xen_write_cr3(false, 0);
1336 	}
1337 #endif
1338 
1339 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1340 }
1341 
1342 static int xen_pgd_alloc(struct mm_struct *mm)
1343 {
1344 	pgd_t *pgd = mm->pgd;
1345 	int ret = 0;
1346 
1347 	BUG_ON(PagePinned(virt_to_page(pgd)));
1348 
1349 #ifdef CONFIG_X86_64
1350 	{
1351 		struct page *page = virt_to_page(pgd);
1352 		pgd_t *user_pgd;
1353 
1354 		BUG_ON(page->private != 0);
1355 
1356 		ret = -ENOMEM;
1357 
1358 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1359 		page->private = (unsigned long)user_pgd;
1360 
1361 		if (user_pgd != NULL) {
1362 			user_pgd[pgd_index(VSYSCALL_START)] =
1363 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1364 			ret = 0;
1365 		}
1366 
1367 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1368 	}
1369 #endif
1370 
1371 	return ret;
1372 }
1373 
1374 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1375 {
1376 #ifdef CONFIG_X86_64
1377 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1378 
1379 	if (user_pgd)
1380 		free_page((unsigned long)user_pgd);
1381 #endif
1382 }
1383 
1384 #ifdef CONFIG_X86_32
1385 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1386 {
1387 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1388 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1389 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1390 			       pte_val_ma(pte));
1391 
1392 	return pte;
1393 }
1394 #else /* CONFIG_X86_64 */
1395 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1396 {
1397 	unsigned long pfn = pte_pfn(pte);
1398 
1399 	/*
1400 	 * If the new pfn is within the range of the newly allocated
1401 	 * kernel pagetable, and it isn't being mapped into an
1402 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1403 	 * it is RO.
1404 	 */
1405 	if (((!is_early_ioremap_ptep(ptep) &&
1406 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1407 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1408 		pte = pte_wrprotect(pte);
1409 
1410 	return pte;
1411 }
1412 #endif /* CONFIG_X86_64 */
1413 
1414 /* Init-time set_pte while constructing initial pagetables, which
1415    doesn't allow RO pagetable pages to be remapped RW */
1416 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1417 {
1418 	pte = mask_rw_pte(ptep, pte);
1419 
1420 	xen_set_pte(ptep, pte);
1421 }
1422 
1423 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1424 {
1425 	struct mmuext_op op;
1426 	op.cmd = cmd;
1427 	op.arg1.mfn = pfn_to_mfn(pfn);
1428 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1429 		BUG();
1430 }
1431 
1432 /* Early in boot, while setting up the initial pagetable, assume
1433    everything is pinned. */
1434 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1435 {
1436 #ifdef CONFIG_FLATMEM
1437 	BUG_ON(mem_map);	/* should only be used early */
1438 #endif
1439 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1440 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1441 }
1442 
1443 /* Used for pmd and pud */
1444 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1445 {
1446 #ifdef CONFIG_FLATMEM
1447 	BUG_ON(mem_map);	/* should only be used early */
1448 #endif
1449 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1450 }
1451 
1452 /* Early release_pte assumes that all pts are pinned, since there's
1453    only init_mm and anything attached to that is pinned. */
1454 static void __init xen_release_pte_init(unsigned long pfn)
1455 {
1456 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1457 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1458 }
1459 
1460 static void __init xen_release_pmd_init(unsigned long pfn)
1461 {
1462 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1463 }
1464 
1465 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1466 {
1467 	struct multicall_space mcs;
1468 	struct mmuext_op *op;
1469 
1470 	mcs = __xen_mc_entry(sizeof(*op));
1471 	op = mcs.args;
1472 	op->cmd = cmd;
1473 	op->arg1.mfn = pfn_to_mfn(pfn);
1474 
1475 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1476 }
1477 
1478 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1479 {
1480 	struct multicall_space mcs;
1481 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1482 
1483 	mcs = __xen_mc_entry(0);
1484 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1485 				pfn_pte(pfn, prot), 0);
1486 }
1487 
1488 /* This needs to make sure the new pte page is pinned iff its being
1489    attached to a pinned pagetable. */
1490 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1491 				    unsigned level)
1492 {
1493 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1494 
1495 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1496 
1497 	if (pinned) {
1498 		struct page *page = pfn_to_page(pfn);
1499 
1500 		SetPagePinned(page);
1501 
1502 		if (!PageHighMem(page)) {
1503 			xen_mc_batch();
1504 
1505 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1506 
1507 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1508 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1509 
1510 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1511 		} else {
1512 			/* make sure there are no stray mappings of
1513 			   this page */
1514 			kmap_flush_unused();
1515 		}
1516 	}
1517 }
1518 
1519 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1520 {
1521 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1522 }
1523 
1524 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1525 {
1526 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1527 }
1528 
1529 /* This should never happen until we're OK to use struct page */
1530 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1531 {
1532 	struct page *page = pfn_to_page(pfn);
1533 	bool pinned = PagePinned(page);
1534 
1535 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1536 
1537 	if (pinned) {
1538 		if (!PageHighMem(page)) {
1539 			xen_mc_batch();
1540 
1541 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1542 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1543 
1544 			__set_pfn_prot(pfn, PAGE_KERNEL);
1545 
1546 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1547 		}
1548 		ClearPagePinned(page);
1549 	}
1550 }
1551 
1552 static void xen_release_pte(unsigned long pfn)
1553 {
1554 	xen_release_ptpage(pfn, PT_PTE);
1555 }
1556 
1557 static void xen_release_pmd(unsigned long pfn)
1558 {
1559 	xen_release_ptpage(pfn, PT_PMD);
1560 }
1561 
1562 #if PAGETABLE_LEVELS == 4
1563 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1564 {
1565 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1566 }
1567 
1568 static void xen_release_pud(unsigned long pfn)
1569 {
1570 	xen_release_ptpage(pfn, PT_PUD);
1571 }
1572 #endif
1573 
1574 void __init xen_reserve_top(void)
1575 {
1576 #ifdef CONFIG_X86_32
1577 	unsigned long top = HYPERVISOR_VIRT_START;
1578 	struct xen_platform_parameters pp;
1579 
1580 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1581 		top = pp.virt_start;
1582 
1583 	reserve_top_address(-top);
1584 #endif	/* CONFIG_X86_32 */
1585 }
1586 
1587 /*
1588  * Like __va(), but returns address in the kernel mapping (which is
1589  * all we have until the physical memory mapping has been set up.
1590  */
1591 static void *__ka(phys_addr_t paddr)
1592 {
1593 #ifdef CONFIG_X86_64
1594 	return (void *)(paddr + __START_KERNEL_map);
1595 #else
1596 	return __va(paddr);
1597 #endif
1598 }
1599 
1600 /* Convert a machine address to physical address */
1601 static unsigned long m2p(phys_addr_t maddr)
1602 {
1603 	phys_addr_t paddr;
1604 
1605 	maddr &= PTE_PFN_MASK;
1606 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1607 
1608 	return paddr;
1609 }
1610 
1611 /* Convert a machine address to kernel virtual */
1612 static void *m2v(phys_addr_t maddr)
1613 {
1614 	return __ka(m2p(maddr));
1615 }
1616 
1617 /* Set the page permissions on an identity-mapped pages */
1618 static void set_page_prot(void *addr, pgprot_t prot)
1619 {
1620 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1621 	pte_t pte = pfn_pte(pfn, prot);
1622 
1623 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1624 		BUG();
1625 }
1626 
1627 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1628 {
1629 	unsigned pmdidx, pteidx;
1630 	unsigned ident_pte;
1631 	unsigned long pfn;
1632 
1633 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1634 				      PAGE_SIZE);
1635 
1636 	ident_pte = 0;
1637 	pfn = 0;
1638 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1639 		pte_t *pte_page;
1640 
1641 		/* Reuse or allocate a page of ptes */
1642 		if (pmd_present(pmd[pmdidx]))
1643 			pte_page = m2v(pmd[pmdidx].pmd);
1644 		else {
1645 			/* Check for free pte pages */
1646 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1647 				break;
1648 
1649 			pte_page = &level1_ident_pgt[ident_pte];
1650 			ident_pte += PTRS_PER_PTE;
1651 
1652 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1653 		}
1654 
1655 		/* Install mappings */
1656 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1657 			pte_t pte;
1658 
1659 #ifdef CONFIG_X86_32
1660 			if (pfn > max_pfn_mapped)
1661 				max_pfn_mapped = pfn;
1662 #endif
1663 
1664 			if (!pte_none(pte_page[pteidx]))
1665 				continue;
1666 
1667 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1668 			pte_page[pteidx] = pte;
1669 		}
1670 	}
1671 
1672 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1673 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1674 
1675 	set_page_prot(pmd, PAGE_KERNEL_RO);
1676 }
1677 
1678 void __init xen_setup_machphys_mapping(void)
1679 {
1680 	struct xen_machphys_mapping mapping;
1681 
1682 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1683 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1684 		machine_to_phys_nr = mapping.max_mfn + 1;
1685 	} else {
1686 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1687 	}
1688 #ifdef CONFIG_X86_32
1689 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1690 		< machine_to_phys_mapping);
1691 #endif
1692 }
1693 
1694 #ifdef CONFIG_X86_64
1695 static void convert_pfn_mfn(void *v)
1696 {
1697 	pte_t *pte = v;
1698 	int i;
1699 
1700 	/* All levels are converted the same way, so just treat them
1701 	   as ptes. */
1702 	for (i = 0; i < PTRS_PER_PTE; i++)
1703 		pte[i] = xen_make_pte(pte[i].pte);
1704 }
1705 
1706 /*
1707  * Set up the initial kernel pagetable.
1708  *
1709  * We can construct this by grafting the Xen provided pagetable into
1710  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1711  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1712  * means that only the kernel has a physical mapping to start with -
1713  * but that's enough to get __va working.  We need to fill in the rest
1714  * of the physical mapping once some sort of allocator has been set
1715  * up.
1716  */
1717 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1718 					 unsigned long max_pfn)
1719 {
1720 	pud_t *l3;
1721 	pmd_t *l2;
1722 
1723 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1724 	 * mappings. Considering that on Xen after the kernel mappings we
1725 	 * have the mappings of some pages that don't exist in pfn space, we
1726 	 * set max_pfn_mapped to the last real pfn mapped. */
1727 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1728 
1729 	/* Zap identity mapping */
1730 	init_level4_pgt[0] = __pgd(0);
1731 
1732 	/* Pre-constructed entries are in pfn, so convert to mfn */
1733 	convert_pfn_mfn(init_level4_pgt);
1734 	convert_pfn_mfn(level3_ident_pgt);
1735 	convert_pfn_mfn(level3_kernel_pgt);
1736 
1737 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1738 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1739 
1740 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1741 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1742 
1743 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1744 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1745 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1746 
1747 	/* Set up identity map */
1748 	xen_map_identity_early(level2_ident_pgt, max_pfn);
1749 
1750 	/* Make pagetable pieces RO */
1751 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1752 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1753 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1754 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1755 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1756 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1757 
1758 	/* Pin down new L4 */
1759 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1760 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1761 
1762 	/* Unpin Xen-provided one */
1763 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1764 
1765 	/* Switch over */
1766 	pgd = init_level4_pgt;
1767 
1768 	/*
1769 	 * At this stage there can be no user pgd, and no page
1770 	 * structure to attach it to, so make sure we just set kernel
1771 	 * pgd.
1772 	 */
1773 	xen_mc_batch();
1774 	__xen_write_cr3(true, __pa(pgd));
1775 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1776 
1777 	memblock_reserve(__pa(xen_start_info->pt_base),
1778 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1779 
1780 	return pgd;
1781 }
1782 #else	/* !CONFIG_X86_64 */
1783 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1784 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1785 
1786 static void __init xen_write_cr3_init(unsigned long cr3)
1787 {
1788 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1789 
1790 	BUG_ON(read_cr3() != __pa(initial_page_table));
1791 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1792 
1793 	/*
1794 	 * We are switching to swapper_pg_dir for the first time (from
1795 	 * initial_page_table) and therefore need to mark that page
1796 	 * read-only and then pin it.
1797 	 *
1798 	 * Xen disallows sharing of kernel PMDs for PAE
1799 	 * guests. Therefore we must copy the kernel PMD from
1800 	 * initial_page_table into a new kernel PMD to be used in
1801 	 * swapper_pg_dir.
1802 	 */
1803 	swapper_kernel_pmd =
1804 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1805 	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1806 	       sizeof(pmd_t) * PTRS_PER_PMD);
1807 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1808 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1809 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1810 
1811 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1812 	xen_write_cr3(cr3);
1813 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1814 
1815 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1816 			  PFN_DOWN(__pa(initial_page_table)));
1817 	set_page_prot(initial_page_table, PAGE_KERNEL);
1818 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1819 
1820 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1821 }
1822 
1823 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1824 					 unsigned long max_pfn)
1825 {
1826 	pmd_t *kernel_pmd;
1827 
1828 	initial_kernel_pmd =
1829 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1830 
1831 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1832 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1833 				  512*1024);
1834 
1835 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1836 	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1837 
1838 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1839 
1840 	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1841 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1842 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1843 
1844 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1845 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1846 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1847 
1848 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1849 
1850 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1851 			  PFN_DOWN(__pa(initial_page_table)));
1852 	xen_write_cr3(__pa(initial_page_table));
1853 
1854 	memblock_reserve(__pa(xen_start_info->pt_base),
1855 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1856 
1857 	return initial_page_table;
1858 }
1859 #endif	/* CONFIG_X86_64 */
1860 
1861 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1862 
1863 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1864 {
1865 	pte_t pte;
1866 
1867 	phys >>= PAGE_SHIFT;
1868 
1869 	switch (idx) {
1870 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1871 #ifdef CONFIG_X86_F00F_BUG
1872 	case FIX_F00F_IDT:
1873 #endif
1874 #ifdef CONFIG_X86_32
1875 	case FIX_WP_TEST:
1876 	case FIX_VDSO:
1877 # ifdef CONFIG_HIGHMEM
1878 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1879 # endif
1880 #else
1881 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1882 	case VVAR_PAGE:
1883 #endif
1884 	case FIX_TEXT_POKE0:
1885 	case FIX_TEXT_POKE1:
1886 		/* All local page mappings */
1887 		pte = pfn_pte(phys, prot);
1888 		break;
1889 
1890 #ifdef CONFIG_X86_LOCAL_APIC
1891 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1892 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1893 		break;
1894 #endif
1895 
1896 #ifdef CONFIG_X86_IO_APIC
1897 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1898 		/*
1899 		 * We just don't map the IO APIC - all access is via
1900 		 * hypercalls.  Keep the address in the pte for reference.
1901 		 */
1902 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1903 		break;
1904 #endif
1905 
1906 	case FIX_PARAVIRT_BOOTMAP:
1907 		/* This is an MFN, but it isn't an IO mapping from the
1908 		   IO domain */
1909 		pte = mfn_pte(phys, prot);
1910 		break;
1911 
1912 	default:
1913 		/* By default, set_fixmap is used for hardware mappings */
1914 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1915 		break;
1916 	}
1917 
1918 	__native_set_fixmap(idx, pte);
1919 
1920 #ifdef CONFIG_X86_64
1921 	/* Replicate changes to map the vsyscall page into the user
1922 	   pagetable vsyscall mapping. */
1923 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1924 	    idx == VVAR_PAGE) {
1925 		unsigned long vaddr = __fix_to_virt(idx);
1926 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1927 	}
1928 #endif
1929 }
1930 
1931 void __init xen_ident_map_ISA(void)
1932 {
1933 	unsigned long pa;
1934 
1935 	/*
1936 	 * If we're dom0, then linear map the ISA machine addresses into
1937 	 * the kernel's address space.
1938 	 */
1939 	if (!xen_initial_domain())
1940 		return;
1941 
1942 	xen_raw_printk("Xen: setup ISA identity maps\n");
1943 
1944 	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1945 		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1946 
1947 		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1948 			BUG();
1949 	}
1950 
1951 	xen_flush_tlb();
1952 }
1953 
1954 static void __init xen_post_allocator_init(void)
1955 {
1956 	pv_mmu_ops.set_pte = xen_set_pte;
1957 	pv_mmu_ops.set_pmd = xen_set_pmd;
1958 	pv_mmu_ops.set_pud = xen_set_pud;
1959 #if PAGETABLE_LEVELS == 4
1960 	pv_mmu_ops.set_pgd = xen_set_pgd;
1961 #endif
1962 
1963 	/* This will work as long as patching hasn't happened yet
1964 	   (which it hasn't) */
1965 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
1966 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1967 	pv_mmu_ops.release_pte = xen_release_pte;
1968 	pv_mmu_ops.release_pmd = xen_release_pmd;
1969 #if PAGETABLE_LEVELS == 4
1970 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
1971 	pv_mmu_ops.release_pud = xen_release_pud;
1972 #endif
1973 
1974 #ifdef CONFIG_X86_64
1975 	SetPagePinned(virt_to_page(level3_user_vsyscall));
1976 #endif
1977 	xen_mark_init_mm_pinned();
1978 }
1979 
1980 static void xen_leave_lazy_mmu(void)
1981 {
1982 	preempt_disable();
1983 	xen_mc_flush();
1984 	paravirt_leave_lazy_mmu();
1985 	preempt_enable();
1986 }
1987 
1988 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1989 	.read_cr2 = xen_read_cr2,
1990 	.write_cr2 = xen_write_cr2,
1991 
1992 	.read_cr3 = xen_read_cr3,
1993 #ifdef CONFIG_X86_32
1994 	.write_cr3 = xen_write_cr3_init,
1995 #else
1996 	.write_cr3 = xen_write_cr3,
1997 #endif
1998 
1999 	.flush_tlb_user = xen_flush_tlb,
2000 	.flush_tlb_kernel = xen_flush_tlb,
2001 	.flush_tlb_single = xen_flush_tlb_single,
2002 	.flush_tlb_others = xen_flush_tlb_others,
2003 
2004 	.pte_update = paravirt_nop,
2005 	.pte_update_defer = paravirt_nop,
2006 
2007 	.pgd_alloc = xen_pgd_alloc,
2008 	.pgd_free = xen_pgd_free,
2009 
2010 	.alloc_pte = xen_alloc_pte_init,
2011 	.release_pte = xen_release_pte_init,
2012 	.alloc_pmd = xen_alloc_pmd_init,
2013 	.release_pmd = xen_release_pmd_init,
2014 
2015 	.set_pte = xen_set_pte_init,
2016 	.set_pte_at = xen_set_pte_at,
2017 	.set_pmd = xen_set_pmd_hyper,
2018 
2019 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2020 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2021 
2022 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2023 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2024 
2025 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2026 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2027 
2028 #ifdef CONFIG_X86_PAE
2029 	.set_pte_atomic = xen_set_pte_atomic,
2030 	.pte_clear = xen_pte_clear,
2031 	.pmd_clear = xen_pmd_clear,
2032 #endif	/* CONFIG_X86_PAE */
2033 	.set_pud = xen_set_pud_hyper,
2034 
2035 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2036 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2037 
2038 #if PAGETABLE_LEVELS == 4
2039 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2040 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2041 	.set_pgd = xen_set_pgd_hyper,
2042 
2043 	.alloc_pud = xen_alloc_pmd_init,
2044 	.release_pud = xen_release_pmd_init,
2045 #endif	/* PAGETABLE_LEVELS == 4 */
2046 
2047 	.activate_mm = xen_activate_mm,
2048 	.dup_mmap = xen_dup_mmap,
2049 	.exit_mmap = xen_exit_mmap,
2050 
2051 	.lazy_mode = {
2052 		.enter = paravirt_enter_lazy_mmu,
2053 		.leave = xen_leave_lazy_mmu,
2054 	},
2055 
2056 	.set_fixmap = xen_set_fixmap,
2057 };
2058 
2059 void __init xen_init_mmu_ops(void)
2060 {
2061 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2062 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2063 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2064 	pv_mmu_ops = xen_mmu_ops;
2065 
2066 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2067 }
2068 
2069 /* Protected by xen_reservation_lock. */
2070 #define MAX_CONTIG_ORDER 9 /* 2MB */
2071 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2072 
2073 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2074 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2075 				unsigned long *in_frames,
2076 				unsigned long *out_frames)
2077 {
2078 	int i;
2079 	struct multicall_space mcs;
2080 
2081 	xen_mc_batch();
2082 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2083 		mcs = __xen_mc_entry(0);
2084 
2085 		if (in_frames)
2086 			in_frames[i] = virt_to_mfn(vaddr);
2087 
2088 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2089 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2090 
2091 		if (out_frames)
2092 			out_frames[i] = virt_to_pfn(vaddr);
2093 	}
2094 	xen_mc_issue(0);
2095 }
2096 
2097 /*
2098  * Update the pfn-to-mfn mappings for a virtual address range, either to
2099  * point to an array of mfns, or contiguously from a single starting
2100  * mfn.
2101  */
2102 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2103 				     unsigned long *mfns,
2104 				     unsigned long first_mfn)
2105 {
2106 	unsigned i, limit;
2107 	unsigned long mfn;
2108 
2109 	xen_mc_batch();
2110 
2111 	limit = 1u << order;
2112 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2113 		struct multicall_space mcs;
2114 		unsigned flags;
2115 
2116 		mcs = __xen_mc_entry(0);
2117 		if (mfns)
2118 			mfn = mfns[i];
2119 		else
2120 			mfn = first_mfn + i;
2121 
2122 		if (i < (limit - 1))
2123 			flags = 0;
2124 		else {
2125 			if (order == 0)
2126 				flags = UVMF_INVLPG | UVMF_ALL;
2127 			else
2128 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2129 		}
2130 
2131 		MULTI_update_va_mapping(mcs.mc, vaddr,
2132 				mfn_pte(mfn, PAGE_KERNEL), flags);
2133 
2134 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2135 	}
2136 
2137 	xen_mc_issue(0);
2138 }
2139 
2140 /*
2141  * Perform the hypercall to exchange a region of our pfns to point to
2142  * memory with the required contiguous alignment.  Takes the pfns as
2143  * input, and populates mfns as output.
2144  *
2145  * Returns a success code indicating whether the hypervisor was able to
2146  * satisfy the request or not.
2147  */
2148 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2149 			       unsigned long *pfns_in,
2150 			       unsigned long extents_out,
2151 			       unsigned int order_out,
2152 			       unsigned long *mfns_out,
2153 			       unsigned int address_bits)
2154 {
2155 	long rc;
2156 	int success;
2157 
2158 	struct xen_memory_exchange exchange = {
2159 		.in = {
2160 			.nr_extents   = extents_in,
2161 			.extent_order = order_in,
2162 			.extent_start = pfns_in,
2163 			.domid        = DOMID_SELF
2164 		},
2165 		.out = {
2166 			.nr_extents   = extents_out,
2167 			.extent_order = order_out,
2168 			.extent_start = mfns_out,
2169 			.address_bits = address_bits,
2170 			.domid        = DOMID_SELF
2171 		}
2172 	};
2173 
2174 	BUG_ON(extents_in << order_in != extents_out << order_out);
2175 
2176 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2177 	success = (exchange.nr_exchanged == extents_in);
2178 
2179 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2180 	BUG_ON(success && (rc != 0));
2181 
2182 	return success;
2183 }
2184 
2185 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2186 				 unsigned int address_bits)
2187 {
2188 	unsigned long *in_frames = discontig_frames, out_frame;
2189 	unsigned long  flags;
2190 	int            success;
2191 
2192 	/*
2193 	 * Currently an auto-translated guest will not perform I/O, nor will
2194 	 * it require PAE page directories below 4GB. Therefore any calls to
2195 	 * this function are redundant and can be ignored.
2196 	 */
2197 
2198 	if (xen_feature(XENFEAT_auto_translated_physmap))
2199 		return 0;
2200 
2201 	if (unlikely(order > MAX_CONTIG_ORDER))
2202 		return -ENOMEM;
2203 
2204 	memset((void *) vstart, 0, PAGE_SIZE << order);
2205 
2206 	spin_lock_irqsave(&xen_reservation_lock, flags);
2207 
2208 	/* 1. Zap current PTEs, remembering MFNs. */
2209 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2210 
2211 	/* 2. Get a new contiguous memory extent. */
2212 	out_frame = virt_to_pfn(vstart);
2213 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2214 				      1, order, &out_frame,
2215 				      address_bits);
2216 
2217 	/* 3. Map the new extent in place of old pages. */
2218 	if (success)
2219 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2220 	else
2221 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2222 
2223 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2224 
2225 	return success ? 0 : -ENOMEM;
2226 }
2227 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2228 
2229 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2230 {
2231 	unsigned long *out_frames = discontig_frames, in_frame;
2232 	unsigned long  flags;
2233 	int success;
2234 
2235 	if (xen_feature(XENFEAT_auto_translated_physmap))
2236 		return;
2237 
2238 	if (unlikely(order > MAX_CONTIG_ORDER))
2239 		return;
2240 
2241 	memset((void *) vstart, 0, PAGE_SIZE << order);
2242 
2243 	spin_lock_irqsave(&xen_reservation_lock, flags);
2244 
2245 	/* 1. Find start MFN of contiguous extent. */
2246 	in_frame = virt_to_mfn(vstart);
2247 
2248 	/* 2. Zap current PTEs. */
2249 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2250 
2251 	/* 3. Do the exchange for non-contiguous MFNs. */
2252 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2253 					0, out_frames, 0);
2254 
2255 	/* 4. Map new pages in place of old pages. */
2256 	if (success)
2257 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2258 	else
2259 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2260 
2261 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2262 }
2263 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2264 
2265 #ifdef CONFIG_XEN_PVHVM
2266 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2267 {
2268 	struct xen_hvm_pagetable_dying a;
2269 	int rc;
2270 
2271 	a.domid = DOMID_SELF;
2272 	a.gpa = __pa(mm->pgd);
2273 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2274 	WARN_ON_ONCE(rc < 0);
2275 }
2276 
2277 static int is_pagetable_dying_supported(void)
2278 {
2279 	struct xen_hvm_pagetable_dying a;
2280 	int rc = 0;
2281 
2282 	a.domid = DOMID_SELF;
2283 	a.gpa = 0x00;
2284 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2285 	if (rc < 0) {
2286 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2287 		return 0;
2288 	}
2289 	return 1;
2290 }
2291 
2292 void __init xen_hvm_init_mmu_ops(void)
2293 {
2294 	if (is_pagetable_dying_supported())
2295 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2296 }
2297 #endif
2298 
2299 #define REMAP_BATCH_SIZE 16
2300 
2301 struct remap_data {
2302 	unsigned long mfn;
2303 	pgprot_t prot;
2304 	struct mmu_update *mmu_update;
2305 };
2306 
2307 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2308 				 unsigned long addr, void *data)
2309 {
2310 	struct remap_data *rmd = data;
2311 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2312 
2313 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2314 	rmd->mmu_update->val = pte_val_ma(pte);
2315 	rmd->mmu_update++;
2316 
2317 	return 0;
2318 }
2319 
2320 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2321 			       unsigned long addr,
2322 			       unsigned long mfn, int nr,
2323 			       pgprot_t prot, unsigned domid)
2324 {
2325 	struct remap_data rmd;
2326 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2327 	int batch;
2328 	unsigned long range;
2329 	int err = 0;
2330 
2331 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2332 
2333 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2334 				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2335 
2336 	rmd.mfn = mfn;
2337 	rmd.prot = prot;
2338 
2339 	while (nr) {
2340 		batch = min(REMAP_BATCH_SIZE, nr);
2341 		range = (unsigned long)batch << PAGE_SHIFT;
2342 
2343 		rmd.mmu_update = mmu_update;
2344 		err = apply_to_page_range(vma->vm_mm, addr, range,
2345 					  remap_area_mfn_pte_fn, &rmd);
2346 		if (err)
2347 			goto out;
2348 
2349 		err = -EFAULT;
2350 		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2351 			goto out;
2352 
2353 		nr -= batch;
2354 		addr += range;
2355 	}
2356 
2357 	err = 0;
2358 out:
2359 
2360 	flush_tlb_all();
2361 
2362 	return err;
2363 }
2364 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2365