xref: /linux/arch/x86/xen/mmu.c (revision 7034228792cc561e79ff8600f02884bd4c80e287)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = get_phys_to_machine(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else {
403 			/*
404 			 * Paramount to do this test _after_ the
405 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
406 			 * IDENTITY_FRAME_BIT resolves to true.
407 			 */
408 			mfn &= ~FOREIGN_FRAME_BIT;
409 			if (mfn & IDENTITY_FRAME_BIT) {
410 				mfn &= ~IDENTITY_FRAME_BIT;
411 				flags |= _PAGE_IOMAP;
412 			}
413 		}
414 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
415 	}
416 
417 	return val;
418 }
419 
420 static pteval_t iomap_pte(pteval_t val)
421 {
422 	if (val & _PAGE_PRESENT) {
423 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
424 		pteval_t flags = val & PTE_FLAGS_MASK;
425 
426 		/* We assume the pte frame number is a MFN, so
427 		   just use it as-is. */
428 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
429 	}
430 
431 	return val;
432 }
433 
434 static pteval_t xen_pte_val(pte_t pte)
435 {
436 	pteval_t pteval = pte.pte;
437 #if 0
438 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
439 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
440 		WARN_ON(!pat_enabled);
441 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
442 	}
443 #endif
444 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
445 		return pteval;
446 
447 	return pte_mfn_to_pfn(pteval);
448 }
449 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
450 
451 static pgdval_t xen_pgd_val(pgd_t pgd)
452 {
453 	return pte_mfn_to_pfn(pgd.pgd);
454 }
455 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
456 
457 /*
458  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
459  * are reserved for now, to correspond to the Intel-reserved PAT
460  * types.
461  *
462  * We expect Linux's PAT set as follows:
463  *
464  * Idx  PTE flags        Linux    Xen    Default
465  * 0                     WB       WB     WB
466  * 1            PWT      WC       WT     WT
467  * 2        PCD          UC-      UC-    UC-
468  * 3        PCD PWT      UC       UC     UC
469  * 4    PAT              WB       WC     WB
470  * 5    PAT     PWT      WC       WP     WT
471  * 6    PAT PCD          UC-      UC     UC-
472  * 7    PAT PCD PWT      UC       UC     UC
473  */
474 
475 void xen_set_pat(u64 pat)
476 {
477 	/* We expect Linux to use a PAT setting of
478 	 * UC UC- WC WB (ignoring the PAT flag) */
479 	WARN_ON(pat != 0x0007010600070106ull);
480 }
481 
482 static pte_t xen_make_pte(pteval_t pte)
483 {
484 	phys_addr_t addr = (pte & PTE_PFN_MASK);
485 #if 0
486 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
487 	 * If _PAGE_PAT is set, then it probably means it is really
488 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
489 	 * things work out OK...
490 	 *
491 	 * (We should never see kernel mappings with _PAGE_PSE set,
492 	 * but we could see hugetlbfs mappings, I think.).
493 	 */
494 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
495 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
496 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
497 	}
498 #endif
499 	/*
500 	 * Unprivileged domains are allowed to do IOMAPpings for
501 	 * PCI passthrough, but not map ISA space.  The ISA
502 	 * mappings are just dummy local mappings to keep other
503 	 * parts of the kernel happy.
504 	 */
505 	if (unlikely(pte & _PAGE_IOMAP) &&
506 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
507 		pte = iomap_pte(pte);
508 	} else {
509 		pte &= ~_PAGE_IOMAP;
510 		pte = pte_pfn_to_mfn(pte);
511 	}
512 
513 	return native_make_pte(pte);
514 }
515 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
516 
517 static pgd_t xen_make_pgd(pgdval_t pgd)
518 {
519 	pgd = pte_pfn_to_mfn(pgd);
520 	return native_make_pgd(pgd);
521 }
522 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
523 
524 static pmdval_t xen_pmd_val(pmd_t pmd)
525 {
526 	return pte_mfn_to_pfn(pmd.pmd);
527 }
528 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
529 
530 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
531 {
532 	struct mmu_update u;
533 
534 	preempt_disable();
535 
536 	xen_mc_batch();
537 
538 	/* ptr may be ioremapped for 64-bit pagetable setup */
539 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
540 	u.val = pud_val_ma(val);
541 	xen_extend_mmu_update(&u);
542 
543 	xen_mc_issue(PARAVIRT_LAZY_MMU);
544 
545 	preempt_enable();
546 }
547 
548 static void xen_set_pud(pud_t *ptr, pud_t val)
549 {
550 	trace_xen_mmu_set_pud(ptr, val);
551 
552 	/* If page is not pinned, we can just update the entry
553 	   directly */
554 	if (!xen_page_pinned(ptr)) {
555 		*ptr = val;
556 		return;
557 	}
558 
559 	xen_set_pud_hyper(ptr, val);
560 }
561 
562 #ifdef CONFIG_X86_PAE
563 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
564 {
565 	trace_xen_mmu_set_pte_atomic(ptep, pte);
566 	set_64bit((u64 *)ptep, native_pte_val(pte));
567 }
568 
569 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
570 {
571 	trace_xen_mmu_pte_clear(mm, addr, ptep);
572 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
573 		native_pte_clear(mm, addr, ptep);
574 }
575 
576 static void xen_pmd_clear(pmd_t *pmdp)
577 {
578 	trace_xen_mmu_pmd_clear(pmdp);
579 	set_pmd(pmdp, __pmd(0));
580 }
581 #endif	/* CONFIG_X86_PAE */
582 
583 static pmd_t xen_make_pmd(pmdval_t pmd)
584 {
585 	pmd = pte_pfn_to_mfn(pmd);
586 	return native_make_pmd(pmd);
587 }
588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
589 
590 #if PAGETABLE_LEVELS == 4
591 static pudval_t xen_pud_val(pud_t pud)
592 {
593 	return pte_mfn_to_pfn(pud.pud);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
596 
597 static pud_t xen_make_pud(pudval_t pud)
598 {
599 	pud = pte_pfn_to_mfn(pud);
600 
601 	return native_make_pud(pud);
602 }
603 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
604 
605 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
606 {
607 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
608 	unsigned offset = pgd - pgd_page;
609 	pgd_t *user_ptr = NULL;
610 
611 	if (offset < pgd_index(USER_LIMIT)) {
612 		struct page *page = virt_to_page(pgd_page);
613 		user_ptr = (pgd_t *)page->private;
614 		if (user_ptr)
615 			user_ptr += offset;
616 	}
617 
618 	return user_ptr;
619 }
620 
621 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
622 {
623 	struct mmu_update u;
624 
625 	u.ptr = virt_to_machine(ptr).maddr;
626 	u.val = pgd_val_ma(val);
627 	xen_extend_mmu_update(&u);
628 }
629 
630 /*
631  * Raw hypercall-based set_pgd, intended for in early boot before
632  * there's a page structure.  This implies:
633  *  1. The only existing pagetable is the kernel's
634  *  2. It is always pinned
635  *  3. It has no user pagetable attached to it
636  */
637 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
638 {
639 	preempt_disable();
640 
641 	xen_mc_batch();
642 
643 	__xen_set_pgd_hyper(ptr, val);
644 
645 	xen_mc_issue(PARAVIRT_LAZY_MMU);
646 
647 	preempt_enable();
648 }
649 
650 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
651 {
652 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
653 
654 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
655 
656 	/* If page is not pinned, we can just update the entry
657 	   directly */
658 	if (!xen_page_pinned(ptr)) {
659 		*ptr = val;
660 		if (user_ptr) {
661 			WARN_ON(xen_page_pinned(user_ptr));
662 			*user_ptr = val;
663 		}
664 		return;
665 	}
666 
667 	/* If it's pinned, then we can at least batch the kernel and
668 	   user updates together. */
669 	xen_mc_batch();
670 
671 	__xen_set_pgd_hyper(ptr, val);
672 	if (user_ptr)
673 		__xen_set_pgd_hyper(user_ptr, val);
674 
675 	xen_mc_issue(PARAVIRT_LAZY_MMU);
676 }
677 #endif	/* PAGETABLE_LEVELS == 4 */
678 
679 /*
680  * (Yet another) pagetable walker.  This one is intended for pinning a
681  * pagetable.  This means that it walks a pagetable and calls the
682  * callback function on each page it finds making up the page table,
683  * at every level.  It walks the entire pagetable, but it only bothers
684  * pinning pte pages which are below limit.  In the normal case this
685  * will be STACK_TOP_MAX, but at boot we need to pin up to
686  * FIXADDR_TOP.
687  *
688  * For 32-bit the important bit is that we don't pin beyond there,
689  * because then we start getting into Xen's ptes.
690  *
691  * For 64-bit, we must skip the Xen hole in the middle of the address
692  * space, just after the big x86-64 virtual hole.
693  */
694 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
695 			  int (*func)(struct mm_struct *mm, struct page *,
696 				      enum pt_level),
697 			  unsigned long limit)
698 {
699 	int flush = 0;
700 	unsigned hole_low, hole_high;
701 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
702 	unsigned pgdidx, pudidx, pmdidx;
703 
704 	/* The limit is the last byte to be touched */
705 	limit--;
706 	BUG_ON(limit >= FIXADDR_TOP);
707 
708 	if (xen_feature(XENFEAT_auto_translated_physmap))
709 		return 0;
710 
711 	/*
712 	 * 64-bit has a great big hole in the middle of the address
713 	 * space, which contains the Xen mappings.  On 32-bit these
714 	 * will end up making a zero-sized hole and so is a no-op.
715 	 */
716 	hole_low = pgd_index(USER_LIMIT);
717 	hole_high = pgd_index(PAGE_OFFSET);
718 
719 	pgdidx_limit = pgd_index(limit);
720 #if PTRS_PER_PUD > 1
721 	pudidx_limit = pud_index(limit);
722 #else
723 	pudidx_limit = 0;
724 #endif
725 #if PTRS_PER_PMD > 1
726 	pmdidx_limit = pmd_index(limit);
727 #else
728 	pmdidx_limit = 0;
729 #endif
730 
731 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
732 		pud_t *pud;
733 
734 		if (pgdidx >= hole_low && pgdidx < hole_high)
735 			continue;
736 
737 		if (!pgd_val(pgd[pgdidx]))
738 			continue;
739 
740 		pud = pud_offset(&pgd[pgdidx], 0);
741 
742 		if (PTRS_PER_PUD > 1) /* not folded */
743 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
744 
745 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
746 			pmd_t *pmd;
747 
748 			if (pgdidx == pgdidx_limit &&
749 			    pudidx > pudidx_limit)
750 				goto out;
751 
752 			if (pud_none(pud[pudidx]))
753 				continue;
754 
755 			pmd = pmd_offset(&pud[pudidx], 0);
756 
757 			if (PTRS_PER_PMD > 1) /* not folded */
758 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
759 
760 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
761 				struct page *pte;
762 
763 				if (pgdidx == pgdidx_limit &&
764 				    pudidx == pudidx_limit &&
765 				    pmdidx > pmdidx_limit)
766 					goto out;
767 
768 				if (pmd_none(pmd[pmdidx]))
769 					continue;
770 
771 				pte = pmd_page(pmd[pmdidx]);
772 				flush |= (*func)(mm, pte, PT_PTE);
773 			}
774 		}
775 	}
776 
777 out:
778 	/* Do the top level last, so that the callbacks can use it as
779 	   a cue to do final things like tlb flushes. */
780 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
781 
782 	return flush;
783 }
784 
785 static int xen_pgd_walk(struct mm_struct *mm,
786 			int (*func)(struct mm_struct *mm, struct page *,
787 				    enum pt_level),
788 			unsigned long limit)
789 {
790 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
791 }
792 
793 /* If we're using split pte locks, then take the page's lock and
794    return a pointer to it.  Otherwise return NULL. */
795 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
796 {
797 	spinlock_t *ptl = NULL;
798 
799 #if USE_SPLIT_PTLOCKS
800 	ptl = __pte_lockptr(page);
801 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
802 #endif
803 
804 	return ptl;
805 }
806 
807 static void xen_pte_unlock(void *v)
808 {
809 	spinlock_t *ptl = v;
810 	spin_unlock(ptl);
811 }
812 
813 static void xen_do_pin(unsigned level, unsigned long pfn)
814 {
815 	struct mmuext_op op;
816 
817 	op.cmd = level;
818 	op.arg1.mfn = pfn_to_mfn(pfn);
819 
820 	xen_extend_mmuext_op(&op);
821 }
822 
823 static int xen_pin_page(struct mm_struct *mm, struct page *page,
824 			enum pt_level level)
825 {
826 	unsigned pgfl = TestSetPagePinned(page);
827 	int flush;
828 
829 	if (pgfl)
830 		flush = 0;		/* already pinned */
831 	else if (PageHighMem(page))
832 		/* kmaps need flushing if we found an unpinned
833 		   highpage */
834 		flush = 1;
835 	else {
836 		void *pt = lowmem_page_address(page);
837 		unsigned long pfn = page_to_pfn(page);
838 		struct multicall_space mcs = __xen_mc_entry(0);
839 		spinlock_t *ptl;
840 
841 		flush = 0;
842 
843 		/*
844 		 * We need to hold the pagetable lock between the time
845 		 * we make the pagetable RO and when we actually pin
846 		 * it.  If we don't, then other users may come in and
847 		 * attempt to update the pagetable by writing it,
848 		 * which will fail because the memory is RO but not
849 		 * pinned, so Xen won't do the trap'n'emulate.
850 		 *
851 		 * If we're using split pte locks, we can't hold the
852 		 * entire pagetable's worth of locks during the
853 		 * traverse, because we may wrap the preempt count (8
854 		 * bits).  The solution is to mark RO and pin each PTE
855 		 * page while holding the lock.  This means the number
856 		 * of locks we end up holding is never more than a
857 		 * batch size (~32 entries, at present).
858 		 *
859 		 * If we're not using split pte locks, we needn't pin
860 		 * the PTE pages independently, because we're
861 		 * protected by the overall pagetable lock.
862 		 */
863 		ptl = NULL;
864 		if (level == PT_PTE)
865 			ptl = xen_pte_lock(page, mm);
866 
867 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 					pfn_pte(pfn, PAGE_KERNEL_RO),
869 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870 
871 		if (ptl) {
872 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
873 
874 			/* Queue a deferred unlock for when this batch
875 			   is completed. */
876 			xen_mc_callback(xen_pte_unlock, ptl);
877 		}
878 	}
879 
880 	return flush;
881 }
882 
883 /* This is called just after a mm has been created, but it has not
884    been used yet.  We need to make sure that its pagetable is all
885    read-only, and can be pinned. */
886 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
887 {
888 	trace_xen_mmu_pgd_pin(mm, pgd);
889 
890 	xen_mc_batch();
891 
892 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893 		/* re-enable interrupts for flushing */
894 		xen_mc_issue(0);
895 
896 		kmap_flush_unused();
897 
898 		xen_mc_batch();
899 	}
900 
901 #ifdef CONFIG_X86_64
902 	{
903 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
904 
905 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
906 
907 		if (user_pgd) {
908 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
909 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
910 				   PFN_DOWN(__pa(user_pgd)));
911 		}
912 	}
913 #else /* CONFIG_X86_32 */
914 #ifdef CONFIG_X86_PAE
915 	/* Need to make sure unshared kernel PMD is pinnable */
916 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917 		     PT_PMD);
918 #endif
919 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920 #endif /* CONFIG_X86_64 */
921 	xen_mc_issue(0);
922 }
923 
924 static void xen_pgd_pin(struct mm_struct *mm)
925 {
926 	__xen_pgd_pin(mm, mm->pgd);
927 }
928 
929 /*
930  * On save, we need to pin all pagetables to make sure they get their
931  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
932  * them (unpinned pgds are not currently in use, probably because the
933  * process is under construction or destruction).
934  *
935  * Expected to be called in stop_machine() ("equivalent to taking
936  * every spinlock in the system"), so the locking doesn't really
937  * matter all that much.
938  */
939 void xen_mm_pin_all(void)
940 {
941 	struct page *page;
942 
943 	spin_lock(&pgd_lock);
944 
945 	list_for_each_entry(page, &pgd_list, lru) {
946 		if (!PagePinned(page)) {
947 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 			SetPageSavePinned(page);
949 		}
950 	}
951 
952 	spin_unlock(&pgd_lock);
953 }
954 
955 /*
956  * The init_mm pagetable is really pinned as soon as its created, but
957  * that's before we have page structures to store the bits.  So do all
958  * the book-keeping now.
959  */
960 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961 				  enum pt_level level)
962 {
963 	SetPagePinned(page);
964 	return 0;
965 }
966 
967 static void __init xen_mark_init_mm_pinned(void)
968 {
969 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
970 }
971 
972 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
973 			  enum pt_level level)
974 {
975 	unsigned pgfl = TestClearPagePinned(page);
976 
977 	if (pgfl && !PageHighMem(page)) {
978 		void *pt = lowmem_page_address(page);
979 		unsigned long pfn = page_to_pfn(page);
980 		spinlock_t *ptl = NULL;
981 		struct multicall_space mcs;
982 
983 		/*
984 		 * Do the converse to pin_page.  If we're using split
985 		 * pte locks, we must be holding the lock for while
986 		 * the pte page is unpinned but still RO to prevent
987 		 * concurrent updates from seeing it in this
988 		 * partially-pinned state.
989 		 */
990 		if (level == PT_PTE) {
991 			ptl = xen_pte_lock(page, mm);
992 
993 			if (ptl)
994 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
995 		}
996 
997 		mcs = __xen_mc_entry(0);
998 
999 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 					pfn_pte(pfn, PAGE_KERNEL),
1001 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002 
1003 		if (ptl) {
1004 			/* unlock when batch completed */
1005 			xen_mc_callback(xen_pte_unlock, ptl);
1006 		}
1007 	}
1008 
1009 	return 0;		/* never need to flush on unpin */
1010 }
1011 
1012 /* Release a pagetables pages back as normal RW */
1013 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014 {
1015 	trace_xen_mmu_pgd_unpin(mm, pgd);
1016 
1017 	xen_mc_batch();
1018 
1019 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020 
1021 #ifdef CONFIG_X86_64
1022 	{
1023 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024 
1025 		if (user_pgd) {
1026 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1027 				   PFN_DOWN(__pa(user_pgd)));
1028 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029 		}
1030 	}
1031 #endif
1032 
1033 #ifdef CONFIG_X86_PAE
1034 	/* Need to make sure unshared kernel PMD is unpinned */
1035 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036 		       PT_PMD);
1037 #endif
1038 
1039 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040 
1041 	xen_mc_issue(0);
1042 }
1043 
1044 static void xen_pgd_unpin(struct mm_struct *mm)
1045 {
1046 	__xen_pgd_unpin(mm, mm->pgd);
1047 }
1048 
1049 /*
1050  * On resume, undo any pinning done at save, so that the rest of the
1051  * kernel doesn't see any unexpected pinned pagetables.
1052  */
1053 void xen_mm_unpin_all(void)
1054 {
1055 	struct page *page;
1056 
1057 	spin_lock(&pgd_lock);
1058 
1059 	list_for_each_entry(page, &pgd_list, lru) {
1060 		if (PageSavePinned(page)) {
1061 			BUG_ON(!PagePinned(page));
1062 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 			ClearPageSavePinned(page);
1064 		}
1065 	}
1066 
1067 	spin_unlock(&pgd_lock);
1068 }
1069 
1070 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071 {
1072 	spin_lock(&next->page_table_lock);
1073 	xen_pgd_pin(next);
1074 	spin_unlock(&next->page_table_lock);
1075 }
1076 
1077 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078 {
1079 	spin_lock(&mm->page_table_lock);
1080 	xen_pgd_pin(mm);
1081 	spin_unlock(&mm->page_table_lock);
1082 }
1083 
1084 
1085 #ifdef CONFIG_SMP
1086 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1087    we need to repoint it somewhere else before we can unpin it. */
1088 static void drop_other_mm_ref(void *info)
1089 {
1090 	struct mm_struct *mm = info;
1091 	struct mm_struct *active_mm;
1092 
1093 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094 
1095 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096 		leave_mm(smp_processor_id());
1097 
1098 	/* If this cpu still has a stale cr3 reference, then make sure
1099 	   it has been flushed. */
1100 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101 		load_cr3(swapper_pg_dir);
1102 }
1103 
1104 static void xen_drop_mm_ref(struct mm_struct *mm)
1105 {
1106 	cpumask_var_t mask;
1107 	unsigned cpu;
1108 
1109 	if (current->active_mm == mm) {
1110 		if (current->mm == mm)
1111 			load_cr3(swapper_pg_dir);
1112 		else
1113 			leave_mm(smp_processor_id());
1114 	}
1115 
1116 	/* Get the "official" set of cpus referring to our pagetable. */
1117 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118 		for_each_online_cpu(cpu) {
1119 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121 				continue;
1122 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123 		}
1124 		return;
1125 	}
1126 	cpumask_copy(mask, mm_cpumask(mm));
1127 
1128 	/* It's possible that a vcpu may have a stale reference to our
1129 	   cr3, because its in lazy mode, and it hasn't yet flushed
1130 	   its set of pending hypercalls yet.  In this case, we can
1131 	   look at its actual current cr3 value, and force it to flush
1132 	   if needed. */
1133 	for_each_online_cpu(cpu) {
1134 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135 			cpumask_set_cpu(cpu, mask);
1136 	}
1137 
1138 	if (!cpumask_empty(mask))
1139 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140 	free_cpumask_var(mask);
1141 }
1142 #else
1143 static void xen_drop_mm_ref(struct mm_struct *mm)
1144 {
1145 	if (current->active_mm == mm)
1146 		load_cr3(swapper_pg_dir);
1147 }
1148 #endif
1149 
1150 /*
1151  * While a process runs, Xen pins its pagetables, which means that the
1152  * hypervisor forces it to be read-only, and it controls all updates
1153  * to it.  This means that all pagetable updates have to go via the
1154  * hypervisor, which is moderately expensive.
1155  *
1156  * Since we're pulling the pagetable down, we switch to use init_mm,
1157  * unpin old process pagetable and mark it all read-write, which
1158  * allows further operations on it to be simple memory accesses.
1159  *
1160  * The only subtle point is that another CPU may be still using the
1161  * pagetable because of lazy tlb flushing.  This means we need need to
1162  * switch all CPUs off this pagetable before we can unpin it.
1163  */
1164 static void xen_exit_mmap(struct mm_struct *mm)
1165 {
1166 	get_cpu();		/* make sure we don't move around */
1167 	xen_drop_mm_ref(mm);
1168 	put_cpu();
1169 
1170 	spin_lock(&mm->page_table_lock);
1171 
1172 	/* pgd may not be pinned in the error exit path of execve */
1173 	if (xen_page_pinned(mm->pgd))
1174 		xen_pgd_unpin(mm);
1175 
1176 	spin_unlock(&mm->page_table_lock);
1177 }
1178 
1179 static void xen_post_allocator_init(void);
1180 
1181 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1182 {
1183 	/* reserve the range used */
1184 	native_pagetable_reserve(start, end);
1185 
1186 	/* set as RW the rest */
1187 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188 			PFN_PHYS(pgt_buf_top));
1189 	while (end < PFN_PHYS(pgt_buf_top)) {
1190 		make_lowmem_page_readwrite(__va(end));
1191 		end += PAGE_SIZE;
1192 	}
1193 }
1194 
1195 #ifdef CONFIG_X86_64
1196 static void __init xen_cleanhighmap(unsigned long vaddr,
1197 				    unsigned long vaddr_end)
1198 {
1199 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1200 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1201 
1202 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1203 	 * We include the PMD passed in on _both_ boundaries. */
1204 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1205 			pmd++, vaddr += PMD_SIZE) {
1206 		if (pmd_none(*pmd))
1207 			continue;
1208 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1209 			set_pmd(pmd, __pmd(0));
1210 	}
1211 	/* In case we did something silly, we should crash in this function
1212 	 * instead of somewhere later and be confusing. */
1213 	xen_mc_flush();
1214 }
1215 #endif
1216 static void __init xen_pagetable_init(void)
1217 {
1218 #ifdef CONFIG_X86_64
1219 	unsigned long size;
1220 	unsigned long addr;
1221 #endif
1222 	paging_init();
1223 	xen_setup_shared_info();
1224 #ifdef CONFIG_X86_64
1225 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1226 		unsigned long new_mfn_list;
1227 
1228 		size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229 
1230 		/* On 32-bit, we get zero so this never gets executed. */
1231 		new_mfn_list = xen_revector_p2m_tree();
1232 		if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1233 			/* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 			memset((void *)xen_start_info->mfn_list, 0xff, size);
1235 
1236 			/* We should be in __ka space. */
1237 			BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1238 			addr = xen_start_info->mfn_list;
1239 			/* We roundup to the PMD, which means that if anybody at this stage is
1240 			 * using the __ka address of xen_start_info or xen_start_info->shared_info
1241 			 * they are in going to crash. Fortunatly we have already revectored
1242 			 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1243 			size = roundup(size, PMD_SIZE);
1244 			xen_cleanhighmap(addr, addr + size);
1245 
1246 			size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1247 			memblock_free(__pa(xen_start_info->mfn_list), size);
1248 			/* And revector! Bye bye old array */
1249 			xen_start_info->mfn_list = new_mfn_list;
1250 		} else
1251 			goto skip;
1252 	}
1253 	/* At this stage, cleanup_highmap has already cleaned __ka space
1254 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 	 * tables - do note that they are accessible at this stage via __va.
1257 	 * For good measure we also round up to the PMD - which means that if
1258 	 * anybody is using __ka address to the initial boot-stack - and try
1259 	 * to use it - they are going to crash. The xen_start_info has been
1260 	 * taken care of already in xen_setup_kernel_pagetable. */
1261 	addr = xen_start_info->pt_base;
1262 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1263 
1264 	xen_cleanhighmap(addr, addr + size);
1265 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1266 #ifdef DEBUG
1267 	/* This is superflous and is not neccessary, but you know what
1268 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1269 	 * anything at this stage. */
1270 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1271 #endif
1272 skip:
1273 #endif
1274 	xen_post_allocator_init();
1275 }
1276 static void xen_write_cr2(unsigned long cr2)
1277 {
1278 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1279 }
1280 
1281 static unsigned long xen_read_cr2(void)
1282 {
1283 	return this_cpu_read(xen_vcpu)->arch.cr2;
1284 }
1285 
1286 unsigned long xen_read_cr2_direct(void)
1287 {
1288 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1289 }
1290 
1291 void xen_flush_tlb_all(void)
1292 {
1293 	struct mmuext_op *op;
1294 	struct multicall_space mcs;
1295 
1296 	trace_xen_mmu_flush_tlb_all(0);
1297 
1298 	preempt_disable();
1299 
1300 	mcs = xen_mc_entry(sizeof(*op));
1301 
1302 	op = mcs.args;
1303 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1304 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1305 
1306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1307 
1308 	preempt_enable();
1309 }
1310 static void xen_flush_tlb(void)
1311 {
1312 	struct mmuext_op *op;
1313 	struct multicall_space mcs;
1314 
1315 	trace_xen_mmu_flush_tlb(0);
1316 
1317 	preempt_disable();
1318 
1319 	mcs = xen_mc_entry(sizeof(*op));
1320 
1321 	op = mcs.args;
1322 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1323 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1324 
1325 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1326 
1327 	preempt_enable();
1328 }
1329 
1330 static void xen_flush_tlb_single(unsigned long addr)
1331 {
1332 	struct mmuext_op *op;
1333 	struct multicall_space mcs;
1334 
1335 	trace_xen_mmu_flush_tlb_single(addr);
1336 
1337 	preempt_disable();
1338 
1339 	mcs = xen_mc_entry(sizeof(*op));
1340 	op = mcs.args;
1341 	op->cmd = MMUEXT_INVLPG_LOCAL;
1342 	op->arg1.linear_addr = addr & PAGE_MASK;
1343 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1344 
1345 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1346 
1347 	preempt_enable();
1348 }
1349 
1350 static void xen_flush_tlb_others(const struct cpumask *cpus,
1351 				 struct mm_struct *mm, unsigned long start,
1352 				 unsigned long end)
1353 {
1354 	struct {
1355 		struct mmuext_op op;
1356 #ifdef CONFIG_SMP
1357 		DECLARE_BITMAP(mask, num_processors);
1358 #else
1359 		DECLARE_BITMAP(mask, NR_CPUS);
1360 #endif
1361 	} *args;
1362 	struct multicall_space mcs;
1363 
1364 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1365 
1366 	if (cpumask_empty(cpus))
1367 		return;		/* nothing to do */
1368 
1369 	mcs = xen_mc_entry(sizeof(*args));
1370 	args = mcs.args;
1371 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1372 
1373 	/* Remove us, and any offline CPUS. */
1374 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1375 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1376 
1377 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1378 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1379 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1380 		args->op.arg1.linear_addr = start;
1381 	}
1382 
1383 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1384 
1385 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1386 }
1387 
1388 static unsigned long xen_read_cr3(void)
1389 {
1390 	return this_cpu_read(xen_cr3);
1391 }
1392 
1393 static void set_current_cr3(void *v)
1394 {
1395 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1396 }
1397 
1398 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1399 {
1400 	struct mmuext_op op;
1401 	unsigned long mfn;
1402 
1403 	trace_xen_mmu_write_cr3(kernel, cr3);
1404 
1405 	if (cr3)
1406 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1407 	else
1408 		mfn = 0;
1409 
1410 	WARN_ON(mfn == 0 && kernel);
1411 
1412 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1413 	op.arg1.mfn = mfn;
1414 
1415 	xen_extend_mmuext_op(&op);
1416 
1417 	if (kernel) {
1418 		this_cpu_write(xen_cr3, cr3);
1419 
1420 		/* Update xen_current_cr3 once the batch has actually
1421 		   been submitted. */
1422 		xen_mc_callback(set_current_cr3, (void *)cr3);
1423 	}
1424 }
1425 
1426 static void xen_write_cr3(unsigned long cr3)
1427 {
1428 	BUG_ON(preemptible());
1429 
1430 	xen_mc_batch();  /* disables interrupts */
1431 
1432 	/* Update while interrupts are disabled, so its atomic with
1433 	   respect to ipis */
1434 	this_cpu_write(xen_cr3, cr3);
1435 
1436 	__xen_write_cr3(true, cr3);
1437 
1438 #ifdef CONFIG_X86_64
1439 	{
1440 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1441 		if (user_pgd)
1442 			__xen_write_cr3(false, __pa(user_pgd));
1443 		else
1444 			__xen_write_cr3(false, 0);
1445 	}
1446 #endif
1447 
1448 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1449 }
1450 
1451 static int xen_pgd_alloc(struct mm_struct *mm)
1452 {
1453 	pgd_t *pgd = mm->pgd;
1454 	int ret = 0;
1455 
1456 	BUG_ON(PagePinned(virt_to_page(pgd)));
1457 
1458 #ifdef CONFIG_X86_64
1459 	{
1460 		struct page *page = virt_to_page(pgd);
1461 		pgd_t *user_pgd;
1462 
1463 		BUG_ON(page->private != 0);
1464 
1465 		ret = -ENOMEM;
1466 
1467 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1468 		page->private = (unsigned long)user_pgd;
1469 
1470 		if (user_pgd != NULL) {
1471 			user_pgd[pgd_index(VSYSCALL_START)] =
1472 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1473 			ret = 0;
1474 		}
1475 
1476 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1477 	}
1478 #endif
1479 
1480 	return ret;
1481 }
1482 
1483 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1484 {
1485 #ifdef CONFIG_X86_64
1486 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1487 
1488 	if (user_pgd)
1489 		free_page((unsigned long)user_pgd);
1490 #endif
1491 }
1492 
1493 #ifdef CONFIG_X86_32
1494 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1495 {
1496 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1497 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1498 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1499 			       pte_val_ma(pte));
1500 
1501 	return pte;
1502 }
1503 #else /* CONFIG_X86_64 */
1504 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1505 {
1506 	unsigned long pfn = pte_pfn(pte);
1507 
1508 	/*
1509 	 * If the new pfn is within the range of the newly allocated
1510 	 * kernel pagetable, and it isn't being mapped into an
1511 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1512 	 * it is RO.
1513 	 */
1514 	if (((!is_early_ioremap_ptep(ptep) &&
1515 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1516 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1517 		pte = pte_wrprotect(pte);
1518 
1519 	return pte;
1520 }
1521 #endif /* CONFIG_X86_64 */
1522 
1523 /*
1524  * Init-time set_pte while constructing initial pagetables, which
1525  * doesn't allow RO page table pages to be remapped RW.
1526  *
1527  * If there is no MFN for this PFN then this page is initially
1528  * ballooned out so clear the PTE (as in decrease_reservation() in
1529  * drivers/xen/balloon.c).
1530  *
1531  * Many of these PTE updates are done on unpinned and writable pages
1532  * and doing a hypercall for these is unnecessary and expensive.  At
1533  * this point it is not possible to tell if a page is pinned or not,
1534  * so always write the PTE directly and rely on Xen trapping and
1535  * emulating any updates as necessary.
1536  */
1537 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1538 {
1539 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1540 		pte = mask_rw_pte(ptep, pte);
1541 	else
1542 		pte = __pte_ma(0);
1543 
1544 	native_set_pte(ptep, pte);
1545 }
1546 
1547 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1548 {
1549 	struct mmuext_op op;
1550 	op.cmd = cmd;
1551 	op.arg1.mfn = pfn_to_mfn(pfn);
1552 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1553 		BUG();
1554 }
1555 
1556 /* Early in boot, while setting up the initial pagetable, assume
1557    everything is pinned. */
1558 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1559 {
1560 #ifdef CONFIG_FLATMEM
1561 	BUG_ON(mem_map);	/* should only be used early */
1562 #endif
1563 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1564 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1565 }
1566 
1567 /* Used for pmd and pud */
1568 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1569 {
1570 #ifdef CONFIG_FLATMEM
1571 	BUG_ON(mem_map);	/* should only be used early */
1572 #endif
1573 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1574 }
1575 
1576 /* Early release_pte assumes that all pts are pinned, since there's
1577    only init_mm and anything attached to that is pinned. */
1578 static void __init xen_release_pte_init(unsigned long pfn)
1579 {
1580 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1581 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1582 }
1583 
1584 static void __init xen_release_pmd_init(unsigned long pfn)
1585 {
1586 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1587 }
1588 
1589 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1590 {
1591 	struct multicall_space mcs;
1592 	struct mmuext_op *op;
1593 
1594 	mcs = __xen_mc_entry(sizeof(*op));
1595 	op = mcs.args;
1596 	op->cmd = cmd;
1597 	op->arg1.mfn = pfn_to_mfn(pfn);
1598 
1599 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1600 }
1601 
1602 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1603 {
1604 	struct multicall_space mcs;
1605 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1606 
1607 	mcs = __xen_mc_entry(0);
1608 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1609 				pfn_pte(pfn, prot), 0);
1610 }
1611 
1612 /* This needs to make sure the new pte page is pinned iff its being
1613    attached to a pinned pagetable. */
1614 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1615 				    unsigned level)
1616 {
1617 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1618 
1619 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1620 
1621 	if (pinned) {
1622 		struct page *page = pfn_to_page(pfn);
1623 
1624 		SetPagePinned(page);
1625 
1626 		if (!PageHighMem(page)) {
1627 			xen_mc_batch();
1628 
1629 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1630 
1631 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1632 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1633 
1634 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1635 		} else {
1636 			/* make sure there are no stray mappings of
1637 			   this page */
1638 			kmap_flush_unused();
1639 		}
1640 	}
1641 }
1642 
1643 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1644 {
1645 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1646 }
1647 
1648 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1649 {
1650 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1651 }
1652 
1653 /* This should never happen until we're OK to use struct page */
1654 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1655 {
1656 	struct page *page = pfn_to_page(pfn);
1657 	bool pinned = PagePinned(page);
1658 
1659 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1660 
1661 	if (pinned) {
1662 		if (!PageHighMem(page)) {
1663 			xen_mc_batch();
1664 
1665 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1666 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1667 
1668 			__set_pfn_prot(pfn, PAGE_KERNEL);
1669 
1670 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1671 		}
1672 		ClearPagePinned(page);
1673 	}
1674 }
1675 
1676 static void xen_release_pte(unsigned long pfn)
1677 {
1678 	xen_release_ptpage(pfn, PT_PTE);
1679 }
1680 
1681 static void xen_release_pmd(unsigned long pfn)
1682 {
1683 	xen_release_ptpage(pfn, PT_PMD);
1684 }
1685 
1686 #if PAGETABLE_LEVELS == 4
1687 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1688 {
1689 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1690 }
1691 
1692 static void xen_release_pud(unsigned long pfn)
1693 {
1694 	xen_release_ptpage(pfn, PT_PUD);
1695 }
1696 #endif
1697 
1698 void __init xen_reserve_top(void)
1699 {
1700 #ifdef CONFIG_X86_32
1701 	unsigned long top = HYPERVISOR_VIRT_START;
1702 	struct xen_platform_parameters pp;
1703 
1704 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1705 		top = pp.virt_start;
1706 
1707 	reserve_top_address(-top);
1708 #endif	/* CONFIG_X86_32 */
1709 }
1710 
1711 /*
1712  * Like __va(), but returns address in the kernel mapping (which is
1713  * all we have until the physical memory mapping has been set up.
1714  */
1715 static void *__ka(phys_addr_t paddr)
1716 {
1717 #ifdef CONFIG_X86_64
1718 	return (void *)(paddr + __START_KERNEL_map);
1719 #else
1720 	return __va(paddr);
1721 #endif
1722 }
1723 
1724 /* Convert a machine address to physical address */
1725 static unsigned long m2p(phys_addr_t maddr)
1726 {
1727 	phys_addr_t paddr;
1728 
1729 	maddr &= PTE_PFN_MASK;
1730 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1731 
1732 	return paddr;
1733 }
1734 
1735 /* Convert a machine address to kernel virtual */
1736 static void *m2v(phys_addr_t maddr)
1737 {
1738 	return __ka(m2p(maddr));
1739 }
1740 
1741 /* Set the page permissions on an identity-mapped pages */
1742 static void set_page_prot(void *addr, pgprot_t prot)
1743 {
1744 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1745 	pte_t pte = pfn_pte(pfn, prot);
1746 
1747 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1748 		BUG();
1749 }
1750 #ifdef CONFIG_X86_32
1751 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1752 {
1753 	unsigned pmdidx, pteidx;
1754 	unsigned ident_pte;
1755 	unsigned long pfn;
1756 
1757 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1758 				      PAGE_SIZE);
1759 
1760 	ident_pte = 0;
1761 	pfn = 0;
1762 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1763 		pte_t *pte_page;
1764 
1765 		/* Reuse or allocate a page of ptes */
1766 		if (pmd_present(pmd[pmdidx]))
1767 			pte_page = m2v(pmd[pmdidx].pmd);
1768 		else {
1769 			/* Check for free pte pages */
1770 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1771 				break;
1772 
1773 			pte_page = &level1_ident_pgt[ident_pte];
1774 			ident_pte += PTRS_PER_PTE;
1775 
1776 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1777 		}
1778 
1779 		/* Install mappings */
1780 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1781 			pte_t pte;
1782 
1783 #ifdef CONFIG_X86_32
1784 			if (pfn > max_pfn_mapped)
1785 				max_pfn_mapped = pfn;
1786 #endif
1787 
1788 			if (!pte_none(pte_page[pteidx]))
1789 				continue;
1790 
1791 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1792 			pte_page[pteidx] = pte;
1793 		}
1794 	}
1795 
1796 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1797 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1798 
1799 	set_page_prot(pmd, PAGE_KERNEL_RO);
1800 }
1801 #endif
1802 void __init xen_setup_machphys_mapping(void)
1803 {
1804 	struct xen_machphys_mapping mapping;
1805 
1806 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1807 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1808 		machine_to_phys_nr = mapping.max_mfn + 1;
1809 	} else {
1810 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1811 	}
1812 #ifdef CONFIG_X86_32
1813 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1814 		< machine_to_phys_mapping);
1815 #endif
1816 }
1817 
1818 #ifdef CONFIG_X86_64
1819 static void convert_pfn_mfn(void *v)
1820 {
1821 	pte_t *pte = v;
1822 	int i;
1823 
1824 	/* All levels are converted the same way, so just treat them
1825 	   as ptes. */
1826 	for (i = 0; i < PTRS_PER_PTE; i++)
1827 		pte[i] = xen_make_pte(pte[i].pte);
1828 }
1829 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1830 				 unsigned long addr)
1831 {
1832 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1833 		set_page_prot((void *)addr, PAGE_KERNEL);
1834 		clear_page((void *)addr);
1835 		(*pt_base)++;
1836 	}
1837 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1838 		set_page_prot((void *)addr, PAGE_KERNEL);
1839 		clear_page((void *)addr);
1840 		(*pt_end)--;
1841 	}
1842 }
1843 /*
1844  * Set up the initial kernel pagetable.
1845  *
1846  * We can construct this by grafting the Xen provided pagetable into
1847  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1848  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1849  * means that only the kernel has a physical mapping to start with -
1850  * but that's enough to get __va working.  We need to fill in the rest
1851  * of the physical mapping once some sort of allocator has been set
1852  * up.
1853  */
1854 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1855 {
1856 	pud_t *l3;
1857 	pmd_t *l2;
1858 	unsigned long addr[3];
1859 	unsigned long pt_base, pt_end;
1860 	unsigned i;
1861 
1862 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1863 	 * mappings. Considering that on Xen after the kernel mappings we
1864 	 * have the mappings of some pages that don't exist in pfn space, we
1865 	 * set max_pfn_mapped to the last real pfn mapped. */
1866 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1867 
1868 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1869 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1870 
1871 	/* Zap identity mapping */
1872 	init_level4_pgt[0] = __pgd(0);
1873 
1874 	/* Pre-constructed entries are in pfn, so convert to mfn */
1875 	/* L4[272] -> level3_ident_pgt
1876 	 * L4[511] -> level3_kernel_pgt */
1877 	convert_pfn_mfn(init_level4_pgt);
1878 
1879 	/* L3_i[0] -> level2_ident_pgt */
1880 	convert_pfn_mfn(level3_ident_pgt);
1881 	/* L3_k[510] -> level2_kernel_pgt
1882 	 * L3_i[511] -> level2_fixmap_pgt */
1883 	convert_pfn_mfn(level3_kernel_pgt);
1884 
1885 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1886 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1887 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1888 
1889 	addr[0] = (unsigned long)pgd;
1890 	addr[1] = (unsigned long)l3;
1891 	addr[2] = (unsigned long)l2;
1892 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1893 	 * Both L4[272][0] and L4[511][511] have entries that point to the same
1894 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1895 	 * it will be also modified in the __ka space! (But if you just
1896 	 * modify the PMD table to point to other PTE's or none, then you
1897 	 * are OK - which is what cleanup_highmap does) */
1898 	copy_page(level2_ident_pgt, l2);
1899 	/* Graft it onto L4[511][511] */
1900 	copy_page(level2_kernel_pgt, l2);
1901 
1902 	/* Get [511][510] and graft that in level2_fixmap_pgt */
1903 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1904 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1905 	copy_page(level2_fixmap_pgt, l2);
1906 	/* Note that we don't do anything with level1_fixmap_pgt which
1907 	 * we don't need. */
1908 
1909 	/* Make pagetable pieces RO */
1910 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1911 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1912 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1913 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1914 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1915 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1916 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1917 
1918 	/* Pin down new L4 */
1919 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1920 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1921 
1922 	/* Unpin Xen-provided one */
1923 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1924 
1925 	/*
1926 	 * At this stage there can be no user pgd, and no page
1927 	 * structure to attach it to, so make sure we just set kernel
1928 	 * pgd.
1929 	 */
1930 	xen_mc_batch();
1931 	__xen_write_cr3(true, __pa(init_level4_pgt));
1932 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1933 
1934 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1935 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1936 	 * the initial domain. For guests using the toolstack, they are in:
1937 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1938 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1939 	 */
1940 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1941 		check_pt_base(&pt_base, &pt_end, addr[i]);
1942 
1943 	/* Our (by three pages) smaller Xen pagetable that we are using */
1944 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1945 	/* Revector the xen_start_info */
1946 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1947 }
1948 #else	/* !CONFIG_X86_64 */
1949 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1950 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1951 
1952 static void __init xen_write_cr3_init(unsigned long cr3)
1953 {
1954 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1955 
1956 	BUG_ON(read_cr3() != __pa(initial_page_table));
1957 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1958 
1959 	/*
1960 	 * We are switching to swapper_pg_dir for the first time (from
1961 	 * initial_page_table) and therefore need to mark that page
1962 	 * read-only and then pin it.
1963 	 *
1964 	 * Xen disallows sharing of kernel PMDs for PAE
1965 	 * guests. Therefore we must copy the kernel PMD from
1966 	 * initial_page_table into a new kernel PMD to be used in
1967 	 * swapper_pg_dir.
1968 	 */
1969 	swapper_kernel_pmd =
1970 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1971 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1972 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1973 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1974 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1975 
1976 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1977 	xen_write_cr3(cr3);
1978 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1979 
1980 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1981 			  PFN_DOWN(__pa(initial_page_table)));
1982 	set_page_prot(initial_page_table, PAGE_KERNEL);
1983 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1984 
1985 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1986 }
1987 
1988 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1989 {
1990 	pmd_t *kernel_pmd;
1991 
1992 	initial_kernel_pmd =
1993 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1994 
1995 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1996 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1997 				  512*1024);
1998 
1999 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2000 	copy_page(initial_kernel_pmd, kernel_pmd);
2001 
2002 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2003 
2004 	copy_page(initial_page_table, pgd);
2005 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2006 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2007 
2008 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2009 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2010 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2011 
2012 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2013 
2014 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2015 			  PFN_DOWN(__pa(initial_page_table)));
2016 	xen_write_cr3(__pa(initial_page_table));
2017 
2018 	memblock_reserve(__pa(xen_start_info->pt_base),
2019 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2020 }
2021 #endif	/* CONFIG_X86_64 */
2022 
2023 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2024 
2025 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2026 {
2027 	pte_t pte;
2028 
2029 	phys >>= PAGE_SHIFT;
2030 
2031 	switch (idx) {
2032 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2033 #ifdef CONFIG_X86_F00F_BUG
2034 	case FIX_F00F_IDT:
2035 #endif
2036 #ifdef CONFIG_X86_32
2037 	case FIX_WP_TEST:
2038 	case FIX_VDSO:
2039 # ifdef CONFIG_HIGHMEM
2040 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2041 # endif
2042 #else
2043 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2044 	case VVAR_PAGE:
2045 #endif
2046 	case FIX_TEXT_POKE0:
2047 	case FIX_TEXT_POKE1:
2048 		/* All local page mappings */
2049 		pte = pfn_pte(phys, prot);
2050 		break;
2051 
2052 #ifdef CONFIG_X86_LOCAL_APIC
2053 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2054 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2055 		break;
2056 #endif
2057 
2058 #ifdef CONFIG_X86_IO_APIC
2059 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2060 		/*
2061 		 * We just don't map the IO APIC - all access is via
2062 		 * hypercalls.  Keep the address in the pte for reference.
2063 		 */
2064 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2065 		break;
2066 #endif
2067 
2068 	case FIX_PARAVIRT_BOOTMAP:
2069 		/* This is an MFN, but it isn't an IO mapping from the
2070 		   IO domain */
2071 		pte = mfn_pte(phys, prot);
2072 		break;
2073 
2074 	default:
2075 		/* By default, set_fixmap is used for hardware mappings */
2076 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2077 		break;
2078 	}
2079 
2080 	__native_set_fixmap(idx, pte);
2081 
2082 #ifdef CONFIG_X86_64
2083 	/* Replicate changes to map the vsyscall page into the user
2084 	   pagetable vsyscall mapping. */
2085 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2086 	    idx == VVAR_PAGE) {
2087 		unsigned long vaddr = __fix_to_virt(idx);
2088 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2089 	}
2090 #endif
2091 }
2092 
2093 static void __init xen_post_allocator_init(void)
2094 {
2095 	pv_mmu_ops.set_pte = xen_set_pte;
2096 	pv_mmu_ops.set_pmd = xen_set_pmd;
2097 	pv_mmu_ops.set_pud = xen_set_pud;
2098 #if PAGETABLE_LEVELS == 4
2099 	pv_mmu_ops.set_pgd = xen_set_pgd;
2100 #endif
2101 
2102 	/* This will work as long as patching hasn't happened yet
2103 	   (which it hasn't) */
2104 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2105 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2106 	pv_mmu_ops.release_pte = xen_release_pte;
2107 	pv_mmu_ops.release_pmd = xen_release_pmd;
2108 #if PAGETABLE_LEVELS == 4
2109 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2110 	pv_mmu_ops.release_pud = xen_release_pud;
2111 #endif
2112 
2113 #ifdef CONFIG_X86_64
2114 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2115 #endif
2116 	xen_mark_init_mm_pinned();
2117 }
2118 
2119 static void xen_leave_lazy_mmu(void)
2120 {
2121 	preempt_disable();
2122 	xen_mc_flush();
2123 	paravirt_leave_lazy_mmu();
2124 	preempt_enable();
2125 }
2126 
2127 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2128 	.read_cr2 = xen_read_cr2,
2129 	.write_cr2 = xen_write_cr2,
2130 
2131 	.read_cr3 = xen_read_cr3,
2132 #ifdef CONFIG_X86_32
2133 	.write_cr3 = xen_write_cr3_init,
2134 #else
2135 	.write_cr3 = xen_write_cr3,
2136 #endif
2137 
2138 	.flush_tlb_user = xen_flush_tlb,
2139 	.flush_tlb_kernel = xen_flush_tlb,
2140 	.flush_tlb_single = xen_flush_tlb_single,
2141 	.flush_tlb_others = xen_flush_tlb_others,
2142 
2143 	.pte_update = paravirt_nop,
2144 	.pte_update_defer = paravirt_nop,
2145 
2146 	.pgd_alloc = xen_pgd_alloc,
2147 	.pgd_free = xen_pgd_free,
2148 
2149 	.alloc_pte = xen_alloc_pte_init,
2150 	.release_pte = xen_release_pte_init,
2151 	.alloc_pmd = xen_alloc_pmd_init,
2152 	.release_pmd = xen_release_pmd_init,
2153 
2154 	.set_pte = xen_set_pte_init,
2155 	.set_pte_at = xen_set_pte_at,
2156 	.set_pmd = xen_set_pmd_hyper,
2157 
2158 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2159 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2160 
2161 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2162 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2163 
2164 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2165 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2166 
2167 #ifdef CONFIG_X86_PAE
2168 	.set_pte_atomic = xen_set_pte_atomic,
2169 	.pte_clear = xen_pte_clear,
2170 	.pmd_clear = xen_pmd_clear,
2171 #endif	/* CONFIG_X86_PAE */
2172 	.set_pud = xen_set_pud_hyper,
2173 
2174 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2175 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2176 
2177 #if PAGETABLE_LEVELS == 4
2178 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2179 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2180 	.set_pgd = xen_set_pgd_hyper,
2181 
2182 	.alloc_pud = xen_alloc_pmd_init,
2183 	.release_pud = xen_release_pmd_init,
2184 #endif	/* PAGETABLE_LEVELS == 4 */
2185 
2186 	.activate_mm = xen_activate_mm,
2187 	.dup_mmap = xen_dup_mmap,
2188 	.exit_mmap = xen_exit_mmap,
2189 
2190 	.lazy_mode = {
2191 		.enter = paravirt_enter_lazy_mmu,
2192 		.leave = xen_leave_lazy_mmu,
2193 	},
2194 
2195 	.set_fixmap = xen_set_fixmap,
2196 };
2197 
2198 void __init xen_init_mmu_ops(void)
2199 {
2200 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2201 	x86_init.paging.pagetable_init = xen_pagetable_init;
2202 	pv_mmu_ops = xen_mmu_ops;
2203 
2204 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2205 }
2206 
2207 /* Protected by xen_reservation_lock. */
2208 #define MAX_CONTIG_ORDER 9 /* 2MB */
2209 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2210 
2211 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2212 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2213 				unsigned long *in_frames,
2214 				unsigned long *out_frames)
2215 {
2216 	int i;
2217 	struct multicall_space mcs;
2218 
2219 	xen_mc_batch();
2220 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2221 		mcs = __xen_mc_entry(0);
2222 
2223 		if (in_frames)
2224 			in_frames[i] = virt_to_mfn(vaddr);
2225 
2226 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2227 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2228 
2229 		if (out_frames)
2230 			out_frames[i] = virt_to_pfn(vaddr);
2231 	}
2232 	xen_mc_issue(0);
2233 }
2234 
2235 /*
2236  * Update the pfn-to-mfn mappings for a virtual address range, either to
2237  * point to an array of mfns, or contiguously from a single starting
2238  * mfn.
2239  */
2240 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2241 				     unsigned long *mfns,
2242 				     unsigned long first_mfn)
2243 {
2244 	unsigned i, limit;
2245 	unsigned long mfn;
2246 
2247 	xen_mc_batch();
2248 
2249 	limit = 1u << order;
2250 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2251 		struct multicall_space mcs;
2252 		unsigned flags;
2253 
2254 		mcs = __xen_mc_entry(0);
2255 		if (mfns)
2256 			mfn = mfns[i];
2257 		else
2258 			mfn = first_mfn + i;
2259 
2260 		if (i < (limit - 1))
2261 			flags = 0;
2262 		else {
2263 			if (order == 0)
2264 				flags = UVMF_INVLPG | UVMF_ALL;
2265 			else
2266 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2267 		}
2268 
2269 		MULTI_update_va_mapping(mcs.mc, vaddr,
2270 				mfn_pte(mfn, PAGE_KERNEL), flags);
2271 
2272 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2273 	}
2274 
2275 	xen_mc_issue(0);
2276 }
2277 
2278 /*
2279  * Perform the hypercall to exchange a region of our pfns to point to
2280  * memory with the required contiguous alignment.  Takes the pfns as
2281  * input, and populates mfns as output.
2282  *
2283  * Returns a success code indicating whether the hypervisor was able to
2284  * satisfy the request or not.
2285  */
2286 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2287 			       unsigned long *pfns_in,
2288 			       unsigned long extents_out,
2289 			       unsigned int order_out,
2290 			       unsigned long *mfns_out,
2291 			       unsigned int address_bits)
2292 {
2293 	long rc;
2294 	int success;
2295 
2296 	struct xen_memory_exchange exchange = {
2297 		.in = {
2298 			.nr_extents   = extents_in,
2299 			.extent_order = order_in,
2300 			.extent_start = pfns_in,
2301 			.domid        = DOMID_SELF
2302 		},
2303 		.out = {
2304 			.nr_extents   = extents_out,
2305 			.extent_order = order_out,
2306 			.extent_start = mfns_out,
2307 			.address_bits = address_bits,
2308 			.domid        = DOMID_SELF
2309 		}
2310 	};
2311 
2312 	BUG_ON(extents_in << order_in != extents_out << order_out);
2313 
2314 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2315 	success = (exchange.nr_exchanged == extents_in);
2316 
2317 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2318 	BUG_ON(success && (rc != 0));
2319 
2320 	return success;
2321 }
2322 
2323 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2324 				 unsigned int address_bits)
2325 {
2326 	unsigned long *in_frames = discontig_frames, out_frame;
2327 	unsigned long  flags;
2328 	int            success;
2329 
2330 	/*
2331 	 * Currently an auto-translated guest will not perform I/O, nor will
2332 	 * it require PAE page directories below 4GB. Therefore any calls to
2333 	 * this function are redundant and can be ignored.
2334 	 */
2335 
2336 	if (xen_feature(XENFEAT_auto_translated_physmap))
2337 		return 0;
2338 
2339 	if (unlikely(order > MAX_CONTIG_ORDER))
2340 		return -ENOMEM;
2341 
2342 	memset((void *) vstart, 0, PAGE_SIZE << order);
2343 
2344 	spin_lock_irqsave(&xen_reservation_lock, flags);
2345 
2346 	/* 1. Zap current PTEs, remembering MFNs. */
2347 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2348 
2349 	/* 2. Get a new contiguous memory extent. */
2350 	out_frame = virt_to_pfn(vstart);
2351 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2352 				      1, order, &out_frame,
2353 				      address_bits);
2354 
2355 	/* 3. Map the new extent in place of old pages. */
2356 	if (success)
2357 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2358 	else
2359 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2360 
2361 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2362 
2363 	return success ? 0 : -ENOMEM;
2364 }
2365 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2366 
2367 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2368 {
2369 	unsigned long *out_frames = discontig_frames, in_frame;
2370 	unsigned long  flags;
2371 	int success;
2372 
2373 	if (xen_feature(XENFEAT_auto_translated_physmap))
2374 		return;
2375 
2376 	if (unlikely(order > MAX_CONTIG_ORDER))
2377 		return;
2378 
2379 	memset((void *) vstart, 0, PAGE_SIZE << order);
2380 
2381 	spin_lock_irqsave(&xen_reservation_lock, flags);
2382 
2383 	/* 1. Find start MFN of contiguous extent. */
2384 	in_frame = virt_to_mfn(vstart);
2385 
2386 	/* 2. Zap current PTEs. */
2387 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2388 
2389 	/* 3. Do the exchange for non-contiguous MFNs. */
2390 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2391 					0, out_frames, 0);
2392 
2393 	/* 4. Map new pages in place of old pages. */
2394 	if (success)
2395 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2396 	else
2397 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2398 
2399 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2402 
2403 #ifdef CONFIG_XEN_PVHVM
2404 #ifdef CONFIG_PROC_VMCORE
2405 /*
2406  * This function is used in two contexts:
2407  * - the kdump kernel has to check whether a pfn of the crashed kernel
2408  *   was a ballooned page. vmcore is using this function to decide
2409  *   whether to access a pfn of the crashed kernel.
2410  * - the kexec kernel has to check whether a pfn was ballooned by the
2411  *   previous kernel. If the pfn is ballooned, handle it properly.
2412  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2413  * handle the pfn special in this case.
2414  */
2415 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2416 {
2417 	struct xen_hvm_get_mem_type a = {
2418 		.domid = DOMID_SELF,
2419 		.pfn = pfn,
2420 	};
2421 	int ram;
2422 
2423 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2424 		return -ENXIO;
2425 
2426 	switch (a.mem_type) {
2427 		case HVMMEM_mmio_dm:
2428 			ram = 0;
2429 			break;
2430 		case HVMMEM_ram_rw:
2431 		case HVMMEM_ram_ro:
2432 		default:
2433 			ram = 1;
2434 			break;
2435 	}
2436 
2437 	return ram;
2438 }
2439 #endif
2440 
2441 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2442 {
2443 	struct xen_hvm_pagetable_dying a;
2444 	int rc;
2445 
2446 	a.domid = DOMID_SELF;
2447 	a.gpa = __pa(mm->pgd);
2448 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2449 	WARN_ON_ONCE(rc < 0);
2450 }
2451 
2452 static int is_pagetable_dying_supported(void)
2453 {
2454 	struct xen_hvm_pagetable_dying a;
2455 	int rc = 0;
2456 
2457 	a.domid = DOMID_SELF;
2458 	a.gpa = 0x00;
2459 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2460 	if (rc < 0) {
2461 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2462 		return 0;
2463 	}
2464 	return 1;
2465 }
2466 
2467 void __init xen_hvm_init_mmu_ops(void)
2468 {
2469 	if (is_pagetable_dying_supported())
2470 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2471 #ifdef CONFIG_PROC_VMCORE
2472 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2473 #endif
2474 }
2475 #endif
2476 
2477 #define REMAP_BATCH_SIZE 16
2478 
2479 struct remap_data {
2480 	unsigned long mfn;
2481 	pgprot_t prot;
2482 	struct mmu_update *mmu_update;
2483 };
2484 
2485 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2486 				 unsigned long addr, void *data)
2487 {
2488 	struct remap_data *rmd = data;
2489 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2490 
2491 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2492 	rmd->mmu_update->val = pte_val_ma(pte);
2493 	rmd->mmu_update++;
2494 
2495 	return 0;
2496 }
2497 
2498 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2499 			       unsigned long addr,
2500 			       xen_pfn_t mfn, int nr,
2501 			       pgprot_t prot, unsigned domid,
2502 			       struct page **pages)
2503 
2504 {
2505 	struct remap_data rmd;
2506 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2507 	int batch;
2508 	unsigned long range;
2509 	int err = 0;
2510 
2511 	if (xen_feature(XENFEAT_auto_translated_physmap))
2512 		return -EINVAL;
2513 
2514 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2515 
2516 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2517 
2518 	rmd.mfn = mfn;
2519 	rmd.prot = prot;
2520 
2521 	while (nr) {
2522 		batch = min(REMAP_BATCH_SIZE, nr);
2523 		range = (unsigned long)batch << PAGE_SHIFT;
2524 
2525 		rmd.mmu_update = mmu_update;
2526 		err = apply_to_page_range(vma->vm_mm, addr, range,
2527 					  remap_area_mfn_pte_fn, &rmd);
2528 		if (err)
2529 			goto out;
2530 
2531 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2532 		if (err < 0)
2533 			goto out;
2534 
2535 		nr -= batch;
2536 		addr += range;
2537 	}
2538 
2539 	err = 0;
2540 out:
2541 
2542 	xen_flush_tlb_all();
2543 
2544 	return err;
2545 }
2546 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2547 
2548 /* Returns: 0 success */
2549 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2550 			       int numpgs, struct page **pages)
2551 {
2552 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2553 		return 0;
2554 
2555 	return -EINVAL;
2556 }
2557 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2558