xref: /linux/arch/x86/xen/mmu.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = get_phys_to_machine(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else {
403 			/*
404 			 * Paramount to do this test _after_ the
405 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
406 			 * IDENTITY_FRAME_BIT resolves to true.
407 			 */
408 			mfn &= ~FOREIGN_FRAME_BIT;
409 			if (mfn & IDENTITY_FRAME_BIT) {
410 				mfn &= ~IDENTITY_FRAME_BIT;
411 				flags |= _PAGE_IOMAP;
412 			}
413 		}
414 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
415 	}
416 
417 	return val;
418 }
419 
420 static pteval_t iomap_pte(pteval_t val)
421 {
422 	if (val & _PAGE_PRESENT) {
423 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
424 		pteval_t flags = val & PTE_FLAGS_MASK;
425 
426 		/* We assume the pte frame number is a MFN, so
427 		   just use it as-is. */
428 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
429 	}
430 
431 	return val;
432 }
433 
434 static pteval_t xen_pte_val(pte_t pte)
435 {
436 	pteval_t pteval = pte.pte;
437 #if 0
438 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
439 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
440 		WARN_ON(!pat_enabled);
441 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
442 	}
443 #endif
444 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
445 		return pteval;
446 
447 	return pte_mfn_to_pfn(pteval);
448 }
449 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
450 
451 static pgdval_t xen_pgd_val(pgd_t pgd)
452 {
453 	return pte_mfn_to_pfn(pgd.pgd);
454 }
455 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
456 
457 /*
458  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
459  * are reserved for now, to correspond to the Intel-reserved PAT
460  * types.
461  *
462  * We expect Linux's PAT set as follows:
463  *
464  * Idx  PTE flags        Linux    Xen    Default
465  * 0                     WB       WB     WB
466  * 1            PWT      WC       WT     WT
467  * 2        PCD          UC-      UC-    UC-
468  * 3        PCD PWT      UC       UC     UC
469  * 4    PAT              WB       WC     WB
470  * 5    PAT     PWT      WC       WP     WT
471  * 6    PAT PCD          UC-      UC     UC-
472  * 7    PAT PCD PWT      UC       UC     UC
473  */
474 
475 void xen_set_pat(u64 pat)
476 {
477 	/* We expect Linux to use a PAT setting of
478 	 * UC UC- WC WB (ignoring the PAT flag) */
479 	WARN_ON(pat != 0x0007010600070106ull);
480 }
481 
482 static pte_t xen_make_pte(pteval_t pte)
483 {
484 	phys_addr_t addr = (pte & PTE_PFN_MASK);
485 #if 0
486 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
487 	 * If _PAGE_PAT is set, then it probably means it is really
488 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
489 	 * things work out OK...
490 	 *
491 	 * (We should never see kernel mappings with _PAGE_PSE set,
492 	 * but we could see hugetlbfs mappings, I think.).
493 	 */
494 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
495 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
496 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
497 	}
498 #endif
499 	/*
500 	 * Unprivileged domains are allowed to do IOMAPpings for
501 	 * PCI passthrough, but not map ISA space.  The ISA
502 	 * mappings are just dummy local mappings to keep other
503 	 * parts of the kernel happy.
504 	 */
505 	if (unlikely(pte & _PAGE_IOMAP) &&
506 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
507 		pte = iomap_pte(pte);
508 	} else {
509 		pte &= ~_PAGE_IOMAP;
510 		pte = pte_pfn_to_mfn(pte);
511 	}
512 
513 	return native_make_pte(pte);
514 }
515 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
516 
517 static pgd_t xen_make_pgd(pgdval_t pgd)
518 {
519 	pgd = pte_pfn_to_mfn(pgd);
520 	return native_make_pgd(pgd);
521 }
522 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
523 
524 static pmdval_t xen_pmd_val(pmd_t pmd)
525 {
526 	return pte_mfn_to_pfn(pmd.pmd);
527 }
528 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
529 
530 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
531 {
532 	struct mmu_update u;
533 
534 	preempt_disable();
535 
536 	xen_mc_batch();
537 
538 	/* ptr may be ioremapped for 64-bit pagetable setup */
539 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
540 	u.val = pud_val_ma(val);
541 	xen_extend_mmu_update(&u);
542 
543 	xen_mc_issue(PARAVIRT_LAZY_MMU);
544 
545 	preempt_enable();
546 }
547 
548 static void xen_set_pud(pud_t *ptr, pud_t val)
549 {
550 	trace_xen_mmu_set_pud(ptr, val);
551 
552 	/* If page is not pinned, we can just update the entry
553 	   directly */
554 	if (!xen_page_pinned(ptr)) {
555 		*ptr = val;
556 		return;
557 	}
558 
559 	xen_set_pud_hyper(ptr, val);
560 }
561 
562 #ifdef CONFIG_X86_PAE
563 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
564 {
565 	trace_xen_mmu_set_pte_atomic(ptep, pte);
566 	set_64bit((u64 *)ptep, native_pte_val(pte));
567 }
568 
569 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
570 {
571 	trace_xen_mmu_pte_clear(mm, addr, ptep);
572 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
573 		native_pte_clear(mm, addr, ptep);
574 }
575 
576 static void xen_pmd_clear(pmd_t *pmdp)
577 {
578 	trace_xen_mmu_pmd_clear(pmdp);
579 	set_pmd(pmdp, __pmd(0));
580 }
581 #endif	/* CONFIG_X86_PAE */
582 
583 static pmd_t xen_make_pmd(pmdval_t pmd)
584 {
585 	pmd = pte_pfn_to_mfn(pmd);
586 	return native_make_pmd(pmd);
587 }
588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
589 
590 #if PAGETABLE_LEVELS == 4
591 static pudval_t xen_pud_val(pud_t pud)
592 {
593 	return pte_mfn_to_pfn(pud.pud);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
596 
597 static pud_t xen_make_pud(pudval_t pud)
598 {
599 	pud = pte_pfn_to_mfn(pud);
600 
601 	return native_make_pud(pud);
602 }
603 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
604 
605 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
606 {
607 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
608 	unsigned offset = pgd - pgd_page;
609 	pgd_t *user_ptr = NULL;
610 
611 	if (offset < pgd_index(USER_LIMIT)) {
612 		struct page *page = virt_to_page(pgd_page);
613 		user_ptr = (pgd_t *)page->private;
614 		if (user_ptr)
615 			user_ptr += offset;
616 	}
617 
618 	return user_ptr;
619 }
620 
621 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
622 {
623 	struct mmu_update u;
624 
625 	u.ptr = virt_to_machine(ptr).maddr;
626 	u.val = pgd_val_ma(val);
627 	xen_extend_mmu_update(&u);
628 }
629 
630 /*
631  * Raw hypercall-based set_pgd, intended for in early boot before
632  * there's a page structure.  This implies:
633  *  1. The only existing pagetable is the kernel's
634  *  2. It is always pinned
635  *  3. It has no user pagetable attached to it
636  */
637 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
638 {
639 	preempt_disable();
640 
641 	xen_mc_batch();
642 
643 	__xen_set_pgd_hyper(ptr, val);
644 
645 	xen_mc_issue(PARAVIRT_LAZY_MMU);
646 
647 	preempt_enable();
648 }
649 
650 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
651 {
652 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
653 
654 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
655 
656 	/* If page is not pinned, we can just update the entry
657 	   directly */
658 	if (!xen_page_pinned(ptr)) {
659 		*ptr = val;
660 		if (user_ptr) {
661 			WARN_ON(xen_page_pinned(user_ptr));
662 			*user_ptr = val;
663 		}
664 		return;
665 	}
666 
667 	/* If it's pinned, then we can at least batch the kernel and
668 	   user updates together. */
669 	xen_mc_batch();
670 
671 	__xen_set_pgd_hyper(ptr, val);
672 	if (user_ptr)
673 		__xen_set_pgd_hyper(user_ptr, val);
674 
675 	xen_mc_issue(PARAVIRT_LAZY_MMU);
676 }
677 #endif	/* PAGETABLE_LEVELS == 4 */
678 
679 /*
680  * (Yet another) pagetable walker.  This one is intended for pinning a
681  * pagetable.  This means that it walks a pagetable and calls the
682  * callback function on each page it finds making up the page table,
683  * at every level.  It walks the entire pagetable, but it only bothers
684  * pinning pte pages which are below limit.  In the normal case this
685  * will be STACK_TOP_MAX, but at boot we need to pin up to
686  * FIXADDR_TOP.
687  *
688  * For 32-bit the important bit is that we don't pin beyond there,
689  * because then we start getting into Xen's ptes.
690  *
691  * For 64-bit, we must skip the Xen hole in the middle of the address
692  * space, just after the big x86-64 virtual hole.
693  */
694 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
695 			  int (*func)(struct mm_struct *mm, struct page *,
696 				      enum pt_level),
697 			  unsigned long limit)
698 {
699 	int flush = 0;
700 	unsigned hole_low, hole_high;
701 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
702 	unsigned pgdidx, pudidx, pmdidx;
703 
704 	/* The limit is the last byte to be touched */
705 	limit--;
706 	BUG_ON(limit >= FIXADDR_TOP);
707 
708 	if (xen_feature(XENFEAT_auto_translated_physmap))
709 		return 0;
710 
711 	/*
712 	 * 64-bit has a great big hole in the middle of the address
713 	 * space, which contains the Xen mappings.  On 32-bit these
714 	 * will end up making a zero-sized hole and so is a no-op.
715 	 */
716 	hole_low = pgd_index(USER_LIMIT);
717 	hole_high = pgd_index(PAGE_OFFSET);
718 
719 	pgdidx_limit = pgd_index(limit);
720 #if PTRS_PER_PUD > 1
721 	pudidx_limit = pud_index(limit);
722 #else
723 	pudidx_limit = 0;
724 #endif
725 #if PTRS_PER_PMD > 1
726 	pmdidx_limit = pmd_index(limit);
727 #else
728 	pmdidx_limit = 0;
729 #endif
730 
731 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
732 		pud_t *pud;
733 
734 		if (pgdidx >= hole_low && pgdidx < hole_high)
735 			continue;
736 
737 		if (!pgd_val(pgd[pgdidx]))
738 			continue;
739 
740 		pud = pud_offset(&pgd[pgdidx], 0);
741 
742 		if (PTRS_PER_PUD > 1) /* not folded */
743 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
744 
745 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
746 			pmd_t *pmd;
747 
748 			if (pgdidx == pgdidx_limit &&
749 			    pudidx > pudidx_limit)
750 				goto out;
751 
752 			if (pud_none(pud[pudidx]))
753 				continue;
754 
755 			pmd = pmd_offset(&pud[pudidx], 0);
756 
757 			if (PTRS_PER_PMD > 1) /* not folded */
758 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
759 
760 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
761 				struct page *pte;
762 
763 				if (pgdidx == pgdidx_limit &&
764 				    pudidx == pudidx_limit &&
765 				    pmdidx > pmdidx_limit)
766 					goto out;
767 
768 				if (pmd_none(pmd[pmdidx]))
769 					continue;
770 
771 				pte = pmd_page(pmd[pmdidx]);
772 				flush |= (*func)(mm, pte, PT_PTE);
773 			}
774 		}
775 	}
776 
777 out:
778 	/* Do the top level last, so that the callbacks can use it as
779 	   a cue to do final things like tlb flushes. */
780 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
781 
782 	return flush;
783 }
784 
785 static int xen_pgd_walk(struct mm_struct *mm,
786 			int (*func)(struct mm_struct *mm, struct page *,
787 				    enum pt_level),
788 			unsigned long limit)
789 {
790 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
791 }
792 
793 /* If we're using split pte locks, then take the page's lock and
794    return a pointer to it.  Otherwise return NULL. */
795 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
796 {
797 	spinlock_t *ptl = NULL;
798 
799 #if USE_SPLIT_PTLOCKS
800 	ptl = __pte_lockptr(page);
801 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
802 #endif
803 
804 	return ptl;
805 }
806 
807 static void xen_pte_unlock(void *v)
808 {
809 	spinlock_t *ptl = v;
810 	spin_unlock(ptl);
811 }
812 
813 static void xen_do_pin(unsigned level, unsigned long pfn)
814 {
815 	struct mmuext_op op;
816 
817 	op.cmd = level;
818 	op.arg1.mfn = pfn_to_mfn(pfn);
819 
820 	xen_extend_mmuext_op(&op);
821 }
822 
823 static int xen_pin_page(struct mm_struct *mm, struct page *page,
824 			enum pt_level level)
825 {
826 	unsigned pgfl = TestSetPagePinned(page);
827 	int flush;
828 
829 	if (pgfl)
830 		flush = 0;		/* already pinned */
831 	else if (PageHighMem(page))
832 		/* kmaps need flushing if we found an unpinned
833 		   highpage */
834 		flush = 1;
835 	else {
836 		void *pt = lowmem_page_address(page);
837 		unsigned long pfn = page_to_pfn(page);
838 		struct multicall_space mcs = __xen_mc_entry(0);
839 		spinlock_t *ptl;
840 
841 		flush = 0;
842 
843 		/*
844 		 * We need to hold the pagetable lock between the time
845 		 * we make the pagetable RO and when we actually pin
846 		 * it.  If we don't, then other users may come in and
847 		 * attempt to update the pagetable by writing it,
848 		 * which will fail because the memory is RO but not
849 		 * pinned, so Xen won't do the trap'n'emulate.
850 		 *
851 		 * If we're using split pte locks, we can't hold the
852 		 * entire pagetable's worth of locks during the
853 		 * traverse, because we may wrap the preempt count (8
854 		 * bits).  The solution is to mark RO and pin each PTE
855 		 * page while holding the lock.  This means the number
856 		 * of locks we end up holding is never more than a
857 		 * batch size (~32 entries, at present).
858 		 *
859 		 * If we're not using split pte locks, we needn't pin
860 		 * the PTE pages independently, because we're
861 		 * protected by the overall pagetable lock.
862 		 */
863 		ptl = NULL;
864 		if (level == PT_PTE)
865 			ptl = xen_pte_lock(page, mm);
866 
867 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
868 					pfn_pte(pfn, PAGE_KERNEL_RO),
869 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
870 
871 		if (ptl) {
872 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
873 
874 			/* Queue a deferred unlock for when this batch
875 			   is completed. */
876 			xen_mc_callback(xen_pte_unlock, ptl);
877 		}
878 	}
879 
880 	return flush;
881 }
882 
883 /* This is called just after a mm has been created, but it has not
884    been used yet.  We need to make sure that its pagetable is all
885    read-only, and can be pinned. */
886 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
887 {
888 	trace_xen_mmu_pgd_pin(mm, pgd);
889 
890 	xen_mc_batch();
891 
892 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893 		/* re-enable interrupts for flushing */
894 		xen_mc_issue(0);
895 
896 		kmap_flush_unused();
897 
898 		xen_mc_batch();
899 	}
900 
901 #ifdef CONFIG_X86_64
902 	{
903 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
904 
905 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
906 
907 		if (user_pgd) {
908 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
909 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
910 				   PFN_DOWN(__pa(user_pgd)));
911 		}
912 	}
913 #else /* CONFIG_X86_32 */
914 #ifdef CONFIG_X86_PAE
915 	/* Need to make sure unshared kernel PMD is pinnable */
916 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917 		     PT_PMD);
918 #endif
919 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920 #endif /* CONFIG_X86_64 */
921 	xen_mc_issue(0);
922 }
923 
924 static void xen_pgd_pin(struct mm_struct *mm)
925 {
926 	__xen_pgd_pin(mm, mm->pgd);
927 }
928 
929 /*
930  * On save, we need to pin all pagetables to make sure they get their
931  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
932  * them (unpinned pgds are not currently in use, probably because the
933  * process is under construction or destruction).
934  *
935  * Expected to be called in stop_machine() ("equivalent to taking
936  * every spinlock in the system"), so the locking doesn't really
937  * matter all that much.
938  */
939 void xen_mm_pin_all(void)
940 {
941 	struct page *page;
942 
943 	spin_lock(&pgd_lock);
944 
945 	list_for_each_entry(page, &pgd_list, lru) {
946 		if (!PagePinned(page)) {
947 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 			SetPageSavePinned(page);
949 		}
950 	}
951 
952 	spin_unlock(&pgd_lock);
953 }
954 
955 /*
956  * The init_mm pagetable is really pinned as soon as its created, but
957  * that's before we have page structures to store the bits.  So do all
958  * the book-keeping now.
959  */
960 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961 				  enum pt_level level)
962 {
963 	SetPagePinned(page);
964 	return 0;
965 }
966 
967 static void __init xen_mark_init_mm_pinned(void)
968 {
969 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
970 }
971 
972 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
973 			  enum pt_level level)
974 {
975 	unsigned pgfl = TestClearPagePinned(page);
976 
977 	if (pgfl && !PageHighMem(page)) {
978 		void *pt = lowmem_page_address(page);
979 		unsigned long pfn = page_to_pfn(page);
980 		spinlock_t *ptl = NULL;
981 		struct multicall_space mcs;
982 
983 		/*
984 		 * Do the converse to pin_page.  If we're using split
985 		 * pte locks, we must be holding the lock for while
986 		 * the pte page is unpinned but still RO to prevent
987 		 * concurrent updates from seeing it in this
988 		 * partially-pinned state.
989 		 */
990 		if (level == PT_PTE) {
991 			ptl = xen_pte_lock(page, mm);
992 
993 			if (ptl)
994 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
995 		}
996 
997 		mcs = __xen_mc_entry(0);
998 
999 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000 					pfn_pte(pfn, PAGE_KERNEL),
1001 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002 
1003 		if (ptl) {
1004 			/* unlock when batch completed */
1005 			xen_mc_callback(xen_pte_unlock, ptl);
1006 		}
1007 	}
1008 
1009 	return 0;		/* never need to flush on unpin */
1010 }
1011 
1012 /* Release a pagetables pages back as normal RW */
1013 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014 {
1015 	trace_xen_mmu_pgd_unpin(mm, pgd);
1016 
1017 	xen_mc_batch();
1018 
1019 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020 
1021 #ifdef CONFIG_X86_64
1022 	{
1023 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024 
1025 		if (user_pgd) {
1026 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1027 				   PFN_DOWN(__pa(user_pgd)));
1028 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029 		}
1030 	}
1031 #endif
1032 
1033 #ifdef CONFIG_X86_PAE
1034 	/* Need to make sure unshared kernel PMD is unpinned */
1035 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036 		       PT_PMD);
1037 #endif
1038 
1039 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040 
1041 	xen_mc_issue(0);
1042 }
1043 
1044 static void xen_pgd_unpin(struct mm_struct *mm)
1045 {
1046 	__xen_pgd_unpin(mm, mm->pgd);
1047 }
1048 
1049 /*
1050  * On resume, undo any pinning done at save, so that the rest of the
1051  * kernel doesn't see any unexpected pinned pagetables.
1052  */
1053 void xen_mm_unpin_all(void)
1054 {
1055 	struct page *page;
1056 
1057 	spin_lock(&pgd_lock);
1058 
1059 	list_for_each_entry(page, &pgd_list, lru) {
1060 		if (PageSavePinned(page)) {
1061 			BUG_ON(!PagePinned(page));
1062 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 			ClearPageSavePinned(page);
1064 		}
1065 	}
1066 
1067 	spin_unlock(&pgd_lock);
1068 }
1069 
1070 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071 {
1072 	spin_lock(&next->page_table_lock);
1073 	xen_pgd_pin(next);
1074 	spin_unlock(&next->page_table_lock);
1075 }
1076 
1077 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078 {
1079 	spin_lock(&mm->page_table_lock);
1080 	xen_pgd_pin(mm);
1081 	spin_unlock(&mm->page_table_lock);
1082 }
1083 
1084 
1085 #ifdef CONFIG_SMP
1086 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1087    we need to repoint it somewhere else before we can unpin it. */
1088 static void drop_other_mm_ref(void *info)
1089 {
1090 	struct mm_struct *mm = info;
1091 	struct mm_struct *active_mm;
1092 
1093 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094 
1095 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096 		leave_mm(smp_processor_id());
1097 
1098 	/* If this cpu still has a stale cr3 reference, then make sure
1099 	   it has been flushed. */
1100 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101 		load_cr3(swapper_pg_dir);
1102 }
1103 
1104 static void xen_drop_mm_ref(struct mm_struct *mm)
1105 {
1106 	cpumask_var_t mask;
1107 	unsigned cpu;
1108 
1109 	if (current->active_mm == mm) {
1110 		if (current->mm == mm)
1111 			load_cr3(swapper_pg_dir);
1112 		else
1113 			leave_mm(smp_processor_id());
1114 	}
1115 
1116 	/* Get the "official" set of cpus referring to our pagetable. */
1117 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118 		for_each_online_cpu(cpu) {
1119 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121 				continue;
1122 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123 		}
1124 		return;
1125 	}
1126 	cpumask_copy(mask, mm_cpumask(mm));
1127 
1128 	/* It's possible that a vcpu may have a stale reference to our
1129 	   cr3, because its in lazy mode, and it hasn't yet flushed
1130 	   its set of pending hypercalls yet.  In this case, we can
1131 	   look at its actual current cr3 value, and force it to flush
1132 	   if needed. */
1133 	for_each_online_cpu(cpu) {
1134 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135 			cpumask_set_cpu(cpu, mask);
1136 	}
1137 
1138 	if (!cpumask_empty(mask))
1139 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140 	free_cpumask_var(mask);
1141 }
1142 #else
1143 static void xen_drop_mm_ref(struct mm_struct *mm)
1144 {
1145 	if (current->active_mm == mm)
1146 		load_cr3(swapper_pg_dir);
1147 }
1148 #endif
1149 
1150 /*
1151  * While a process runs, Xen pins its pagetables, which means that the
1152  * hypervisor forces it to be read-only, and it controls all updates
1153  * to it.  This means that all pagetable updates have to go via the
1154  * hypervisor, which is moderately expensive.
1155  *
1156  * Since we're pulling the pagetable down, we switch to use init_mm,
1157  * unpin old process pagetable and mark it all read-write, which
1158  * allows further operations on it to be simple memory accesses.
1159  *
1160  * The only subtle point is that another CPU may be still using the
1161  * pagetable because of lazy tlb flushing.  This means we need need to
1162  * switch all CPUs off this pagetable before we can unpin it.
1163  */
1164 static void xen_exit_mmap(struct mm_struct *mm)
1165 {
1166 	get_cpu();		/* make sure we don't move around */
1167 	xen_drop_mm_ref(mm);
1168 	put_cpu();
1169 
1170 	spin_lock(&mm->page_table_lock);
1171 
1172 	/* pgd may not be pinned in the error exit path of execve */
1173 	if (xen_page_pinned(mm->pgd))
1174 		xen_pgd_unpin(mm);
1175 
1176 	spin_unlock(&mm->page_table_lock);
1177 }
1178 
1179 static void xen_post_allocator_init(void);
1180 
1181 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1182 {
1183 	/* reserve the range used */
1184 	native_pagetable_reserve(start, end);
1185 
1186 	/* set as RW the rest */
1187 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1188 			PFN_PHYS(pgt_buf_top));
1189 	while (end < PFN_PHYS(pgt_buf_top)) {
1190 		make_lowmem_page_readwrite(__va(end));
1191 		end += PAGE_SIZE;
1192 	}
1193 }
1194 
1195 #ifdef CONFIG_X86_64
1196 static void __init xen_cleanhighmap(unsigned long vaddr,
1197 				    unsigned long vaddr_end)
1198 {
1199 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1200 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1201 
1202 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1203 	 * We include the PMD passed in on _both_ boundaries. */
1204 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1205 			pmd++, vaddr += PMD_SIZE) {
1206 		if (pmd_none(*pmd))
1207 			continue;
1208 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1209 			set_pmd(pmd, __pmd(0));
1210 	}
1211 	/* In case we did something silly, we should crash in this function
1212 	 * instead of somewhere later and be confusing. */
1213 	xen_mc_flush();
1214 }
1215 #endif
1216 static void __init xen_pagetable_init(void)
1217 {
1218 #ifdef CONFIG_X86_64
1219 	unsigned long size;
1220 	unsigned long addr;
1221 #endif
1222 	paging_init();
1223 	xen_setup_shared_info();
1224 #ifdef CONFIG_X86_64
1225 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1226 		unsigned long new_mfn_list;
1227 
1228 		size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229 
1230 		/* On 32-bit, we get zero so this never gets executed. */
1231 		new_mfn_list = xen_revector_p2m_tree();
1232 		if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) {
1233 			/* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 			memset((void *)xen_start_info->mfn_list, 0xff, size);
1235 
1236 			/* We should be in __ka space. */
1237 			BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1238 			addr = xen_start_info->mfn_list;
1239 			/* We roundup to the PMD, which means that if anybody at this stage is
1240 			 * using the __ka address of xen_start_info or xen_start_info->shared_info
1241 			 * they are in going to crash. Fortunatly we have already revectored
1242 			 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1243 			size = roundup(size, PMD_SIZE);
1244 			xen_cleanhighmap(addr, addr + size);
1245 
1246 			size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1247 			memblock_free(__pa(xen_start_info->mfn_list), size);
1248 			/* And revector! Bye bye old array */
1249 			xen_start_info->mfn_list = new_mfn_list;
1250 		} else
1251 			goto skip;
1252 	}
1253 	/* At this stage, cleanup_highmap has already cleaned __ka space
1254 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 	 * tables - do note that they are accessible at this stage via __va.
1257 	 * For good measure we also round up to the PMD - which means that if
1258 	 * anybody is using __ka address to the initial boot-stack - and try
1259 	 * to use it - they are going to crash. The xen_start_info has been
1260 	 * taken care of already in xen_setup_kernel_pagetable. */
1261 	addr = xen_start_info->pt_base;
1262 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1263 
1264 	xen_cleanhighmap(addr, addr + size);
1265 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1266 #ifdef DEBUG
1267 	/* This is superflous and is not neccessary, but you know what
1268 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1269 	 * anything at this stage. */
1270 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1271 #endif
1272 skip:
1273 #endif
1274 	xen_post_allocator_init();
1275 }
1276 static void xen_write_cr2(unsigned long cr2)
1277 {
1278 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1279 }
1280 
1281 static unsigned long xen_read_cr2(void)
1282 {
1283 	return this_cpu_read(xen_vcpu)->arch.cr2;
1284 }
1285 
1286 unsigned long xen_read_cr2_direct(void)
1287 {
1288 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1289 }
1290 
1291 static void xen_flush_tlb(void)
1292 {
1293 	struct mmuext_op *op;
1294 	struct multicall_space mcs;
1295 
1296 	trace_xen_mmu_flush_tlb(0);
1297 
1298 	preempt_disable();
1299 
1300 	mcs = xen_mc_entry(sizeof(*op));
1301 
1302 	op = mcs.args;
1303 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1304 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1305 
1306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1307 
1308 	preempt_enable();
1309 }
1310 
1311 static void xen_flush_tlb_single(unsigned long addr)
1312 {
1313 	struct mmuext_op *op;
1314 	struct multicall_space mcs;
1315 
1316 	trace_xen_mmu_flush_tlb_single(addr);
1317 
1318 	preempt_disable();
1319 
1320 	mcs = xen_mc_entry(sizeof(*op));
1321 	op = mcs.args;
1322 	op->cmd = MMUEXT_INVLPG_LOCAL;
1323 	op->arg1.linear_addr = addr & PAGE_MASK;
1324 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1325 
1326 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1327 
1328 	preempt_enable();
1329 }
1330 
1331 static void xen_flush_tlb_others(const struct cpumask *cpus,
1332 				 struct mm_struct *mm, unsigned long start,
1333 				 unsigned long end)
1334 {
1335 	struct {
1336 		struct mmuext_op op;
1337 #ifdef CONFIG_SMP
1338 		DECLARE_BITMAP(mask, num_processors);
1339 #else
1340 		DECLARE_BITMAP(mask, NR_CPUS);
1341 #endif
1342 	} *args;
1343 	struct multicall_space mcs;
1344 
1345 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1346 
1347 	if (cpumask_empty(cpus))
1348 		return;		/* nothing to do */
1349 
1350 	mcs = xen_mc_entry(sizeof(*args));
1351 	args = mcs.args;
1352 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1353 
1354 	/* Remove us, and any offline CPUS. */
1355 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1356 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1357 
1358 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1359 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1360 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1361 		args->op.arg1.linear_addr = start;
1362 	}
1363 
1364 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1365 
1366 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1367 }
1368 
1369 static unsigned long xen_read_cr3(void)
1370 {
1371 	return this_cpu_read(xen_cr3);
1372 }
1373 
1374 static void set_current_cr3(void *v)
1375 {
1376 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1377 }
1378 
1379 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1380 {
1381 	struct mmuext_op op;
1382 	unsigned long mfn;
1383 
1384 	trace_xen_mmu_write_cr3(kernel, cr3);
1385 
1386 	if (cr3)
1387 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1388 	else
1389 		mfn = 0;
1390 
1391 	WARN_ON(mfn == 0 && kernel);
1392 
1393 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1394 	op.arg1.mfn = mfn;
1395 
1396 	xen_extend_mmuext_op(&op);
1397 
1398 	if (kernel) {
1399 		this_cpu_write(xen_cr3, cr3);
1400 
1401 		/* Update xen_current_cr3 once the batch has actually
1402 		   been submitted. */
1403 		xen_mc_callback(set_current_cr3, (void *)cr3);
1404 	}
1405 }
1406 
1407 static void xen_write_cr3(unsigned long cr3)
1408 {
1409 	BUG_ON(preemptible());
1410 
1411 	xen_mc_batch();  /* disables interrupts */
1412 
1413 	/* Update while interrupts are disabled, so its atomic with
1414 	   respect to ipis */
1415 	this_cpu_write(xen_cr3, cr3);
1416 
1417 	__xen_write_cr3(true, cr3);
1418 
1419 #ifdef CONFIG_X86_64
1420 	{
1421 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1422 		if (user_pgd)
1423 			__xen_write_cr3(false, __pa(user_pgd));
1424 		else
1425 			__xen_write_cr3(false, 0);
1426 	}
1427 #endif
1428 
1429 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1430 }
1431 
1432 static int xen_pgd_alloc(struct mm_struct *mm)
1433 {
1434 	pgd_t *pgd = mm->pgd;
1435 	int ret = 0;
1436 
1437 	BUG_ON(PagePinned(virt_to_page(pgd)));
1438 
1439 #ifdef CONFIG_X86_64
1440 	{
1441 		struct page *page = virt_to_page(pgd);
1442 		pgd_t *user_pgd;
1443 
1444 		BUG_ON(page->private != 0);
1445 
1446 		ret = -ENOMEM;
1447 
1448 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1449 		page->private = (unsigned long)user_pgd;
1450 
1451 		if (user_pgd != NULL) {
1452 			user_pgd[pgd_index(VSYSCALL_START)] =
1453 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1454 			ret = 0;
1455 		}
1456 
1457 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1458 	}
1459 #endif
1460 
1461 	return ret;
1462 }
1463 
1464 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1465 {
1466 #ifdef CONFIG_X86_64
1467 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1468 
1469 	if (user_pgd)
1470 		free_page((unsigned long)user_pgd);
1471 #endif
1472 }
1473 
1474 #ifdef CONFIG_X86_32
1475 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1476 {
1477 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1478 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1479 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1480 			       pte_val_ma(pte));
1481 
1482 	return pte;
1483 }
1484 #else /* CONFIG_X86_64 */
1485 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1486 {
1487 	unsigned long pfn = pte_pfn(pte);
1488 
1489 	/*
1490 	 * If the new pfn is within the range of the newly allocated
1491 	 * kernel pagetable, and it isn't being mapped into an
1492 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1493 	 * it is RO.
1494 	 */
1495 	if (((!is_early_ioremap_ptep(ptep) &&
1496 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1497 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1498 		pte = pte_wrprotect(pte);
1499 
1500 	return pte;
1501 }
1502 #endif /* CONFIG_X86_64 */
1503 
1504 /*
1505  * Init-time set_pte while constructing initial pagetables, which
1506  * doesn't allow RO page table pages to be remapped RW.
1507  *
1508  * If there is no MFN for this PFN then this page is initially
1509  * ballooned out so clear the PTE (as in decrease_reservation() in
1510  * drivers/xen/balloon.c).
1511  *
1512  * Many of these PTE updates are done on unpinned and writable pages
1513  * and doing a hypercall for these is unnecessary and expensive.  At
1514  * this point it is not possible to tell if a page is pinned or not,
1515  * so always write the PTE directly and rely on Xen trapping and
1516  * emulating any updates as necessary.
1517  */
1518 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1519 {
1520 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1521 		pte = mask_rw_pte(ptep, pte);
1522 	else
1523 		pte = __pte_ma(0);
1524 
1525 	native_set_pte(ptep, pte);
1526 }
1527 
1528 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1529 {
1530 	struct mmuext_op op;
1531 	op.cmd = cmd;
1532 	op.arg1.mfn = pfn_to_mfn(pfn);
1533 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1534 		BUG();
1535 }
1536 
1537 /* Early in boot, while setting up the initial pagetable, assume
1538    everything is pinned. */
1539 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1540 {
1541 #ifdef CONFIG_FLATMEM
1542 	BUG_ON(mem_map);	/* should only be used early */
1543 #endif
1544 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1545 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1546 }
1547 
1548 /* Used for pmd and pud */
1549 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1550 {
1551 #ifdef CONFIG_FLATMEM
1552 	BUG_ON(mem_map);	/* should only be used early */
1553 #endif
1554 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1555 }
1556 
1557 /* Early release_pte assumes that all pts are pinned, since there's
1558    only init_mm and anything attached to that is pinned. */
1559 static void __init xen_release_pte_init(unsigned long pfn)
1560 {
1561 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1562 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1563 }
1564 
1565 static void __init xen_release_pmd_init(unsigned long pfn)
1566 {
1567 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1568 }
1569 
1570 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1571 {
1572 	struct multicall_space mcs;
1573 	struct mmuext_op *op;
1574 
1575 	mcs = __xen_mc_entry(sizeof(*op));
1576 	op = mcs.args;
1577 	op->cmd = cmd;
1578 	op->arg1.mfn = pfn_to_mfn(pfn);
1579 
1580 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1581 }
1582 
1583 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1584 {
1585 	struct multicall_space mcs;
1586 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1587 
1588 	mcs = __xen_mc_entry(0);
1589 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1590 				pfn_pte(pfn, prot), 0);
1591 }
1592 
1593 /* This needs to make sure the new pte page is pinned iff its being
1594    attached to a pinned pagetable. */
1595 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1596 				    unsigned level)
1597 {
1598 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1599 
1600 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1601 
1602 	if (pinned) {
1603 		struct page *page = pfn_to_page(pfn);
1604 
1605 		SetPagePinned(page);
1606 
1607 		if (!PageHighMem(page)) {
1608 			xen_mc_batch();
1609 
1610 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1611 
1612 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1613 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1614 
1615 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1616 		} else {
1617 			/* make sure there are no stray mappings of
1618 			   this page */
1619 			kmap_flush_unused();
1620 		}
1621 	}
1622 }
1623 
1624 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1625 {
1626 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1627 }
1628 
1629 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1630 {
1631 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1632 }
1633 
1634 /* This should never happen until we're OK to use struct page */
1635 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1636 {
1637 	struct page *page = pfn_to_page(pfn);
1638 	bool pinned = PagePinned(page);
1639 
1640 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1641 
1642 	if (pinned) {
1643 		if (!PageHighMem(page)) {
1644 			xen_mc_batch();
1645 
1646 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1647 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1648 
1649 			__set_pfn_prot(pfn, PAGE_KERNEL);
1650 
1651 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1652 		}
1653 		ClearPagePinned(page);
1654 	}
1655 }
1656 
1657 static void xen_release_pte(unsigned long pfn)
1658 {
1659 	xen_release_ptpage(pfn, PT_PTE);
1660 }
1661 
1662 static void xen_release_pmd(unsigned long pfn)
1663 {
1664 	xen_release_ptpage(pfn, PT_PMD);
1665 }
1666 
1667 #if PAGETABLE_LEVELS == 4
1668 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1669 {
1670 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1671 }
1672 
1673 static void xen_release_pud(unsigned long pfn)
1674 {
1675 	xen_release_ptpage(pfn, PT_PUD);
1676 }
1677 #endif
1678 
1679 void __init xen_reserve_top(void)
1680 {
1681 #ifdef CONFIG_X86_32
1682 	unsigned long top = HYPERVISOR_VIRT_START;
1683 	struct xen_platform_parameters pp;
1684 
1685 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1686 		top = pp.virt_start;
1687 
1688 	reserve_top_address(-top);
1689 #endif	/* CONFIG_X86_32 */
1690 }
1691 
1692 /*
1693  * Like __va(), but returns address in the kernel mapping (which is
1694  * all we have until the physical memory mapping has been set up.
1695  */
1696 static void *__ka(phys_addr_t paddr)
1697 {
1698 #ifdef CONFIG_X86_64
1699 	return (void *)(paddr + __START_KERNEL_map);
1700 #else
1701 	return __va(paddr);
1702 #endif
1703 }
1704 
1705 /* Convert a machine address to physical address */
1706 static unsigned long m2p(phys_addr_t maddr)
1707 {
1708 	phys_addr_t paddr;
1709 
1710 	maddr &= PTE_PFN_MASK;
1711 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1712 
1713 	return paddr;
1714 }
1715 
1716 /* Convert a machine address to kernel virtual */
1717 static void *m2v(phys_addr_t maddr)
1718 {
1719 	return __ka(m2p(maddr));
1720 }
1721 
1722 /* Set the page permissions on an identity-mapped pages */
1723 static void set_page_prot(void *addr, pgprot_t prot)
1724 {
1725 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1726 	pte_t pte = pfn_pte(pfn, prot);
1727 
1728 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1729 		BUG();
1730 }
1731 #ifdef CONFIG_X86_32
1732 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1733 {
1734 	unsigned pmdidx, pteidx;
1735 	unsigned ident_pte;
1736 	unsigned long pfn;
1737 
1738 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1739 				      PAGE_SIZE);
1740 
1741 	ident_pte = 0;
1742 	pfn = 0;
1743 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1744 		pte_t *pte_page;
1745 
1746 		/* Reuse or allocate a page of ptes */
1747 		if (pmd_present(pmd[pmdidx]))
1748 			pte_page = m2v(pmd[pmdidx].pmd);
1749 		else {
1750 			/* Check for free pte pages */
1751 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1752 				break;
1753 
1754 			pte_page = &level1_ident_pgt[ident_pte];
1755 			ident_pte += PTRS_PER_PTE;
1756 
1757 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1758 		}
1759 
1760 		/* Install mappings */
1761 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1762 			pte_t pte;
1763 
1764 #ifdef CONFIG_X86_32
1765 			if (pfn > max_pfn_mapped)
1766 				max_pfn_mapped = pfn;
1767 #endif
1768 
1769 			if (!pte_none(pte_page[pteidx]))
1770 				continue;
1771 
1772 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1773 			pte_page[pteidx] = pte;
1774 		}
1775 	}
1776 
1777 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1778 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1779 
1780 	set_page_prot(pmd, PAGE_KERNEL_RO);
1781 }
1782 #endif
1783 void __init xen_setup_machphys_mapping(void)
1784 {
1785 	struct xen_machphys_mapping mapping;
1786 
1787 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1788 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1789 		machine_to_phys_nr = mapping.max_mfn + 1;
1790 	} else {
1791 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1792 	}
1793 #ifdef CONFIG_X86_32
1794 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1795 		< machine_to_phys_mapping);
1796 #endif
1797 }
1798 
1799 #ifdef CONFIG_X86_64
1800 static void convert_pfn_mfn(void *v)
1801 {
1802 	pte_t *pte = v;
1803 	int i;
1804 
1805 	/* All levels are converted the same way, so just treat them
1806 	   as ptes. */
1807 	for (i = 0; i < PTRS_PER_PTE; i++)
1808 		pte[i] = xen_make_pte(pte[i].pte);
1809 }
1810 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1811 				 unsigned long addr)
1812 {
1813 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1814 		set_page_prot((void *)addr, PAGE_KERNEL);
1815 		clear_page((void *)addr);
1816 		(*pt_base)++;
1817 	}
1818 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1819 		set_page_prot((void *)addr, PAGE_KERNEL);
1820 		clear_page((void *)addr);
1821 		(*pt_end)--;
1822 	}
1823 }
1824 /*
1825  * Set up the initial kernel pagetable.
1826  *
1827  * We can construct this by grafting the Xen provided pagetable into
1828  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1829  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1830  * means that only the kernel has a physical mapping to start with -
1831  * but that's enough to get __va working.  We need to fill in the rest
1832  * of the physical mapping once some sort of allocator has been set
1833  * up.
1834  */
1835 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1836 {
1837 	pud_t *l3;
1838 	pmd_t *l2;
1839 	unsigned long addr[3];
1840 	unsigned long pt_base, pt_end;
1841 	unsigned i;
1842 
1843 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1844 	 * mappings. Considering that on Xen after the kernel mappings we
1845 	 * have the mappings of some pages that don't exist in pfn space, we
1846 	 * set max_pfn_mapped to the last real pfn mapped. */
1847 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1848 
1849 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1850 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1851 
1852 	/* Zap identity mapping */
1853 	init_level4_pgt[0] = __pgd(0);
1854 
1855 	/* Pre-constructed entries are in pfn, so convert to mfn */
1856 	/* L4[272] -> level3_ident_pgt
1857 	 * L4[511] -> level3_kernel_pgt */
1858 	convert_pfn_mfn(init_level4_pgt);
1859 
1860 	/* L3_i[0] -> level2_ident_pgt */
1861 	convert_pfn_mfn(level3_ident_pgt);
1862 	/* L3_k[510] -> level2_kernel_pgt
1863 	 * L3_i[511] -> level2_fixmap_pgt */
1864 	convert_pfn_mfn(level3_kernel_pgt);
1865 
1866 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1867 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1868 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1869 
1870 	addr[0] = (unsigned long)pgd;
1871 	addr[1] = (unsigned long)l3;
1872 	addr[2] = (unsigned long)l2;
1873 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1874 	 * Both L4[272][0] and L4[511][511] have entries that point to the same
1875 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1876 	 * it will be also modified in the __ka space! (But if you just
1877 	 * modify the PMD table to point to other PTE's or none, then you
1878 	 * are OK - which is what cleanup_highmap does) */
1879 	copy_page(level2_ident_pgt, l2);
1880 	/* Graft it onto L4[511][511] */
1881 	copy_page(level2_kernel_pgt, l2);
1882 
1883 	/* Get [511][510] and graft that in level2_fixmap_pgt */
1884 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1885 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1886 	copy_page(level2_fixmap_pgt, l2);
1887 	/* Note that we don't do anything with level1_fixmap_pgt which
1888 	 * we don't need. */
1889 
1890 	/* Make pagetable pieces RO */
1891 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1892 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1893 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1894 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1895 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1896 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1897 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1898 
1899 	/* Pin down new L4 */
1900 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1901 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1902 
1903 	/* Unpin Xen-provided one */
1904 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1905 
1906 	/*
1907 	 * At this stage there can be no user pgd, and no page
1908 	 * structure to attach it to, so make sure we just set kernel
1909 	 * pgd.
1910 	 */
1911 	xen_mc_batch();
1912 	__xen_write_cr3(true, __pa(init_level4_pgt));
1913 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1914 
1915 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1916 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1917 	 * the initial domain. For guests using the toolstack, they are in:
1918 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1919 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1920 	 */
1921 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1922 		check_pt_base(&pt_base, &pt_end, addr[i]);
1923 
1924 	/* Our (by three pages) smaller Xen pagetable that we are using */
1925 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1926 	/* Revector the xen_start_info */
1927 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1928 }
1929 #else	/* !CONFIG_X86_64 */
1930 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1931 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1932 
1933 static void __init xen_write_cr3_init(unsigned long cr3)
1934 {
1935 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1936 
1937 	BUG_ON(read_cr3() != __pa(initial_page_table));
1938 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1939 
1940 	/*
1941 	 * We are switching to swapper_pg_dir for the first time (from
1942 	 * initial_page_table) and therefore need to mark that page
1943 	 * read-only and then pin it.
1944 	 *
1945 	 * Xen disallows sharing of kernel PMDs for PAE
1946 	 * guests. Therefore we must copy the kernel PMD from
1947 	 * initial_page_table into a new kernel PMD to be used in
1948 	 * swapper_pg_dir.
1949 	 */
1950 	swapper_kernel_pmd =
1951 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1952 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1953 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1954 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1955 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1956 
1957 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1958 	xen_write_cr3(cr3);
1959 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1960 
1961 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1962 			  PFN_DOWN(__pa(initial_page_table)));
1963 	set_page_prot(initial_page_table, PAGE_KERNEL);
1964 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1965 
1966 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1967 }
1968 
1969 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1970 {
1971 	pmd_t *kernel_pmd;
1972 
1973 	initial_kernel_pmd =
1974 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1975 
1976 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1977 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1978 				  512*1024);
1979 
1980 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1981 	copy_page(initial_kernel_pmd, kernel_pmd);
1982 
1983 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1984 
1985 	copy_page(initial_page_table, pgd);
1986 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1987 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1988 
1989 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1990 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1991 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1992 
1993 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1994 
1995 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1996 			  PFN_DOWN(__pa(initial_page_table)));
1997 	xen_write_cr3(__pa(initial_page_table));
1998 
1999 	memblock_reserve(__pa(xen_start_info->pt_base),
2000 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2001 }
2002 #endif	/* CONFIG_X86_64 */
2003 
2004 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2005 
2006 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2007 {
2008 	pte_t pte;
2009 
2010 	phys >>= PAGE_SHIFT;
2011 
2012 	switch (idx) {
2013 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2014 #ifdef CONFIG_X86_F00F_BUG
2015 	case FIX_F00F_IDT:
2016 #endif
2017 #ifdef CONFIG_X86_32
2018 	case FIX_WP_TEST:
2019 	case FIX_VDSO:
2020 # ifdef CONFIG_HIGHMEM
2021 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2022 # endif
2023 #else
2024 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2025 	case VVAR_PAGE:
2026 #endif
2027 	case FIX_TEXT_POKE0:
2028 	case FIX_TEXT_POKE1:
2029 		/* All local page mappings */
2030 		pte = pfn_pte(phys, prot);
2031 		break;
2032 
2033 #ifdef CONFIG_X86_LOCAL_APIC
2034 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2035 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2036 		break;
2037 #endif
2038 
2039 #ifdef CONFIG_X86_IO_APIC
2040 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2041 		/*
2042 		 * We just don't map the IO APIC - all access is via
2043 		 * hypercalls.  Keep the address in the pte for reference.
2044 		 */
2045 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2046 		break;
2047 #endif
2048 
2049 	case FIX_PARAVIRT_BOOTMAP:
2050 		/* This is an MFN, but it isn't an IO mapping from the
2051 		   IO domain */
2052 		pte = mfn_pte(phys, prot);
2053 		break;
2054 
2055 	default:
2056 		/* By default, set_fixmap is used for hardware mappings */
2057 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2058 		break;
2059 	}
2060 
2061 	__native_set_fixmap(idx, pte);
2062 
2063 #ifdef CONFIG_X86_64
2064 	/* Replicate changes to map the vsyscall page into the user
2065 	   pagetable vsyscall mapping. */
2066 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2067 	    idx == VVAR_PAGE) {
2068 		unsigned long vaddr = __fix_to_virt(idx);
2069 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2070 	}
2071 #endif
2072 }
2073 
2074 static void __init xen_post_allocator_init(void)
2075 {
2076 	pv_mmu_ops.set_pte = xen_set_pte;
2077 	pv_mmu_ops.set_pmd = xen_set_pmd;
2078 	pv_mmu_ops.set_pud = xen_set_pud;
2079 #if PAGETABLE_LEVELS == 4
2080 	pv_mmu_ops.set_pgd = xen_set_pgd;
2081 #endif
2082 
2083 	/* This will work as long as patching hasn't happened yet
2084 	   (which it hasn't) */
2085 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2086 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2087 	pv_mmu_ops.release_pte = xen_release_pte;
2088 	pv_mmu_ops.release_pmd = xen_release_pmd;
2089 #if PAGETABLE_LEVELS == 4
2090 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2091 	pv_mmu_ops.release_pud = xen_release_pud;
2092 #endif
2093 
2094 #ifdef CONFIG_X86_64
2095 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2096 #endif
2097 	xen_mark_init_mm_pinned();
2098 }
2099 
2100 static void xen_leave_lazy_mmu(void)
2101 {
2102 	preempt_disable();
2103 	xen_mc_flush();
2104 	paravirt_leave_lazy_mmu();
2105 	preempt_enable();
2106 }
2107 
2108 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2109 	.read_cr2 = xen_read_cr2,
2110 	.write_cr2 = xen_write_cr2,
2111 
2112 	.read_cr3 = xen_read_cr3,
2113 #ifdef CONFIG_X86_32
2114 	.write_cr3 = xen_write_cr3_init,
2115 #else
2116 	.write_cr3 = xen_write_cr3,
2117 #endif
2118 
2119 	.flush_tlb_user = xen_flush_tlb,
2120 	.flush_tlb_kernel = xen_flush_tlb,
2121 	.flush_tlb_single = xen_flush_tlb_single,
2122 	.flush_tlb_others = xen_flush_tlb_others,
2123 
2124 	.pte_update = paravirt_nop,
2125 	.pte_update_defer = paravirt_nop,
2126 
2127 	.pgd_alloc = xen_pgd_alloc,
2128 	.pgd_free = xen_pgd_free,
2129 
2130 	.alloc_pte = xen_alloc_pte_init,
2131 	.release_pte = xen_release_pte_init,
2132 	.alloc_pmd = xen_alloc_pmd_init,
2133 	.release_pmd = xen_release_pmd_init,
2134 
2135 	.set_pte = xen_set_pte_init,
2136 	.set_pte_at = xen_set_pte_at,
2137 	.set_pmd = xen_set_pmd_hyper,
2138 
2139 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2140 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2141 
2142 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2143 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2144 
2145 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2146 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2147 
2148 #ifdef CONFIG_X86_PAE
2149 	.set_pte_atomic = xen_set_pte_atomic,
2150 	.pte_clear = xen_pte_clear,
2151 	.pmd_clear = xen_pmd_clear,
2152 #endif	/* CONFIG_X86_PAE */
2153 	.set_pud = xen_set_pud_hyper,
2154 
2155 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2156 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2157 
2158 #if PAGETABLE_LEVELS == 4
2159 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2160 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2161 	.set_pgd = xen_set_pgd_hyper,
2162 
2163 	.alloc_pud = xen_alloc_pmd_init,
2164 	.release_pud = xen_release_pmd_init,
2165 #endif	/* PAGETABLE_LEVELS == 4 */
2166 
2167 	.activate_mm = xen_activate_mm,
2168 	.dup_mmap = xen_dup_mmap,
2169 	.exit_mmap = xen_exit_mmap,
2170 
2171 	.lazy_mode = {
2172 		.enter = paravirt_enter_lazy_mmu,
2173 		.leave = xen_leave_lazy_mmu,
2174 	},
2175 
2176 	.set_fixmap = xen_set_fixmap,
2177 };
2178 
2179 void __init xen_init_mmu_ops(void)
2180 {
2181 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2182 	x86_init.paging.pagetable_init = xen_pagetable_init;
2183 	pv_mmu_ops = xen_mmu_ops;
2184 
2185 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2186 }
2187 
2188 /* Protected by xen_reservation_lock. */
2189 #define MAX_CONTIG_ORDER 9 /* 2MB */
2190 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2191 
2192 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2193 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2194 				unsigned long *in_frames,
2195 				unsigned long *out_frames)
2196 {
2197 	int i;
2198 	struct multicall_space mcs;
2199 
2200 	xen_mc_batch();
2201 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2202 		mcs = __xen_mc_entry(0);
2203 
2204 		if (in_frames)
2205 			in_frames[i] = virt_to_mfn(vaddr);
2206 
2207 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2208 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2209 
2210 		if (out_frames)
2211 			out_frames[i] = virt_to_pfn(vaddr);
2212 	}
2213 	xen_mc_issue(0);
2214 }
2215 
2216 /*
2217  * Update the pfn-to-mfn mappings for a virtual address range, either to
2218  * point to an array of mfns, or contiguously from a single starting
2219  * mfn.
2220  */
2221 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2222 				     unsigned long *mfns,
2223 				     unsigned long first_mfn)
2224 {
2225 	unsigned i, limit;
2226 	unsigned long mfn;
2227 
2228 	xen_mc_batch();
2229 
2230 	limit = 1u << order;
2231 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2232 		struct multicall_space mcs;
2233 		unsigned flags;
2234 
2235 		mcs = __xen_mc_entry(0);
2236 		if (mfns)
2237 			mfn = mfns[i];
2238 		else
2239 			mfn = first_mfn + i;
2240 
2241 		if (i < (limit - 1))
2242 			flags = 0;
2243 		else {
2244 			if (order == 0)
2245 				flags = UVMF_INVLPG | UVMF_ALL;
2246 			else
2247 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2248 		}
2249 
2250 		MULTI_update_va_mapping(mcs.mc, vaddr,
2251 				mfn_pte(mfn, PAGE_KERNEL), flags);
2252 
2253 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2254 	}
2255 
2256 	xen_mc_issue(0);
2257 }
2258 
2259 /*
2260  * Perform the hypercall to exchange a region of our pfns to point to
2261  * memory with the required contiguous alignment.  Takes the pfns as
2262  * input, and populates mfns as output.
2263  *
2264  * Returns a success code indicating whether the hypervisor was able to
2265  * satisfy the request or not.
2266  */
2267 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2268 			       unsigned long *pfns_in,
2269 			       unsigned long extents_out,
2270 			       unsigned int order_out,
2271 			       unsigned long *mfns_out,
2272 			       unsigned int address_bits)
2273 {
2274 	long rc;
2275 	int success;
2276 
2277 	struct xen_memory_exchange exchange = {
2278 		.in = {
2279 			.nr_extents   = extents_in,
2280 			.extent_order = order_in,
2281 			.extent_start = pfns_in,
2282 			.domid        = DOMID_SELF
2283 		},
2284 		.out = {
2285 			.nr_extents   = extents_out,
2286 			.extent_order = order_out,
2287 			.extent_start = mfns_out,
2288 			.address_bits = address_bits,
2289 			.domid        = DOMID_SELF
2290 		}
2291 	};
2292 
2293 	BUG_ON(extents_in << order_in != extents_out << order_out);
2294 
2295 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2296 	success = (exchange.nr_exchanged == extents_in);
2297 
2298 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2299 	BUG_ON(success && (rc != 0));
2300 
2301 	return success;
2302 }
2303 
2304 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2305 				 unsigned int address_bits)
2306 {
2307 	unsigned long *in_frames = discontig_frames, out_frame;
2308 	unsigned long  flags;
2309 	int            success;
2310 
2311 	/*
2312 	 * Currently an auto-translated guest will not perform I/O, nor will
2313 	 * it require PAE page directories below 4GB. Therefore any calls to
2314 	 * this function are redundant and can be ignored.
2315 	 */
2316 
2317 	if (xen_feature(XENFEAT_auto_translated_physmap))
2318 		return 0;
2319 
2320 	if (unlikely(order > MAX_CONTIG_ORDER))
2321 		return -ENOMEM;
2322 
2323 	memset((void *) vstart, 0, PAGE_SIZE << order);
2324 
2325 	spin_lock_irqsave(&xen_reservation_lock, flags);
2326 
2327 	/* 1. Zap current PTEs, remembering MFNs. */
2328 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2329 
2330 	/* 2. Get a new contiguous memory extent. */
2331 	out_frame = virt_to_pfn(vstart);
2332 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2333 				      1, order, &out_frame,
2334 				      address_bits);
2335 
2336 	/* 3. Map the new extent in place of old pages. */
2337 	if (success)
2338 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2339 	else
2340 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2341 
2342 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2343 
2344 	return success ? 0 : -ENOMEM;
2345 }
2346 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2347 
2348 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2349 {
2350 	unsigned long *out_frames = discontig_frames, in_frame;
2351 	unsigned long  flags;
2352 	int success;
2353 
2354 	if (xen_feature(XENFEAT_auto_translated_physmap))
2355 		return;
2356 
2357 	if (unlikely(order > MAX_CONTIG_ORDER))
2358 		return;
2359 
2360 	memset((void *) vstart, 0, PAGE_SIZE << order);
2361 
2362 	spin_lock_irqsave(&xen_reservation_lock, flags);
2363 
2364 	/* 1. Find start MFN of contiguous extent. */
2365 	in_frame = virt_to_mfn(vstart);
2366 
2367 	/* 2. Zap current PTEs. */
2368 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2369 
2370 	/* 3. Do the exchange for non-contiguous MFNs. */
2371 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2372 					0, out_frames, 0);
2373 
2374 	/* 4. Map new pages in place of old pages. */
2375 	if (success)
2376 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2377 	else
2378 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2379 
2380 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2381 }
2382 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2383 
2384 #ifdef CONFIG_XEN_PVHVM
2385 #ifdef CONFIG_PROC_VMCORE
2386 /*
2387  * This function is used in two contexts:
2388  * - the kdump kernel has to check whether a pfn of the crashed kernel
2389  *   was a ballooned page. vmcore is using this function to decide
2390  *   whether to access a pfn of the crashed kernel.
2391  * - the kexec kernel has to check whether a pfn was ballooned by the
2392  *   previous kernel. If the pfn is ballooned, handle it properly.
2393  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2394  * handle the pfn special in this case.
2395  */
2396 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2397 {
2398 	struct xen_hvm_get_mem_type a = {
2399 		.domid = DOMID_SELF,
2400 		.pfn = pfn,
2401 	};
2402 	int ram;
2403 
2404 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2405 		return -ENXIO;
2406 
2407 	switch (a.mem_type) {
2408 		case HVMMEM_mmio_dm:
2409 			ram = 0;
2410 			break;
2411 		case HVMMEM_ram_rw:
2412 		case HVMMEM_ram_ro:
2413 		default:
2414 			ram = 1;
2415 			break;
2416 	}
2417 
2418 	return ram;
2419 }
2420 #endif
2421 
2422 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2423 {
2424 	struct xen_hvm_pagetable_dying a;
2425 	int rc;
2426 
2427 	a.domid = DOMID_SELF;
2428 	a.gpa = __pa(mm->pgd);
2429 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2430 	WARN_ON_ONCE(rc < 0);
2431 }
2432 
2433 static int is_pagetable_dying_supported(void)
2434 {
2435 	struct xen_hvm_pagetable_dying a;
2436 	int rc = 0;
2437 
2438 	a.domid = DOMID_SELF;
2439 	a.gpa = 0x00;
2440 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2441 	if (rc < 0) {
2442 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2443 		return 0;
2444 	}
2445 	return 1;
2446 }
2447 
2448 void __init xen_hvm_init_mmu_ops(void)
2449 {
2450 	if (is_pagetable_dying_supported())
2451 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2452 #ifdef CONFIG_PROC_VMCORE
2453 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2454 #endif
2455 }
2456 #endif
2457 
2458 #define REMAP_BATCH_SIZE 16
2459 
2460 struct remap_data {
2461 	unsigned long mfn;
2462 	pgprot_t prot;
2463 	struct mmu_update *mmu_update;
2464 };
2465 
2466 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2467 				 unsigned long addr, void *data)
2468 {
2469 	struct remap_data *rmd = data;
2470 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2471 
2472 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2473 	rmd->mmu_update->val = pte_val_ma(pte);
2474 	rmd->mmu_update++;
2475 
2476 	return 0;
2477 }
2478 
2479 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2480 			       unsigned long addr,
2481 			       unsigned long mfn, int nr,
2482 			       pgprot_t prot, unsigned domid)
2483 {
2484 	struct remap_data rmd;
2485 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2486 	int batch;
2487 	unsigned long range;
2488 	int err = 0;
2489 
2490 	if (xen_feature(XENFEAT_auto_translated_physmap))
2491 		return -EINVAL;
2492 
2493 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2494 
2495 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2496 
2497 	rmd.mfn = mfn;
2498 	rmd.prot = prot;
2499 
2500 	while (nr) {
2501 		batch = min(REMAP_BATCH_SIZE, nr);
2502 		range = (unsigned long)batch << PAGE_SHIFT;
2503 
2504 		rmd.mmu_update = mmu_update;
2505 		err = apply_to_page_range(vma->vm_mm, addr, range,
2506 					  remap_area_mfn_pte_fn, &rmd);
2507 		if (err)
2508 			goto out;
2509 
2510 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2511 		if (err < 0)
2512 			goto out;
2513 
2514 		nr -= batch;
2515 		addr += range;
2516 	}
2517 
2518 	err = 0;
2519 out:
2520 
2521 	flush_tlb_all();
2522 
2523 	return err;
2524 }
2525 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2526