xref: /linux/arch/x86/xen/mmu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
120 
121 /*
122  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
123  * redzone above it, so round it up to a PGD boundary.
124  */
125 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126 
127 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 {
129 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130 
131 	return PFN_DOWN(maddr.maddr);
132 }
133 
134 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 {
136 	unsigned long address = (unsigned long)vaddr;
137 	unsigned int level;
138 	pte_t *pte;
139 	unsigned offset;
140 
141 	/*
142 	 * if the PFN is in the linear mapped vaddr range, we can just use
143 	 * the (quick) virt_to_machine() p2m lookup
144 	 */
145 	if (virt_addr_valid(vaddr))
146 		return virt_to_machine(vaddr);
147 
148 	/* otherwise we have to do a (slower) full page-table walk */
149 
150 	pte = lookup_address(address, &level);
151 	BUG_ON(pte == NULL);
152 	offset = address & ~PAGE_MASK;
153 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 }
155 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156 
157 void make_lowmem_page_readonly(void *vaddr)
158 {
159 	pte_t *pte, ptev;
160 	unsigned long address = (unsigned long)vaddr;
161 	unsigned int level;
162 
163 	pte = lookup_address(address, &level);
164 	if (pte == NULL)
165 		return;		/* vaddr missing */
166 
167 	ptev = pte_wrprotect(*pte);
168 
169 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 		BUG();
171 }
172 
173 void make_lowmem_page_readwrite(void *vaddr)
174 {
175 	pte_t *pte, ptev;
176 	unsigned long address = (unsigned long)vaddr;
177 	unsigned int level;
178 
179 	pte = lookup_address(address, &level);
180 	if (pte == NULL)
181 		return;		/* vaddr missing */
182 
183 	ptev = pte_mkwrite(*pte);
184 
185 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
186 		BUG();
187 }
188 
189 
190 static bool xen_page_pinned(void *ptr)
191 {
192 	struct page *page = virt_to_page(ptr);
193 
194 	return PagePinned(page);
195 }
196 
197 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 {
199 	struct multicall_space mcs;
200 	struct mmu_update *u;
201 
202 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203 
204 	mcs = xen_mc_entry(sizeof(*u));
205 	u = mcs.args;
206 
207 	/* ptep might be kmapped when using 32-bit HIGHPTE */
208 	u->ptr = virt_to_machine(ptep).maddr;
209 	u->val = pte_val_ma(pteval);
210 
211 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212 
213 	xen_mc_issue(PARAVIRT_LAZY_MMU);
214 }
215 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216 
217 static void xen_extend_mmu_update(const struct mmu_update *update)
218 {
219 	struct multicall_space mcs;
220 	struct mmu_update *u;
221 
222 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223 
224 	if (mcs.mc != NULL) {
225 		mcs.mc->args[1]++;
226 	} else {
227 		mcs = __xen_mc_entry(sizeof(*u));
228 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
229 	}
230 
231 	u = mcs.args;
232 	*u = *update;
233 }
234 
235 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 {
237 	struct multicall_space mcs;
238 	struct mmuext_op *u;
239 
240 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241 
242 	if (mcs.mc != NULL) {
243 		mcs.mc->args[1]++;
244 	} else {
245 		mcs = __xen_mc_entry(sizeof(*u));
246 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
247 	}
248 
249 	u = mcs.args;
250 	*u = *op;
251 }
252 
253 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254 {
255 	struct mmu_update u;
256 
257 	preempt_disable();
258 
259 	xen_mc_batch();
260 
261 	/* ptr may be ioremapped for 64-bit pagetable setup */
262 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
263 	u.val = pmd_val_ma(val);
264 	xen_extend_mmu_update(&u);
265 
266 	xen_mc_issue(PARAVIRT_LAZY_MMU);
267 
268 	preempt_enable();
269 }
270 
271 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 {
273 	trace_xen_mmu_set_pmd(ptr, val);
274 
275 	/* If page is not pinned, we can just update the entry
276 	   directly */
277 	if (!xen_page_pinned(ptr)) {
278 		*ptr = val;
279 		return;
280 	}
281 
282 	xen_set_pmd_hyper(ptr, val);
283 }
284 
285 /*
286  * Associate a virtual page frame with a given physical page frame
287  * and protection flags for that frame.
288  */
289 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 {
291 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
292 }
293 
294 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 {
296 	struct mmu_update u;
297 
298 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
299 		return false;
300 
301 	xen_mc_batch();
302 
303 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
304 	u.val = pte_val_ma(pteval);
305 	xen_extend_mmu_update(&u);
306 
307 	xen_mc_issue(PARAVIRT_LAZY_MMU);
308 
309 	return true;
310 }
311 
312 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 {
314 	if (!xen_batched_set_pte(ptep, pteval)) {
315 		/*
316 		 * Could call native_set_pte() here and trap and
317 		 * emulate the PTE write but with 32-bit guests this
318 		 * needs two traps (one for each of the two 32-bit
319 		 * words in the PTE) so do one hypercall directly
320 		 * instead.
321 		 */
322 		struct mmu_update u;
323 
324 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
325 		u.val = pte_val_ma(pteval);
326 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
327 	}
328 }
329 
330 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 {
332 	trace_xen_mmu_set_pte(ptep, pteval);
333 	__xen_set_pte(ptep, pteval);
334 }
335 
336 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
337 		    pte_t *ptep, pte_t pteval)
338 {
339 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
340 	__xen_set_pte(ptep, pteval);
341 }
342 
343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
344 				 unsigned long addr, pte_t *ptep)
345 {
346 	/* Just return the pte as-is.  We preserve the bits on commit */
347 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
348 	return *ptep;
349 }
350 
351 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
352 				 pte_t *ptep, pte_t pte)
353 {
354 	struct mmu_update u;
355 
356 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
357 	xen_mc_batch();
358 
359 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
360 	u.val = pte_val_ma(pte);
361 	xen_extend_mmu_update(&u);
362 
363 	xen_mc_issue(PARAVIRT_LAZY_MMU);
364 }
365 
366 /* Assume pteval_t is equivalent to all the other *val_t types. */
367 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 {
369 	if (val & _PAGE_PRESENT) {
370 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
371 		unsigned long pfn = mfn_to_pfn(mfn);
372 
373 		pteval_t flags = val & PTE_FLAGS_MASK;
374 		if (unlikely(pfn == ~0))
375 			val = flags & ~_PAGE_PRESENT;
376 		else
377 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
378 	}
379 
380 	return val;
381 }
382 
383 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 {
385 	if (val & _PAGE_PRESENT) {
386 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
387 		pteval_t flags = val & PTE_FLAGS_MASK;
388 		unsigned long mfn;
389 
390 		if (!xen_feature(XENFEAT_auto_translated_physmap))
391 			mfn = __pfn_to_mfn(pfn);
392 		else
393 			mfn = pfn;
394 		/*
395 		 * If there's no mfn for the pfn, then just create an
396 		 * empty non-present pte.  Unfortunately this loses
397 		 * information about the original pfn, so
398 		 * pte_mfn_to_pfn is asymmetric.
399 		 */
400 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
401 			mfn = 0;
402 			flags = 0;
403 		} else
404 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
405 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
406 	}
407 
408 	return val;
409 }
410 
411 __visible pteval_t xen_pte_val(pte_t pte)
412 {
413 	pteval_t pteval = pte.pte;
414 
415 	return pte_mfn_to_pfn(pteval);
416 }
417 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
418 
419 __visible pgdval_t xen_pgd_val(pgd_t pgd)
420 {
421 	return pte_mfn_to_pfn(pgd.pgd);
422 }
423 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
424 
425 __visible pte_t xen_make_pte(pteval_t pte)
426 {
427 	pte = pte_pfn_to_mfn(pte);
428 
429 	return native_make_pte(pte);
430 }
431 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
432 
433 __visible pgd_t xen_make_pgd(pgdval_t pgd)
434 {
435 	pgd = pte_pfn_to_mfn(pgd);
436 	return native_make_pgd(pgd);
437 }
438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
439 
440 __visible pmdval_t xen_pmd_val(pmd_t pmd)
441 {
442 	return pte_mfn_to_pfn(pmd.pmd);
443 }
444 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
445 
446 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
447 {
448 	struct mmu_update u;
449 
450 	preempt_disable();
451 
452 	xen_mc_batch();
453 
454 	/* ptr may be ioremapped for 64-bit pagetable setup */
455 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
456 	u.val = pud_val_ma(val);
457 	xen_extend_mmu_update(&u);
458 
459 	xen_mc_issue(PARAVIRT_LAZY_MMU);
460 
461 	preempt_enable();
462 }
463 
464 static void xen_set_pud(pud_t *ptr, pud_t val)
465 {
466 	trace_xen_mmu_set_pud(ptr, val);
467 
468 	/* If page is not pinned, we can just update the entry
469 	   directly */
470 	if (!xen_page_pinned(ptr)) {
471 		*ptr = val;
472 		return;
473 	}
474 
475 	xen_set_pud_hyper(ptr, val);
476 }
477 
478 #ifdef CONFIG_X86_PAE
479 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
480 {
481 	trace_xen_mmu_set_pte_atomic(ptep, pte);
482 	set_64bit((u64 *)ptep, native_pte_val(pte));
483 }
484 
485 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
486 {
487 	trace_xen_mmu_pte_clear(mm, addr, ptep);
488 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
489 		native_pte_clear(mm, addr, ptep);
490 }
491 
492 static void xen_pmd_clear(pmd_t *pmdp)
493 {
494 	trace_xen_mmu_pmd_clear(pmdp);
495 	set_pmd(pmdp, __pmd(0));
496 }
497 #endif	/* CONFIG_X86_PAE */
498 
499 __visible pmd_t xen_make_pmd(pmdval_t pmd)
500 {
501 	pmd = pte_pfn_to_mfn(pmd);
502 	return native_make_pmd(pmd);
503 }
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
505 
506 #if CONFIG_PGTABLE_LEVELS == 4
507 __visible pudval_t xen_pud_val(pud_t pud)
508 {
509 	return pte_mfn_to_pfn(pud.pud);
510 }
511 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
512 
513 __visible pud_t xen_make_pud(pudval_t pud)
514 {
515 	pud = pte_pfn_to_mfn(pud);
516 
517 	return native_make_pud(pud);
518 }
519 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
520 
521 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
522 {
523 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
524 	unsigned offset = pgd - pgd_page;
525 	pgd_t *user_ptr = NULL;
526 
527 	if (offset < pgd_index(USER_LIMIT)) {
528 		struct page *page = virt_to_page(pgd_page);
529 		user_ptr = (pgd_t *)page->private;
530 		if (user_ptr)
531 			user_ptr += offset;
532 	}
533 
534 	return user_ptr;
535 }
536 
537 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
538 {
539 	struct mmu_update u;
540 
541 	u.ptr = virt_to_machine(ptr).maddr;
542 	u.val = pgd_val_ma(val);
543 	xen_extend_mmu_update(&u);
544 }
545 
546 /*
547  * Raw hypercall-based set_pgd, intended for in early boot before
548  * there's a page structure.  This implies:
549  *  1. The only existing pagetable is the kernel's
550  *  2. It is always pinned
551  *  3. It has no user pagetable attached to it
552  */
553 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
554 {
555 	preempt_disable();
556 
557 	xen_mc_batch();
558 
559 	__xen_set_pgd_hyper(ptr, val);
560 
561 	xen_mc_issue(PARAVIRT_LAZY_MMU);
562 
563 	preempt_enable();
564 }
565 
566 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
567 {
568 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
569 
570 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
571 
572 	/* If page is not pinned, we can just update the entry
573 	   directly */
574 	if (!xen_page_pinned(ptr)) {
575 		*ptr = val;
576 		if (user_ptr) {
577 			WARN_ON(xen_page_pinned(user_ptr));
578 			*user_ptr = val;
579 		}
580 		return;
581 	}
582 
583 	/* If it's pinned, then we can at least batch the kernel and
584 	   user updates together. */
585 	xen_mc_batch();
586 
587 	__xen_set_pgd_hyper(ptr, val);
588 	if (user_ptr)
589 		__xen_set_pgd_hyper(user_ptr, val);
590 
591 	xen_mc_issue(PARAVIRT_LAZY_MMU);
592 }
593 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
594 
595 /*
596  * (Yet another) pagetable walker.  This one is intended for pinning a
597  * pagetable.  This means that it walks a pagetable and calls the
598  * callback function on each page it finds making up the page table,
599  * at every level.  It walks the entire pagetable, but it only bothers
600  * pinning pte pages which are below limit.  In the normal case this
601  * will be STACK_TOP_MAX, but at boot we need to pin up to
602  * FIXADDR_TOP.
603  *
604  * For 32-bit the important bit is that we don't pin beyond there,
605  * because then we start getting into Xen's ptes.
606  *
607  * For 64-bit, we must skip the Xen hole in the middle of the address
608  * space, just after the big x86-64 virtual hole.
609  */
610 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
611 			  int (*func)(struct mm_struct *mm, struct page *,
612 				      enum pt_level),
613 			  unsigned long limit)
614 {
615 	int flush = 0;
616 	unsigned hole_low, hole_high;
617 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
618 	unsigned pgdidx, pudidx, pmdidx;
619 
620 	/* The limit is the last byte to be touched */
621 	limit--;
622 	BUG_ON(limit >= FIXADDR_TOP);
623 
624 	if (xen_feature(XENFEAT_auto_translated_physmap))
625 		return 0;
626 
627 	/*
628 	 * 64-bit has a great big hole in the middle of the address
629 	 * space, which contains the Xen mappings.  On 32-bit these
630 	 * will end up making a zero-sized hole and so is a no-op.
631 	 */
632 	hole_low = pgd_index(USER_LIMIT);
633 	hole_high = pgd_index(PAGE_OFFSET);
634 
635 	pgdidx_limit = pgd_index(limit);
636 #if PTRS_PER_PUD > 1
637 	pudidx_limit = pud_index(limit);
638 #else
639 	pudidx_limit = 0;
640 #endif
641 #if PTRS_PER_PMD > 1
642 	pmdidx_limit = pmd_index(limit);
643 #else
644 	pmdidx_limit = 0;
645 #endif
646 
647 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
648 		pud_t *pud;
649 
650 		if (pgdidx >= hole_low && pgdidx < hole_high)
651 			continue;
652 
653 		if (!pgd_val(pgd[pgdidx]))
654 			continue;
655 
656 		pud = pud_offset(&pgd[pgdidx], 0);
657 
658 		if (PTRS_PER_PUD > 1) /* not folded */
659 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
660 
661 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
662 			pmd_t *pmd;
663 
664 			if (pgdidx == pgdidx_limit &&
665 			    pudidx > pudidx_limit)
666 				goto out;
667 
668 			if (pud_none(pud[pudidx]))
669 				continue;
670 
671 			pmd = pmd_offset(&pud[pudidx], 0);
672 
673 			if (PTRS_PER_PMD > 1) /* not folded */
674 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
675 
676 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
677 				struct page *pte;
678 
679 				if (pgdidx == pgdidx_limit &&
680 				    pudidx == pudidx_limit &&
681 				    pmdidx > pmdidx_limit)
682 					goto out;
683 
684 				if (pmd_none(pmd[pmdidx]))
685 					continue;
686 
687 				pte = pmd_page(pmd[pmdidx]);
688 				flush |= (*func)(mm, pte, PT_PTE);
689 			}
690 		}
691 	}
692 
693 out:
694 	/* Do the top level last, so that the callbacks can use it as
695 	   a cue to do final things like tlb flushes. */
696 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
697 
698 	return flush;
699 }
700 
701 static int xen_pgd_walk(struct mm_struct *mm,
702 			int (*func)(struct mm_struct *mm, struct page *,
703 				    enum pt_level),
704 			unsigned long limit)
705 {
706 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
707 }
708 
709 /* If we're using split pte locks, then take the page's lock and
710    return a pointer to it.  Otherwise return NULL. */
711 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
712 {
713 	spinlock_t *ptl = NULL;
714 
715 #if USE_SPLIT_PTE_PTLOCKS
716 	ptl = ptlock_ptr(page);
717 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
718 #endif
719 
720 	return ptl;
721 }
722 
723 static void xen_pte_unlock(void *v)
724 {
725 	spinlock_t *ptl = v;
726 	spin_unlock(ptl);
727 }
728 
729 static void xen_do_pin(unsigned level, unsigned long pfn)
730 {
731 	struct mmuext_op op;
732 
733 	op.cmd = level;
734 	op.arg1.mfn = pfn_to_mfn(pfn);
735 
736 	xen_extend_mmuext_op(&op);
737 }
738 
739 static int xen_pin_page(struct mm_struct *mm, struct page *page,
740 			enum pt_level level)
741 {
742 	unsigned pgfl = TestSetPagePinned(page);
743 	int flush;
744 
745 	if (pgfl)
746 		flush = 0;		/* already pinned */
747 	else if (PageHighMem(page))
748 		/* kmaps need flushing if we found an unpinned
749 		   highpage */
750 		flush = 1;
751 	else {
752 		void *pt = lowmem_page_address(page);
753 		unsigned long pfn = page_to_pfn(page);
754 		struct multicall_space mcs = __xen_mc_entry(0);
755 		spinlock_t *ptl;
756 
757 		flush = 0;
758 
759 		/*
760 		 * We need to hold the pagetable lock between the time
761 		 * we make the pagetable RO and when we actually pin
762 		 * it.  If we don't, then other users may come in and
763 		 * attempt to update the pagetable by writing it,
764 		 * which will fail because the memory is RO but not
765 		 * pinned, so Xen won't do the trap'n'emulate.
766 		 *
767 		 * If we're using split pte locks, we can't hold the
768 		 * entire pagetable's worth of locks during the
769 		 * traverse, because we may wrap the preempt count (8
770 		 * bits).  The solution is to mark RO and pin each PTE
771 		 * page while holding the lock.  This means the number
772 		 * of locks we end up holding is never more than a
773 		 * batch size (~32 entries, at present).
774 		 *
775 		 * If we're not using split pte locks, we needn't pin
776 		 * the PTE pages independently, because we're
777 		 * protected by the overall pagetable lock.
778 		 */
779 		ptl = NULL;
780 		if (level == PT_PTE)
781 			ptl = xen_pte_lock(page, mm);
782 
783 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
784 					pfn_pte(pfn, PAGE_KERNEL_RO),
785 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
786 
787 		if (ptl) {
788 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
789 
790 			/* Queue a deferred unlock for when this batch
791 			   is completed. */
792 			xen_mc_callback(xen_pte_unlock, ptl);
793 		}
794 	}
795 
796 	return flush;
797 }
798 
799 /* This is called just after a mm has been created, but it has not
800    been used yet.  We need to make sure that its pagetable is all
801    read-only, and can be pinned. */
802 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
803 {
804 	trace_xen_mmu_pgd_pin(mm, pgd);
805 
806 	xen_mc_batch();
807 
808 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
809 		/* re-enable interrupts for flushing */
810 		xen_mc_issue(0);
811 
812 		kmap_flush_unused();
813 
814 		xen_mc_batch();
815 	}
816 
817 #ifdef CONFIG_X86_64
818 	{
819 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
820 
821 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
822 
823 		if (user_pgd) {
824 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
825 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
826 				   PFN_DOWN(__pa(user_pgd)));
827 		}
828 	}
829 #else /* CONFIG_X86_32 */
830 #ifdef CONFIG_X86_PAE
831 	/* Need to make sure unshared kernel PMD is pinnable */
832 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
833 		     PT_PMD);
834 #endif
835 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
836 #endif /* CONFIG_X86_64 */
837 	xen_mc_issue(0);
838 }
839 
840 static void xen_pgd_pin(struct mm_struct *mm)
841 {
842 	__xen_pgd_pin(mm, mm->pgd);
843 }
844 
845 /*
846  * On save, we need to pin all pagetables to make sure they get their
847  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
848  * them (unpinned pgds are not currently in use, probably because the
849  * process is under construction or destruction).
850  *
851  * Expected to be called in stop_machine() ("equivalent to taking
852  * every spinlock in the system"), so the locking doesn't really
853  * matter all that much.
854  */
855 void xen_mm_pin_all(void)
856 {
857 	struct page *page;
858 
859 	spin_lock(&pgd_lock);
860 
861 	list_for_each_entry(page, &pgd_list, lru) {
862 		if (!PagePinned(page)) {
863 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
864 			SetPageSavePinned(page);
865 		}
866 	}
867 
868 	spin_unlock(&pgd_lock);
869 }
870 
871 /*
872  * The init_mm pagetable is really pinned as soon as its created, but
873  * that's before we have page structures to store the bits.  So do all
874  * the book-keeping now.
875  */
876 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
877 				  enum pt_level level)
878 {
879 	SetPagePinned(page);
880 	return 0;
881 }
882 
883 static void __init xen_mark_init_mm_pinned(void)
884 {
885 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
886 }
887 
888 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
889 			  enum pt_level level)
890 {
891 	unsigned pgfl = TestClearPagePinned(page);
892 
893 	if (pgfl && !PageHighMem(page)) {
894 		void *pt = lowmem_page_address(page);
895 		unsigned long pfn = page_to_pfn(page);
896 		spinlock_t *ptl = NULL;
897 		struct multicall_space mcs;
898 
899 		/*
900 		 * Do the converse to pin_page.  If we're using split
901 		 * pte locks, we must be holding the lock for while
902 		 * the pte page is unpinned but still RO to prevent
903 		 * concurrent updates from seeing it in this
904 		 * partially-pinned state.
905 		 */
906 		if (level == PT_PTE) {
907 			ptl = xen_pte_lock(page, mm);
908 
909 			if (ptl)
910 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
911 		}
912 
913 		mcs = __xen_mc_entry(0);
914 
915 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
916 					pfn_pte(pfn, PAGE_KERNEL),
917 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
918 
919 		if (ptl) {
920 			/* unlock when batch completed */
921 			xen_mc_callback(xen_pte_unlock, ptl);
922 		}
923 	}
924 
925 	return 0;		/* never need to flush on unpin */
926 }
927 
928 /* Release a pagetables pages back as normal RW */
929 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
930 {
931 	trace_xen_mmu_pgd_unpin(mm, pgd);
932 
933 	xen_mc_batch();
934 
935 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
936 
937 #ifdef CONFIG_X86_64
938 	{
939 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
940 
941 		if (user_pgd) {
942 			xen_do_pin(MMUEXT_UNPIN_TABLE,
943 				   PFN_DOWN(__pa(user_pgd)));
944 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
945 		}
946 	}
947 #endif
948 
949 #ifdef CONFIG_X86_PAE
950 	/* Need to make sure unshared kernel PMD is unpinned */
951 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
952 		       PT_PMD);
953 #endif
954 
955 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
956 
957 	xen_mc_issue(0);
958 }
959 
960 static void xen_pgd_unpin(struct mm_struct *mm)
961 {
962 	__xen_pgd_unpin(mm, mm->pgd);
963 }
964 
965 /*
966  * On resume, undo any pinning done at save, so that the rest of the
967  * kernel doesn't see any unexpected pinned pagetables.
968  */
969 void xen_mm_unpin_all(void)
970 {
971 	struct page *page;
972 
973 	spin_lock(&pgd_lock);
974 
975 	list_for_each_entry(page, &pgd_list, lru) {
976 		if (PageSavePinned(page)) {
977 			BUG_ON(!PagePinned(page));
978 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
979 			ClearPageSavePinned(page);
980 		}
981 	}
982 
983 	spin_unlock(&pgd_lock);
984 }
985 
986 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
987 {
988 	spin_lock(&next->page_table_lock);
989 	xen_pgd_pin(next);
990 	spin_unlock(&next->page_table_lock);
991 }
992 
993 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
994 {
995 	spin_lock(&mm->page_table_lock);
996 	xen_pgd_pin(mm);
997 	spin_unlock(&mm->page_table_lock);
998 }
999 
1000 
1001 #ifdef CONFIG_SMP
1002 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1003    we need to repoint it somewhere else before we can unpin it. */
1004 static void drop_other_mm_ref(void *info)
1005 {
1006 	struct mm_struct *mm = info;
1007 	struct mm_struct *active_mm;
1008 
1009 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010 
1011 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012 		leave_mm(smp_processor_id());
1013 
1014 	/* If this cpu still has a stale cr3 reference, then make sure
1015 	   it has been flushed. */
1016 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017 		load_cr3(swapper_pg_dir);
1018 }
1019 
1020 static void xen_drop_mm_ref(struct mm_struct *mm)
1021 {
1022 	cpumask_var_t mask;
1023 	unsigned cpu;
1024 
1025 	if (current->active_mm == mm) {
1026 		if (current->mm == mm)
1027 			load_cr3(swapper_pg_dir);
1028 		else
1029 			leave_mm(smp_processor_id());
1030 	}
1031 
1032 	/* Get the "official" set of cpus referring to our pagetable. */
1033 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034 		for_each_online_cpu(cpu) {
1035 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037 				continue;
1038 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039 		}
1040 		return;
1041 	}
1042 	cpumask_copy(mask, mm_cpumask(mm));
1043 
1044 	/* It's possible that a vcpu may have a stale reference to our
1045 	   cr3, because its in lazy mode, and it hasn't yet flushed
1046 	   its set of pending hypercalls yet.  In this case, we can
1047 	   look at its actual current cr3 value, and force it to flush
1048 	   if needed. */
1049 	for_each_online_cpu(cpu) {
1050 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051 			cpumask_set_cpu(cpu, mask);
1052 	}
1053 
1054 	if (!cpumask_empty(mask))
1055 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056 	free_cpumask_var(mask);
1057 }
1058 #else
1059 static void xen_drop_mm_ref(struct mm_struct *mm)
1060 {
1061 	if (current->active_mm == mm)
1062 		load_cr3(swapper_pg_dir);
1063 }
1064 #endif
1065 
1066 /*
1067  * While a process runs, Xen pins its pagetables, which means that the
1068  * hypervisor forces it to be read-only, and it controls all updates
1069  * to it.  This means that all pagetable updates have to go via the
1070  * hypervisor, which is moderately expensive.
1071  *
1072  * Since we're pulling the pagetable down, we switch to use init_mm,
1073  * unpin old process pagetable and mark it all read-write, which
1074  * allows further operations on it to be simple memory accesses.
1075  *
1076  * The only subtle point is that another CPU may be still using the
1077  * pagetable because of lazy tlb flushing.  This means we need need to
1078  * switch all CPUs off this pagetable before we can unpin it.
1079  */
1080 static void xen_exit_mmap(struct mm_struct *mm)
1081 {
1082 	get_cpu();		/* make sure we don't move around */
1083 	xen_drop_mm_ref(mm);
1084 	put_cpu();
1085 
1086 	spin_lock(&mm->page_table_lock);
1087 
1088 	/* pgd may not be pinned in the error exit path of execve */
1089 	if (xen_page_pinned(mm->pgd))
1090 		xen_pgd_unpin(mm);
1091 
1092 	spin_unlock(&mm->page_table_lock);
1093 }
1094 
1095 static void xen_post_allocator_init(void);
1096 
1097 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098 {
1099 	struct mmuext_op op;
1100 
1101 	op.cmd = cmd;
1102 	op.arg1.mfn = pfn_to_mfn(pfn);
1103 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104 		BUG();
1105 }
1106 
1107 #ifdef CONFIG_X86_64
1108 static void __init xen_cleanhighmap(unsigned long vaddr,
1109 				    unsigned long vaddr_end)
1110 {
1111 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113 
1114 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115 	 * We include the PMD passed in on _both_ boundaries. */
1116 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1117 			pmd++, vaddr += PMD_SIZE) {
1118 		if (pmd_none(*pmd))
1119 			continue;
1120 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121 			set_pmd(pmd, __pmd(0));
1122 	}
1123 	/* In case we did something silly, we should crash in this function
1124 	 * instead of somewhere later and be confusing. */
1125 	xen_mc_flush();
1126 }
1127 
1128 /*
1129  * Make a page range writeable and free it.
1130  */
1131 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132 {
1133 	void *vaddr = __va(paddr);
1134 	void *vaddr_end = vaddr + size;
1135 
1136 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137 		make_lowmem_page_readwrite(vaddr);
1138 
1139 	memblock_free(paddr, size);
1140 }
1141 
1142 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143 {
1144 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145 
1146 	if (unpin)
1147 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148 	ClearPagePinned(virt_to_page(__va(pa)));
1149 	xen_free_ro_pages(pa, PAGE_SIZE);
1150 }
1151 
1152 /*
1153  * Since it is well isolated we can (and since it is perhaps large we should)
1154  * also free the page tables mapping the initial P->M table.
1155  */
1156 static void __init xen_cleanmfnmap(unsigned long vaddr)
1157 {
1158 	unsigned long va = vaddr & PMD_MASK;
1159 	unsigned long pa;
1160 	pgd_t *pgd = pgd_offset_k(va);
1161 	pud_t *pud_page = pud_offset(pgd, 0);
1162 	pud_t *pud;
1163 	pmd_t *pmd;
1164 	pte_t *pte;
1165 	unsigned int i;
1166 	bool unpin;
1167 
1168 	unpin = (vaddr == 2 * PGDIR_SIZE);
1169 	set_pgd(pgd, __pgd(0));
1170 	do {
1171 		pud = pud_page + pud_index(va);
1172 		if (pud_none(*pud)) {
1173 			va += PUD_SIZE;
1174 		} else if (pud_large(*pud)) {
1175 			pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176 			xen_free_ro_pages(pa, PUD_SIZE);
1177 			va += PUD_SIZE;
1178 		} else {
1179 			pmd = pmd_offset(pud, va);
1180 			if (pmd_large(*pmd)) {
1181 				pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182 				xen_free_ro_pages(pa, PMD_SIZE);
1183 			} else if (!pmd_none(*pmd)) {
1184 				pte = pte_offset_kernel(pmd, va);
1185 				set_pmd(pmd, __pmd(0));
1186 				for (i = 0; i < PTRS_PER_PTE; ++i) {
1187 					if (pte_none(pte[i]))
1188 						break;
1189 					pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190 					xen_free_ro_pages(pa, PAGE_SIZE);
1191 				}
1192 				xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193 			}
1194 			va += PMD_SIZE;
1195 			if (pmd_index(va))
1196 				continue;
1197 			set_pud(pud, __pud(0));
1198 			xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199 		}
1200 
1201 	} while (pud_index(va) || pmd_index(va));
1202 	xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203 }
1204 
1205 static void __init xen_pagetable_p2m_free(void)
1206 {
1207 	unsigned long size;
1208 	unsigned long addr;
1209 
1210 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211 
1212 	/* No memory or already called. */
1213 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214 		return;
1215 
1216 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1217 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1218 
1219 	addr = xen_start_info->mfn_list;
1220 	/*
1221 	 * We could be in __ka space.
1222 	 * We roundup to the PMD, which means that if anybody at this stage is
1223 	 * using the __ka address of xen_start_info or
1224 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1225 	 * we have already revectored in xen_setup_kernel_pagetable and in
1226 	 * xen_setup_shared_info.
1227 	 */
1228 	size = roundup(size, PMD_SIZE);
1229 
1230 	if (addr >= __START_KERNEL_map) {
1231 		xen_cleanhighmap(addr, addr + size);
1232 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1233 				  sizeof(unsigned long));
1234 		memblock_free(__pa(addr), size);
1235 	} else {
1236 		xen_cleanmfnmap(addr);
1237 	}
1238 }
1239 
1240 static void __init xen_pagetable_cleanhighmap(void)
1241 {
1242 	unsigned long size;
1243 	unsigned long addr;
1244 
1245 	/* At this stage, cleanup_highmap has already cleaned __ka space
1246 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1248 	 * tables - do note that they are accessible at this stage via __va.
1249 	 * For good measure we also round up to the PMD - which means that if
1250 	 * anybody is using __ka address to the initial boot-stack - and try
1251 	 * to use it - they are going to crash. The xen_start_info has been
1252 	 * taken care of already in xen_setup_kernel_pagetable. */
1253 	addr = xen_start_info->pt_base;
1254 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255 
1256 	xen_cleanhighmap(addr, addr + size);
1257 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258 #ifdef DEBUG
1259 	/* This is superfluous and is not necessary, but you know what
1260 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261 	 * anything at this stage. */
1262 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263 #endif
1264 }
1265 #endif
1266 
1267 static void __init xen_pagetable_p2m_setup(void)
1268 {
1269 	if (xen_feature(XENFEAT_auto_translated_physmap))
1270 		return;
1271 
1272 	xen_vmalloc_p2m_tree();
1273 
1274 #ifdef CONFIG_X86_64
1275 	xen_pagetable_p2m_free();
1276 
1277 	xen_pagetable_cleanhighmap();
1278 #endif
1279 	/* And revector! Bye bye old array */
1280 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281 }
1282 
1283 static void __init xen_pagetable_init(void)
1284 {
1285 	paging_init();
1286 	xen_post_allocator_init();
1287 
1288 	xen_pagetable_p2m_setup();
1289 
1290 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1291 	xen_build_mfn_list_list();
1292 
1293 	/* Remap memory freed due to conflicts with E820 map */
1294 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1295 		xen_remap_memory();
1296 
1297 	xen_setup_shared_info();
1298 }
1299 static void xen_write_cr2(unsigned long cr2)
1300 {
1301 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302 }
1303 
1304 static unsigned long xen_read_cr2(void)
1305 {
1306 	return this_cpu_read(xen_vcpu)->arch.cr2;
1307 }
1308 
1309 unsigned long xen_read_cr2_direct(void)
1310 {
1311 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1312 }
1313 
1314 void xen_flush_tlb_all(void)
1315 {
1316 	struct mmuext_op *op;
1317 	struct multicall_space mcs;
1318 
1319 	trace_xen_mmu_flush_tlb_all(0);
1320 
1321 	preempt_disable();
1322 
1323 	mcs = xen_mc_entry(sizeof(*op));
1324 
1325 	op = mcs.args;
1326 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1327 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1328 
1329 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1330 
1331 	preempt_enable();
1332 }
1333 static void xen_flush_tlb(void)
1334 {
1335 	struct mmuext_op *op;
1336 	struct multicall_space mcs;
1337 
1338 	trace_xen_mmu_flush_tlb(0);
1339 
1340 	preempt_disable();
1341 
1342 	mcs = xen_mc_entry(sizeof(*op));
1343 
1344 	op = mcs.args;
1345 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1346 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1347 
1348 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1349 
1350 	preempt_enable();
1351 }
1352 
1353 static void xen_flush_tlb_single(unsigned long addr)
1354 {
1355 	struct mmuext_op *op;
1356 	struct multicall_space mcs;
1357 
1358 	trace_xen_mmu_flush_tlb_single(addr);
1359 
1360 	preempt_disable();
1361 
1362 	mcs = xen_mc_entry(sizeof(*op));
1363 	op = mcs.args;
1364 	op->cmd = MMUEXT_INVLPG_LOCAL;
1365 	op->arg1.linear_addr = addr & PAGE_MASK;
1366 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1367 
1368 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1369 
1370 	preempt_enable();
1371 }
1372 
1373 static void xen_flush_tlb_others(const struct cpumask *cpus,
1374 				 struct mm_struct *mm, unsigned long start,
1375 				 unsigned long end)
1376 {
1377 	struct {
1378 		struct mmuext_op op;
1379 #ifdef CONFIG_SMP
1380 		DECLARE_BITMAP(mask, num_processors);
1381 #else
1382 		DECLARE_BITMAP(mask, NR_CPUS);
1383 #endif
1384 	} *args;
1385 	struct multicall_space mcs;
1386 
1387 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1388 
1389 	if (cpumask_empty(cpus))
1390 		return;		/* nothing to do */
1391 
1392 	mcs = xen_mc_entry(sizeof(*args));
1393 	args = mcs.args;
1394 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1395 
1396 	/* Remove us, and any offline CPUS. */
1397 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1398 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1399 
1400 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1401 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1402 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1403 		args->op.arg1.linear_addr = start;
1404 	}
1405 
1406 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1407 
1408 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1409 }
1410 
1411 static unsigned long xen_read_cr3(void)
1412 {
1413 	return this_cpu_read(xen_cr3);
1414 }
1415 
1416 static void set_current_cr3(void *v)
1417 {
1418 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1419 }
1420 
1421 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1422 {
1423 	struct mmuext_op op;
1424 	unsigned long mfn;
1425 
1426 	trace_xen_mmu_write_cr3(kernel, cr3);
1427 
1428 	if (cr3)
1429 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1430 	else
1431 		mfn = 0;
1432 
1433 	WARN_ON(mfn == 0 && kernel);
1434 
1435 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1436 	op.arg1.mfn = mfn;
1437 
1438 	xen_extend_mmuext_op(&op);
1439 
1440 	if (kernel) {
1441 		this_cpu_write(xen_cr3, cr3);
1442 
1443 		/* Update xen_current_cr3 once the batch has actually
1444 		   been submitted. */
1445 		xen_mc_callback(set_current_cr3, (void *)cr3);
1446 	}
1447 }
1448 static void xen_write_cr3(unsigned long cr3)
1449 {
1450 	BUG_ON(preemptible());
1451 
1452 	xen_mc_batch();  /* disables interrupts */
1453 
1454 	/* Update while interrupts are disabled, so its atomic with
1455 	   respect to ipis */
1456 	this_cpu_write(xen_cr3, cr3);
1457 
1458 	__xen_write_cr3(true, cr3);
1459 
1460 #ifdef CONFIG_X86_64
1461 	{
1462 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1463 		if (user_pgd)
1464 			__xen_write_cr3(false, __pa(user_pgd));
1465 		else
1466 			__xen_write_cr3(false, 0);
1467 	}
1468 #endif
1469 
1470 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1471 }
1472 
1473 #ifdef CONFIG_X86_64
1474 /*
1475  * At the start of the day - when Xen launches a guest, it has already
1476  * built pagetables for the guest. We diligently look over them
1477  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1478  * init_level4_pgt and its friends. Then when we are happy we load
1479  * the new init_level4_pgt - and continue on.
1480  *
1481  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1482  * up the rest of the pagetables. When it has completed it loads the cr3.
1483  * N.B. that baremetal would start at 'start_kernel' (and the early
1484  * #PF handler would create bootstrap pagetables) - so we are running
1485  * with the same assumptions as what to do when write_cr3 is executed
1486  * at this point.
1487  *
1488  * Since there are no user-page tables at all, we have two variants
1489  * of xen_write_cr3 - the early bootup (this one), and the late one
1490  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1491  * the Linux kernel and user-space are both in ring 3 while the
1492  * hypervisor is in ring 0.
1493  */
1494 static void __init xen_write_cr3_init(unsigned long cr3)
1495 {
1496 	BUG_ON(preemptible());
1497 
1498 	xen_mc_batch();  /* disables interrupts */
1499 
1500 	/* Update while interrupts are disabled, so its atomic with
1501 	   respect to ipis */
1502 	this_cpu_write(xen_cr3, cr3);
1503 
1504 	__xen_write_cr3(true, cr3);
1505 
1506 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1507 }
1508 #endif
1509 
1510 static int xen_pgd_alloc(struct mm_struct *mm)
1511 {
1512 	pgd_t *pgd = mm->pgd;
1513 	int ret = 0;
1514 
1515 	BUG_ON(PagePinned(virt_to_page(pgd)));
1516 
1517 #ifdef CONFIG_X86_64
1518 	{
1519 		struct page *page = virt_to_page(pgd);
1520 		pgd_t *user_pgd;
1521 
1522 		BUG_ON(page->private != 0);
1523 
1524 		ret = -ENOMEM;
1525 
1526 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1527 		page->private = (unsigned long)user_pgd;
1528 
1529 		if (user_pgd != NULL) {
1530 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1531 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1532 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1533 #endif
1534 			ret = 0;
1535 		}
1536 
1537 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1538 	}
1539 #endif
1540 
1541 	return ret;
1542 }
1543 
1544 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1545 {
1546 #ifdef CONFIG_X86_64
1547 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1548 
1549 	if (user_pgd)
1550 		free_page((unsigned long)user_pgd);
1551 #endif
1552 }
1553 
1554 #ifdef CONFIG_X86_32
1555 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1556 {
1557 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1558 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1559 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1560 			       pte_val_ma(pte));
1561 
1562 	return pte;
1563 }
1564 #else /* CONFIG_X86_64 */
1565 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1566 {
1567 	unsigned long pfn;
1568 
1569 	if (xen_feature(XENFEAT_writable_page_tables) ||
1570 	    xen_feature(XENFEAT_auto_translated_physmap) ||
1571 	    xen_start_info->mfn_list >= __START_KERNEL_map)
1572 		return pte;
1573 
1574 	/*
1575 	 * Pages belonging to the initial p2m list mapped outside the default
1576 	 * address range must be mapped read-only. This region contains the
1577 	 * page tables for mapping the p2m list, too, and page tables MUST be
1578 	 * mapped read-only.
1579 	 */
1580 	pfn = pte_pfn(pte);
1581 	if (pfn >= xen_start_info->first_p2m_pfn &&
1582 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1583 		pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
1584 
1585 	return pte;
1586 }
1587 #endif /* CONFIG_X86_64 */
1588 
1589 /*
1590  * Init-time set_pte while constructing initial pagetables, which
1591  * doesn't allow RO page table pages to be remapped RW.
1592  *
1593  * If there is no MFN for this PFN then this page is initially
1594  * ballooned out so clear the PTE (as in decrease_reservation() in
1595  * drivers/xen/balloon.c).
1596  *
1597  * Many of these PTE updates are done on unpinned and writable pages
1598  * and doing a hypercall for these is unnecessary and expensive.  At
1599  * this point it is not possible to tell if a page is pinned or not,
1600  * so always write the PTE directly and rely on Xen trapping and
1601  * emulating any updates as necessary.
1602  */
1603 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1604 {
1605 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1606 		pte = mask_rw_pte(ptep, pte);
1607 	else
1608 		pte = __pte_ma(0);
1609 
1610 	native_set_pte(ptep, pte);
1611 }
1612 
1613 /* Early in boot, while setting up the initial pagetable, assume
1614    everything is pinned. */
1615 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1616 {
1617 #ifdef CONFIG_FLATMEM
1618 	BUG_ON(mem_map);	/* should only be used early */
1619 #endif
1620 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1621 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1622 }
1623 
1624 /* Used for pmd and pud */
1625 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1626 {
1627 #ifdef CONFIG_FLATMEM
1628 	BUG_ON(mem_map);	/* should only be used early */
1629 #endif
1630 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1631 }
1632 
1633 /* Early release_pte assumes that all pts are pinned, since there's
1634    only init_mm and anything attached to that is pinned. */
1635 static void __init xen_release_pte_init(unsigned long pfn)
1636 {
1637 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1638 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1639 }
1640 
1641 static void __init xen_release_pmd_init(unsigned long pfn)
1642 {
1643 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1644 }
1645 
1646 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1647 {
1648 	struct multicall_space mcs;
1649 	struct mmuext_op *op;
1650 
1651 	mcs = __xen_mc_entry(sizeof(*op));
1652 	op = mcs.args;
1653 	op->cmd = cmd;
1654 	op->arg1.mfn = pfn_to_mfn(pfn);
1655 
1656 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1657 }
1658 
1659 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1660 {
1661 	struct multicall_space mcs;
1662 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1663 
1664 	mcs = __xen_mc_entry(0);
1665 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1666 				pfn_pte(pfn, prot), 0);
1667 }
1668 
1669 /* This needs to make sure the new pte page is pinned iff its being
1670    attached to a pinned pagetable. */
1671 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1672 				    unsigned level)
1673 {
1674 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1675 
1676 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1677 
1678 	if (pinned) {
1679 		struct page *page = pfn_to_page(pfn);
1680 
1681 		SetPagePinned(page);
1682 
1683 		if (!PageHighMem(page)) {
1684 			xen_mc_batch();
1685 
1686 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1687 
1688 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1689 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1690 
1691 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1692 		} else {
1693 			/* make sure there are no stray mappings of
1694 			   this page */
1695 			kmap_flush_unused();
1696 		}
1697 	}
1698 }
1699 
1700 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1701 {
1702 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1703 }
1704 
1705 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1706 {
1707 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1708 }
1709 
1710 /* This should never happen until we're OK to use struct page */
1711 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1712 {
1713 	struct page *page = pfn_to_page(pfn);
1714 	bool pinned = PagePinned(page);
1715 
1716 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1717 
1718 	if (pinned) {
1719 		if (!PageHighMem(page)) {
1720 			xen_mc_batch();
1721 
1722 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1723 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1724 
1725 			__set_pfn_prot(pfn, PAGE_KERNEL);
1726 
1727 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1728 		}
1729 		ClearPagePinned(page);
1730 	}
1731 }
1732 
1733 static void xen_release_pte(unsigned long pfn)
1734 {
1735 	xen_release_ptpage(pfn, PT_PTE);
1736 }
1737 
1738 static void xen_release_pmd(unsigned long pfn)
1739 {
1740 	xen_release_ptpage(pfn, PT_PMD);
1741 }
1742 
1743 #if CONFIG_PGTABLE_LEVELS == 4
1744 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1745 {
1746 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1747 }
1748 
1749 static void xen_release_pud(unsigned long pfn)
1750 {
1751 	xen_release_ptpage(pfn, PT_PUD);
1752 }
1753 #endif
1754 
1755 void __init xen_reserve_top(void)
1756 {
1757 #ifdef CONFIG_X86_32
1758 	unsigned long top = HYPERVISOR_VIRT_START;
1759 	struct xen_platform_parameters pp;
1760 
1761 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1762 		top = pp.virt_start;
1763 
1764 	reserve_top_address(-top);
1765 #endif	/* CONFIG_X86_32 */
1766 }
1767 
1768 /*
1769  * Like __va(), but returns address in the kernel mapping (which is
1770  * all we have until the physical memory mapping has been set up.
1771  */
1772 static void * __init __ka(phys_addr_t paddr)
1773 {
1774 #ifdef CONFIG_X86_64
1775 	return (void *)(paddr + __START_KERNEL_map);
1776 #else
1777 	return __va(paddr);
1778 #endif
1779 }
1780 
1781 /* Convert a machine address to physical address */
1782 static unsigned long __init m2p(phys_addr_t maddr)
1783 {
1784 	phys_addr_t paddr;
1785 
1786 	maddr &= PTE_PFN_MASK;
1787 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1788 
1789 	return paddr;
1790 }
1791 
1792 /* Convert a machine address to kernel virtual */
1793 static void * __init m2v(phys_addr_t maddr)
1794 {
1795 	return __ka(m2p(maddr));
1796 }
1797 
1798 /* Set the page permissions on an identity-mapped pages */
1799 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1800 				       unsigned long flags)
1801 {
1802 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1803 	pte_t pte = pfn_pte(pfn, prot);
1804 
1805 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1806 	if (xen_feature(XENFEAT_auto_translated_physmap))
1807 		return;
1808 
1809 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1810 		BUG();
1811 }
1812 static void __init set_page_prot(void *addr, pgprot_t prot)
1813 {
1814 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1815 }
1816 #ifdef CONFIG_X86_32
1817 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1818 {
1819 	unsigned pmdidx, pteidx;
1820 	unsigned ident_pte;
1821 	unsigned long pfn;
1822 
1823 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1824 				      PAGE_SIZE);
1825 
1826 	ident_pte = 0;
1827 	pfn = 0;
1828 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1829 		pte_t *pte_page;
1830 
1831 		/* Reuse or allocate a page of ptes */
1832 		if (pmd_present(pmd[pmdidx]))
1833 			pte_page = m2v(pmd[pmdidx].pmd);
1834 		else {
1835 			/* Check for free pte pages */
1836 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1837 				break;
1838 
1839 			pte_page = &level1_ident_pgt[ident_pte];
1840 			ident_pte += PTRS_PER_PTE;
1841 
1842 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1843 		}
1844 
1845 		/* Install mappings */
1846 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1847 			pte_t pte;
1848 
1849 			if (pfn > max_pfn_mapped)
1850 				max_pfn_mapped = pfn;
1851 
1852 			if (!pte_none(pte_page[pteidx]))
1853 				continue;
1854 
1855 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1856 			pte_page[pteidx] = pte;
1857 		}
1858 	}
1859 
1860 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1861 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1862 
1863 	set_page_prot(pmd, PAGE_KERNEL_RO);
1864 }
1865 #endif
1866 void __init xen_setup_machphys_mapping(void)
1867 {
1868 	struct xen_machphys_mapping mapping;
1869 
1870 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1871 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1872 		machine_to_phys_nr = mapping.max_mfn + 1;
1873 	} else {
1874 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1875 	}
1876 #ifdef CONFIG_X86_32
1877 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1878 		< machine_to_phys_mapping);
1879 #endif
1880 }
1881 
1882 #ifdef CONFIG_X86_64
1883 static void __init convert_pfn_mfn(void *v)
1884 {
1885 	pte_t *pte = v;
1886 	int i;
1887 
1888 	/* All levels are converted the same way, so just treat them
1889 	   as ptes. */
1890 	for (i = 0; i < PTRS_PER_PTE; i++)
1891 		pte[i] = xen_make_pte(pte[i].pte);
1892 }
1893 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1894 				 unsigned long addr)
1895 {
1896 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1897 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1898 		clear_page((void *)addr);
1899 		(*pt_base)++;
1900 	}
1901 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1902 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1903 		clear_page((void *)addr);
1904 		(*pt_end)--;
1905 	}
1906 }
1907 /*
1908  * Set up the initial kernel pagetable.
1909  *
1910  * We can construct this by grafting the Xen provided pagetable into
1911  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1912  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1913  * kernel has a physical mapping to start with - but that's enough to
1914  * get __va working.  We need to fill in the rest of the physical
1915  * mapping once some sort of allocator has been set up.  NOTE: for
1916  * PVH, the page tables are native.
1917  */
1918 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1919 {
1920 	pud_t *l3;
1921 	pmd_t *l2;
1922 	unsigned long addr[3];
1923 	unsigned long pt_base, pt_end;
1924 	unsigned i;
1925 
1926 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1927 	 * mappings. Considering that on Xen after the kernel mappings we
1928 	 * have the mappings of some pages that don't exist in pfn space, we
1929 	 * set max_pfn_mapped to the last real pfn mapped. */
1930 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1931 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1932 	else
1933 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1934 
1935 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1936 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1937 
1938 	/* Zap identity mapping */
1939 	init_level4_pgt[0] = __pgd(0);
1940 
1941 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1942 		/* Pre-constructed entries are in pfn, so convert to mfn */
1943 		/* L4[272] -> level3_ident_pgt
1944 		 * L4[511] -> level3_kernel_pgt */
1945 		convert_pfn_mfn(init_level4_pgt);
1946 
1947 		/* L3_i[0] -> level2_ident_pgt */
1948 		convert_pfn_mfn(level3_ident_pgt);
1949 		/* L3_k[510] -> level2_kernel_pgt
1950 		 * L3_k[511] -> level2_fixmap_pgt */
1951 		convert_pfn_mfn(level3_kernel_pgt);
1952 
1953 		/* L3_k[511][506] -> level1_fixmap_pgt */
1954 		convert_pfn_mfn(level2_fixmap_pgt);
1955 	}
1956 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1957 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1958 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1959 
1960 	addr[0] = (unsigned long)pgd;
1961 	addr[1] = (unsigned long)l3;
1962 	addr[2] = (unsigned long)l2;
1963 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1964 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1965 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1966 	 * it will be also modified in the __ka space! (But if you just
1967 	 * modify the PMD table to point to other PTE's or none, then you
1968 	 * are OK - which is what cleanup_highmap does) */
1969 	copy_page(level2_ident_pgt, l2);
1970 	/* Graft it onto L4[511][510] */
1971 	copy_page(level2_kernel_pgt, l2);
1972 
1973 	/* Copy the initial P->M table mappings if necessary. */
1974 	i = pgd_index(xen_start_info->mfn_list);
1975 	if (i && i < pgd_index(__START_KERNEL_map))
1976 		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1977 
1978 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1979 		/* Make pagetable pieces RO */
1980 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1981 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1982 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1983 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1984 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1985 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1986 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1987 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1988 
1989 		/* Pin down new L4 */
1990 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1991 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1992 
1993 		/* Unpin Xen-provided one */
1994 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1995 
1996 		/*
1997 		 * At this stage there can be no user pgd, and no page
1998 		 * structure to attach it to, so make sure we just set kernel
1999 		 * pgd.
2000 		 */
2001 		xen_mc_batch();
2002 		__xen_write_cr3(true, __pa(init_level4_pgt));
2003 		xen_mc_issue(PARAVIRT_LAZY_CPU);
2004 	} else
2005 		native_write_cr3(__pa(init_level4_pgt));
2006 
2007 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
2008 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
2009 	 * the initial domain. For guests using the toolstack, they are in:
2010 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2011 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
2012 	 */
2013 	for (i = 0; i < ARRAY_SIZE(addr); i++)
2014 		check_pt_base(&pt_base, &pt_end, addr[i]);
2015 
2016 	/* Our (by three pages) smaller Xen pagetable that we are using */
2017 	xen_pt_base = PFN_PHYS(pt_base);
2018 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2019 	memblock_reserve(xen_pt_base, xen_pt_size);
2020 
2021 	/* Revector the xen_start_info */
2022 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2023 }
2024 
2025 /*
2026  * Read a value from a physical address.
2027  */
2028 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2029 {
2030 	unsigned long *vaddr;
2031 	unsigned long val;
2032 
2033 	vaddr = early_memremap_ro(addr, sizeof(val));
2034 	val = *vaddr;
2035 	early_memunmap(vaddr, sizeof(val));
2036 	return val;
2037 }
2038 
2039 /*
2040  * Translate a virtual address to a physical one without relying on mapped
2041  * page tables.
2042  */
2043 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2044 {
2045 	phys_addr_t pa;
2046 	pgd_t pgd;
2047 	pud_t pud;
2048 	pmd_t pmd;
2049 	pte_t pte;
2050 
2051 	pa = read_cr3();
2052 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2053 						       sizeof(pgd)));
2054 	if (!pgd_present(pgd))
2055 		return 0;
2056 
2057 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2058 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2059 						       sizeof(pud)));
2060 	if (!pud_present(pud))
2061 		return 0;
2062 	pa = pud_pfn(pud) << PAGE_SHIFT;
2063 	if (pud_large(pud))
2064 		return pa + (vaddr & ~PUD_MASK);
2065 
2066 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2067 						       sizeof(pmd)));
2068 	if (!pmd_present(pmd))
2069 		return 0;
2070 	pa = pmd_pfn(pmd) << PAGE_SHIFT;
2071 	if (pmd_large(pmd))
2072 		return pa + (vaddr & ~PMD_MASK);
2073 
2074 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2075 						       sizeof(pte)));
2076 	if (!pte_present(pte))
2077 		return 0;
2078 	pa = pte_pfn(pte) << PAGE_SHIFT;
2079 
2080 	return pa | (vaddr & ~PAGE_MASK);
2081 }
2082 
2083 /*
2084  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2085  * this area.
2086  */
2087 void __init xen_relocate_p2m(void)
2088 {
2089 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2090 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2091 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2092 	pte_t *pt;
2093 	pmd_t *pmd;
2094 	pud_t *pud;
2095 	pgd_t *pgd;
2096 	unsigned long *new_p2m;
2097 
2098 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2099 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2100 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2101 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2102 	n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2103 	n_frames = n_pte + n_pt + n_pmd + n_pud;
2104 
2105 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2106 	if (!new_area) {
2107 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2108 		BUG();
2109 	}
2110 
2111 	/*
2112 	 * Setup the page tables for addressing the new p2m list.
2113 	 * We have asked the hypervisor to map the p2m list at the user address
2114 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2115 	 * address depending on the Xen version.
2116 	 * To avoid any possible virtual address collision, just use
2117 	 * 2 * PUD_SIZE for the new area.
2118 	 */
2119 	pud_phys = new_area;
2120 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2121 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2122 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2123 
2124 	pgd = __va(read_cr3());
2125 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2126 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2127 		pud = early_memremap(pud_phys, PAGE_SIZE);
2128 		clear_page(pud);
2129 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2130 		     idx_pmd++) {
2131 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2132 			clear_page(pmd);
2133 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2134 			     idx_pt++) {
2135 				pt = early_memremap(pt_phys, PAGE_SIZE);
2136 				clear_page(pt);
2137 				for (idx_pte = 0;
2138 				     idx_pte < min(n_pte, PTRS_PER_PTE);
2139 				     idx_pte++) {
2140 					set_pte(pt + idx_pte,
2141 						pfn_pte(p2m_pfn, PAGE_KERNEL));
2142 					p2m_pfn++;
2143 				}
2144 				n_pte -= PTRS_PER_PTE;
2145 				early_memunmap(pt, PAGE_SIZE);
2146 				make_lowmem_page_readonly(__va(pt_phys));
2147 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2148 						  PFN_DOWN(pt_phys));
2149 				set_pmd(pmd + idx_pt,
2150 					__pmd(_PAGE_TABLE | pt_phys));
2151 				pt_phys += PAGE_SIZE;
2152 			}
2153 			n_pt -= PTRS_PER_PMD;
2154 			early_memunmap(pmd, PAGE_SIZE);
2155 			make_lowmem_page_readonly(__va(pmd_phys));
2156 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2157 					  PFN_DOWN(pmd_phys));
2158 			set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2159 			pmd_phys += PAGE_SIZE;
2160 		}
2161 		n_pmd -= PTRS_PER_PUD;
2162 		early_memunmap(pud, PAGE_SIZE);
2163 		make_lowmem_page_readonly(__va(pud_phys));
2164 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2165 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2166 		pud_phys += PAGE_SIZE;
2167 	}
2168 
2169 	/* Now copy the old p2m info to the new area. */
2170 	memcpy(new_p2m, xen_p2m_addr, size);
2171 	xen_p2m_addr = new_p2m;
2172 
2173 	/* Release the old p2m list and set new list info. */
2174 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2175 	BUG_ON(!p2m_pfn);
2176 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2177 
2178 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2179 		pfn = xen_start_info->first_p2m_pfn;
2180 		pfn_end = xen_start_info->first_p2m_pfn +
2181 			  xen_start_info->nr_p2m_frames;
2182 		set_pgd(pgd + 1, __pgd(0));
2183 	} else {
2184 		pfn = p2m_pfn;
2185 		pfn_end = p2m_pfn_end;
2186 	}
2187 
2188 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2189 	while (pfn < pfn_end) {
2190 		if (pfn == p2m_pfn) {
2191 			pfn = p2m_pfn_end;
2192 			continue;
2193 		}
2194 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2195 		pfn++;
2196 	}
2197 
2198 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2199 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2200 	xen_start_info->nr_p2m_frames = n_frames;
2201 }
2202 
2203 #else	/* !CONFIG_X86_64 */
2204 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2205 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2206 
2207 static void __init xen_write_cr3_init(unsigned long cr3)
2208 {
2209 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2210 
2211 	BUG_ON(read_cr3() != __pa(initial_page_table));
2212 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2213 
2214 	/*
2215 	 * We are switching to swapper_pg_dir for the first time (from
2216 	 * initial_page_table) and therefore need to mark that page
2217 	 * read-only and then pin it.
2218 	 *
2219 	 * Xen disallows sharing of kernel PMDs for PAE
2220 	 * guests. Therefore we must copy the kernel PMD from
2221 	 * initial_page_table into a new kernel PMD to be used in
2222 	 * swapper_pg_dir.
2223 	 */
2224 	swapper_kernel_pmd =
2225 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2226 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2227 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2228 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2229 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2230 
2231 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2232 	xen_write_cr3(cr3);
2233 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2234 
2235 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2236 			  PFN_DOWN(__pa(initial_page_table)));
2237 	set_page_prot(initial_page_table, PAGE_KERNEL);
2238 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2239 
2240 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2241 }
2242 
2243 /*
2244  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2245  * not the first page table in the page table pool.
2246  * Iterate through the initial page tables to find the real page table base.
2247  */
2248 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2249 {
2250 	phys_addr_t pt_base, paddr;
2251 	unsigned pmdidx;
2252 
2253 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2254 
2255 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2256 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2257 			paddr = m2p(pmd[pmdidx].pmd);
2258 			pt_base = min(pt_base, paddr);
2259 		}
2260 
2261 	return pt_base;
2262 }
2263 
2264 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2265 {
2266 	pmd_t *kernel_pmd;
2267 
2268 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2269 
2270 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2271 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2272 
2273 	initial_kernel_pmd =
2274 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2275 
2276 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2277 
2278 	copy_page(initial_kernel_pmd, kernel_pmd);
2279 
2280 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2281 
2282 	copy_page(initial_page_table, pgd);
2283 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2284 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2285 
2286 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2287 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2288 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2289 
2290 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2291 
2292 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2293 			  PFN_DOWN(__pa(initial_page_table)));
2294 	xen_write_cr3(__pa(initial_page_table));
2295 
2296 	memblock_reserve(xen_pt_base, xen_pt_size);
2297 }
2298 #endif	/* CONFIG_X86_64 */
2299 
2300 void __init xen_reserve_special_pages(void)
2301 {
2302 	phys_addr_t paddr;
2303 
2304 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2305 	if (xen_start_info->store_mfn) {
2306 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2307 		memblock_reserve(paddr, PAGE_SIZE);
2308 	}
2309 	if (!xen_initial_domain()) {
2310 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2311 		memblock_reserve(paddr, PAGE_SIZE);
2312 	}
2313 }
2314 
2315 void __init xen_pt_check_e820(void)
2316 {
2317 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2318 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2319 		BUG();
2320 	}
2321 }
2322 
2323 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2324 
2325 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2326 {
2327 	pte_t pte;
2328 
2329 	phys >>= PAGE_SHIFT;
2330 
2331 	switch (idx) {
2332 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2333 	case FIX_RO_IDT:
2334 #ifdef CONFIG_X86_32
2335 	case FIX_WP_TEST:
2336 # ifdef CONFIG_HIGHMEM
2337 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2338 # endif
2339 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2340 	case VSYSCALL_PAGE:
2341 #endif
2342 	case FIX_TEXT_POKE0:
2343 	case FIX_TEXT_POKE1:
2344 		/* All local page mappings */
2345 		pte = pfn_pte(phys, prot);
2346 		break;
2347 
2348 #ifdef CONFIG_X86_LOCAL_APIC
2349 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2350 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2351 		break;
2352 #endif
2353 
2354 #ifdef CONFIG_X86_IO_APIC
2355 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2356 		/*
2357 		 * We just don't map the IO APIC - all access is via
2358 		 * hypercalls.  Keep the address in the pte for reference.
2359 		 */
2360 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2361 		break;
2362 #endif
2363 
2364 	case FIX_PARAVIRT_BOOTMAP:
2365 		/* This is an MFN, but it isn't an IO mapping from the
2366 		   IO domain */
2367 		pte = mfn_pte(phys, prot);
2368 		break;
2369 
2370 	default:
2371 		/* By default, set_fixmap is used for hardware mappings */
2372 		pte = mfn_pte(phys, prot);
2373 		break;
2374 	}
2375 
2376 	__native_set_fixmap(idx, pte);
2377 
2378 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2379 	/* Replicate changes to map the vsyscall page into the user
2380 	   pagetable vsyscall mapping. */
2381 	if (idx == VSYSCALL_PAGE) {
2382 		unsigned long vaddr = __fix_to_virt(idx);
2383 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2384 	}
2385 #endif
2386 }
2387 
2388 static void __init xen_post_allocator_init(void)
2389 {
2390 	if (xen_feature(XENFEAT_auto_translated_physmap))
2391 		return;
2392 
2393 	pv_mmu_ops.set_pte = xen_set_pte;
2394 	pv_mmu_ops.set_pmd = xen_set_pmd;
2395 	pv_mmu_ops.set_pud = xen_set_pud;
2396 #if CONFIG_PGTABLE_LEVELS == 4
2397 	pv_mmu_ops.set_pgd = xen_set_pgd;
2398 #endif
2399 
2400 	/* This will work as long as patching hasn't happened yet
2401 	   (which it hasn't) */
2402 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2403 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2404 	pv_mmu_ops.release_pte = xen_release_pte;
2405 	pv_mmu_ops.release_pmd = xen_release_pmd;
2406 #if CONFIG_PGTABLE_LEVELS == 4
2407 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2408 	pv_mmu_ops.release_pud = xen_release_pud;
2409 #endif
2410 
2411 #ifdef CONFIG_X86_64
2412 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2413 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2414 #endif
2415 	xen_mark_init_mm_pinned();
2416 }
2417 
2418 static void xen_leave_lazy_mmu(void)
2419 {
2420 	preempt_disable();
2421 	xen_mc_flush();
2422 	paravirt_leave_lazy_mmu();
2423 	preempt_enable();
2424 }
2425 
2426 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2427 	.read_cr2 = xen_read_cr2,
2428 	.write_cr2 = xen_write_cr2,
2429 
2430 	.read_cr3 = xen_read_cr3,
2431 	.write_cr3 = xen_write_cr3_init,
2432 
2433 	.flush_tlb_user = xen_flush_tlb,
2434 	.flush_tlb_kernel = xen_flush_tlb,
2435 	.flush_tlb_single = xen_flush_tlb_single,
2436 	.flush_tlb_others = xen_flush_tlb_others,
2437 
2438 	.pte_update = paravirt_nop,
2439 
2440 	.pgd_alloc = xen_pgd_alloc,
2441 	.pgd_free = xen_pgd_free,
2442 
2443 	.alloc_pte = xen_alloc_pte_init,
2444 	.release_pte = xen_release_pte_init,
2445 	.alloc_pmd = xen_alloc_pmd_init,
2446 	.release_pmd = xen_release_pmd_init,
2447 
2448 	.set_pte = xen_set_pte_init,
2449 	.set_pte_at = xen_set_pte_at,
2450 	.set_pmd = xen_set_pmd_hyper,
2451 
2452 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2453 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2454 
2455 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2456 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2457 
2458 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2459 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2460 
2461 #ifdef CONFIG_X86_PAE
2462 	.set_pte_atomic = xen_set_pte_atomic,
2463 	.pte_clear = xen_pte_clear,
2464 	.pmd_clear = xen_pmd_clear,
2465 #endif	/* CONFIG_X86_PAE */
2466 	.set_pud = xen_set_pud_hyper,
2467 
2468 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2469 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2470 
2471 #if CONFIG_PGTABLE_LEVELS == 4
2472 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2473 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2474 	.set_pgd = xen_set_pgd_hyper,
2475 
2476 	.alloc_pud = xen_alloc_pmd_init,
2477 	.release_pud = xen_release_pmd_init,
2478 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2479 
2480 	.activate_mm = xen_activate_mm,
2481 	.dup_mmap = xen_dup_mmap,
2482 	.exit_mmap = xen_exit_mmap,
2483 
2484 	.lazy_mode = {
2485 		.enter = paravirt_enter_lazy_mmu,
2486 		.leave = xen_leave_lazy_mmu,
2487 		.flush = paravirt_flush_lazy_mmu,
2488 	},
2489 
2490 	.set_fixmap = xen_set_fixmap,
2491 };
2492 
2493 void __init xen_init_mmu_ops(void)
2494 {
2495 	x86_init.paging.pagetable_init = xen_pagetable_init;
2496 
2497 	if (xen_feature(XENFEAT_auto_translated_physmap))
2498 		return;
2499 
2500 	pv_mmu_ops = xen_mmu_ops;
2501 
2502 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2503 }
2504 
2505 /* Protected by xen_reservation_lock. */
2506 #define MAX_CONTIG_ORDER 9 /* 2MB */
2507 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2508 
2509 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2510 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2511 				unsigned long *in_frames,
2512 				unsigned long *out_frames)
2513 {
2514 	int i;
2515 	struct multicall_space mcs;
2516 
2517 	xen_mc_batch();
2518 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2519 		mcs = __xen_mc_entry(0);
2520 
2521 		if (in_frames)
2522 			in_frames[i] = virt_to_mfn(vaddr);
2523 
2524 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2525 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2526 
2527 		if (out_frames)
2528 			out_frames[i] = virt_to_pfn(vaddr);
2529 	}
2530 	xen_mc_issue(0);
2531 }
2532 
2533 /*
2534  * Update the pfn-to-mfn mappings for a virtual address range, either to
2535  * point to an array of mfns, or contiguously from a single starting
2536  * mfn.
2537  */
2538 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2539 				     unsigned long *mfns,
2540 				     unsigned long first_mfn)
2541 {
2542 	unsigned i, limit;
2543 	unsigned long mfn;
2544 
2545 	xen_mc_batch();
2546 
2547 	limit = 1u << order;
2548 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2549 		struct multicall_space mcs;
2550 		unsigned flags;
2551 
2552 		mcs = __xen_mc_entry(0);
2553 		if (mfns)
2554 			mfn = mfns[i];
2555 		else
2556 			mfn = first_mfn + i;
2557 
2558 		if (i < (limit - 1))
2559 			flags = 0;
2560 		else {
2561 			if (order == 0)
2562 				flags = UVMF_INVLPG | UVMF_ALL;
2563 			else
2564 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2565 		}
2566 
2567 		MULTI_update_va_mapping(mcs.mc, vaddr,
2568 				mfn_pte(mfn, PAGE_KERNEL), flags);
2569 
2570 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2571 	}
2572 
2573 	xen_mc_issue(0);
2574 }
2575 
2576 /*
2577  * Perform the hypercall to exchange a region of our pfns to point to
2578  * memory with the required contiguous alignment.  Takes the pfns as
2579  * input, and populates mfns as output.
2580  *
2581  * Returns a success code indicating whether the hypervisor was able to
2582  * satisfy the request or not.
2583  */
2584 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2585 			       unsigned long *pfns_in,
2586 			       unsigned long extents_out,
2587 			       unsigned int order_out,
2588 			       unsigned long *mfns_out,
2589 			       unsigned int address_bits)
2590 {
2591 	long rc;
2592 	int success;
2593 
2594 	struct xen_memory_exchange exchange = {
2595 		.in = {
2596 			.nr_extents   = extents_in,
2597 			.extent_order = order_in,
2598 			.extent_start = pfns_in,
2599 			.domid        = DOMID_SELF
2600 		},
2601 		.out = {
2602 			.nr_extents   = extents_out,
2603 			.extent_order = order_out,
2604 			.extent_start = mfns_out,
2605 			.address_bits = address_bits,
2606 			.domid        = DOMID_SELF
2607 		}
2608 	};
2609 
2610 	BUG_ON(extents_in << order_in != extents_out << order_out);
2611 
2612 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2613 	success = (exchange.nr_exchanged == extents_in);
2614 
2615 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2616 	BUG_ON(success && (rc != 0));
2617 
2618 	return success;
2619 }
2620 
2621 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2622 				 unsigned int address_bits,
2623 				 dma_addr_t *dma_handle)
2624 {
2625 	unsigned long *in_frames = discontig_frames, out_frame;
2626 	unsigned long  flags;
2627 	int            success;
2628 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2629 
2630 	/*
2631 	 * Currently an auto-translated guest will not perform I/O, nor will
2632 	 * it require PAE page directories below 4GB. Therefore any calls to
2633 	 * this function are redundant and can be ignored.
2634 	 */
2635 
2636 	if (xen_feature(XENFEAT_auto_translated_physmap))
2637 		return 0;
2638 
2639 	if (unlikely(order > MAX_CONTIG_ORDER))
2640 		return -ENOMEM;
2641 
2642 	memset((void *) vstart, 0, PAGE_SIZE << order);
2643 
2644 	spin_lock_irqsave(&xen_reservation_lock, flags);
2645 
2646 	/* 1. Zap current PTEs, remembering MFNs. */
2647 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2648 
2649 	/* 2. Get a new contiguous memory extent. */
2650 	out_frame = virt_to_pfn(vstart);
2651 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2652 				      1, order, &out_frame,
2653 				      address_bits);
2654 
2655 	/* 3. Map the new extent in place of old pages. */
2656 	if (success)
2657 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2658 	else
2659 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2660 
2661 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2662 
2663 	*dma_handle = virt_to_machine(vstart).maddr;
2664 	return success ? 0 : -ENOMEM;
2665 }
2666 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2667 
2668 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2669 {
2670 	unsigned long *out_frames = discontig_frames, in_frame;
2671 	unsigned long  flags;
2672 	int success;
2673 	unsigned long vstart;
2674 
2675 	if (xen_feature(XENFEAT_auto_translated_physmap))
2676 		return;
2677 
2678 	if (unlikely(order > MAX_CONTIG_ORDER))
2679 		return;
2680 
2681 	vstart = (unsigned long)phys_to_virt(pstart);
2682 	memset((void *) vstart, 0, PAGE_SIZE << order);
2683 
2684 	spin_lock_irqsave(&xen_reservation_lock, flags);
2685 
2686 	/* 1. Find start MFN of contiguous extent. */
2687 	in_frame = virt_to_mfn(vstart);
2688 
2689 	/* 2. Zap current PTEs. */
2690 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2691 
2692 	/* 3. Do the exchange for non-contiguous MFNs. */
2693 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2694 					0, out_frames, 0);
2695 
2696 	/* 4. Map new pages in place of old pages. */
2697 	if (success)
2698 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2699 	else
2700 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2701 
2702 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2703 }
2704 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2705 
2706 #ifdef CONFIG_XEN_PVHVM
2707 #ifdef CONFIG_PROC_VMCORE
2708 /*
2709  * This function is used in two contexts:
2710  * - the kdump kernel has to check whether a pfn of the crashed kernel
2711  *   was a ballooned page. vmcore is using this function to decide
2712  *   whether to access a pfn of the crashed kernel.
2713  * - the kexec kernel has to check whether a pfn was ballooned by the
2714  *   previous kernel. If the pfn is ballooned, handle it properly.
2715  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2716  * handle the pfn special in this case.
2717  */
2718 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2719 {
2720 	struct xen_hvm_get_mem_type a = {
2721 		.domid = DOMID_SELF,
2722 		.pfn = pfn,
2723 	};
2724 	int ram;
2725 
2726 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2727 		return -ENXIO;
2728 
2729 	switch (a.mem_type) {
2730 		case HVMMEM_mmio_dm:
2731 			ram = 0;
2732 			break;
2733 		case HVMMEM_ram_rw:
2734 		case HVMMEM_ram_ro:
2735 		default:
2736 			ram = 1;
2737 			break;
2738 	}
2739 
2740 	return ram;
2741 }
2742 #endif
2743 
2744 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2745 {
2746 	struct xen_hvm_pagetable_dying a;
2747 	int rc;
2748 
2749 	a.domid = DOMID_SELF;
2750 	a.gpa = __pa(mm->pgd);
2751 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2752 	WARN_ON_ONCE(rc < 0);
2753 }
2754 
2755 static int is_pagetable_dying_supported(void)
2756 {
2757 	struct xen_hvm_pagetable_dying a;
2758 	int rc = 0;
2759 
2760 	a.domid = DOMID_SELF;
2761 	a.gpa = 0x00;
2762 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2763 	if (rc < 0) {
2764 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2765 		return 0;
2766 	}
2767 	return 1;
2768 }
2769 
2770 void __init xen_hvm_init_mmu_ops(void)
2771 {
2772 	if (is_pagetable_dying_supported())
2773 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2774 #ifdef CONFIG_PROC_VMCORE
2775 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2776 #endif
2777 }
2778 #endif
2779 
2780 #define REMAP_BATCH_SIZE 16
2781 
2782 struct remap_data {
2783 	xen_pfn_t *mfn;
2784 	bool contiguous;
2785 	pgprot_t prot;
2786 	struct mmu_update *mmu_update;
2787 };
2788 
2789 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2790 				 unsigned long addr, void *data)
2791 {
2792 	struct remap_data *rmd = data;
2793 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2794 
2795 	/* If we have a contiguous range, just update the mfn itself,
2796 	   else update pointer to be "next mfn". */
2797 	if (rmd->contiguous)
2798 		(*rmd->mfn)++;
2799 	else
2800 		rmd->mfn++;
2801 
2802 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2803 	rmd->mmu_update->val = pte_val_ma(pte);
2804 	rmd->mmu_update++;
2805 
2806 	return 0;
2807 }
2808 
2809 static int do_remap_gfn(struct vm_area_struct *vma,
2810 			unsigned long addr,
2811 			xen_pfn_t *gfn, int nr,
2812 			int *err_ptr, pgprot_t prot,
2813 			unsigned domid,
2814 			struct page **pages)
2815 {
2816 	int err = 0;
2817 	struct remap_data rmd;
2818 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2819 	unsigned long range;
2820 	int mapped = 0;
2821 
2822 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2823 
2824 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2825 #ifdef CONFIG_XEN_PVH
2826 		/* We need to update the local page tables and the xen HAP */
2827 		return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2828 						 prot, domid, pages);
2829 #else
2830 		return -EINVAL;
2831 #endif
2832         }
2833 
2834 	rmd.mfn = gfn;
2835 	rmd.prot = prot;
2836 	/* We use the err_ptr to indicate if there we are doing a contiguous
2837 	 * mapping or a discontigious mapping. */
2838 	rmd.contiguous = !err_ptr;
2839 
2840 	while (nr) {
2841 		int index = 0;
2842 		int done = 0;
2843 		int batch = min(REMAP_BATCH_SIZE, nr);
2844 		int batch_left = batch;
2845 		range = (unsigned long)batch << PAGE_SHIFT;
2846 
2847 		rmd.mmu_update = mmu_update;
2848 		err = apply_to_page_range(vma->vm_mm, addr, range,
2849 					  remap_area_mfn_pte_fn, &rmd);
2850 		if (err)
2851 			goto out;
2852 
2853 		/* We record the error for each page that gives an error, but
2854 		 * continue mapping until the whole set is done */
2855 		do {
2856 			int i;
2857 
2858 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2859 						    batch_left, &done, domid);
2860 
2861 			/*
2862 			 * @err_ptr may be the same buffer as @gfn, so
2863 			 * only clear it after each chunk of @gfn is
2864 			 * used.
2865 			 */
2866 			if (err_ptr) {
2867 				for (i = index; i < index + done; i++)
2868 					err_ptr[i] = 0;
2869 			}
2870 			if (err < 0) {
2871 				if (!err_ptr)
2872 					goto out;
2873 				err_ptr[i] = err;
2874 				done++; /* Skip failed frame. */
2875 			} else
2876 				mapped += done;
2877 			batch_left -= done;
2878 			index += done;
2879 		} while (batch_left);
2880 
2881 		nr -= batch;
2882 		addr += range;
2883 		if (err_ptr)
2884 			err_ptr += batch;
2885 		cond_resched();
2886 	}
2887 out:
2888 
2889 	xen_flush_tlb_all();
2890 
2891 	return err < 0 ? err : mapped;
2892 }
2893 
2894 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2895 			       unsigned long addr,
2896 			       xen_pfn_t gfn, int nr,
2897 			       pgprot_t prot, unsigned domid,
2898 			       struct page **pages)
2899 {
2900 	return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2901 }
2902 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2903 
2904 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2905 			       unsigned long addr,
2906 			       xen_pfn_t *gfn, int nr,
2907 			       int *err_ptr, pgprot_t prot,
2908 			       unsigned domid, struct page **pages)
2909 {
2910 	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2911 	 * and the consequences later is quite hard to detect what the actual
2912 	 * cause of "wrong memory was mapped in".
2913 	 */
2914 	BUG_ON(err_ptr == NULL);
2915 	return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2916 }
2917 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2918 
2919 
2920 /* Returns: 0 success */
2921 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2922 			       int numpgs, struct page **pages)
2923 {
2924 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2925 		return 0;
2926 
2927 #ifdef CONFIG_XEN_PVH
2928 	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2929 #else
2930 	return -EINVAL;
2931 #endif
2932 }
2933 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2934