xref: /linux/arch/x86/xen/enlighten_pv.c (revision ef69f8d2ff09518657c3ecaf2db8408c16549829)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Core of Xen paravirt_ops implementation.
4  *
5  * This file contains the xen_paravirt_ops structure itself, and the
6  * implementations for:
7  * - privileged instructions
8  * - interrupt flags
9  * - segment operations
10  * - booting and setup
11  *
12  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13  */
14 
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/bootmem.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/console.h>
32 #include <linux/pci.h>
33 #include <linux/gfp.h>
34 #include <linux/memblock.h>
35 #include <linux/edd.h>
36 #include <linux/frame.h>
37 
38 #include <xen/xen.h>
39 #include <xen/events.h>
40 #include <xen/interface/xen.h>
41 #include <xen/interface/version.h>
42 #include <xen/interface/physdev.h>
43 #include <xen/interface/vcpu.h>
44 #include <xen/interface/memory.h>
45 #include <xen/interface/nmi.h>
46 #include <xen/interface/xen-mca.h>
47 #include <xen/features.h>
48 #include <xen/page.h>
49 #include <xen/hvc-console.h>
50 #include <xen/acpi.h>
51 
52 #include <asm/paravirt.h>
53 #include <asm/apic.h>
54 #include <asm/page.h>
55 #include <asm/xen/pci.h>
56 #include <asm/xen/hypercall.h>
57 #include <asm/xen/hypervisor.h>
58 #include <asm/xen/cpuid.h>
59 #include <asm/fixmap.h>
60 #include <asm/processor.h>
61 #include <asm/proto.h>
62 #include <asm/msr-index.h>
63 #include <asm/traps.h>
64 #include <asm/setup.h>
65 #include <asm/desc.h>
66 #include <asm/pgalloc.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/reboot.h>
70 #include <asm/stackprotector.h>
71 #include <asm/hypervisor.h>
72 #include <asm/mach_traps.h>
73 #include <asm/mwait.h>
74 #include <asm/pci_x86.h>
75 #include <asm/cpu.h>
76 
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84 
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 #include "pmu.h"
90 
91 void *xen_initial_gdt;
92 
93 static int xen_cpu_up_prepare_pv(unsigned int cpu);
94 static int xen_cpu_dead_pv(unsigned int cpu);
95 
96 struct tls_descs {
97 	struct desc_struct desc[3];
98 };
99 
100 /*
101  * Updating the 3 TLS descriptors in the GDT on every task switch is
102  * surprisingly expensive so we avoid updating them if they haven't
103  * changed.  Since Xen writes different descriptors than the one
104  * passed in the update_descriptor hypercall we keep shadow copies to
105  * compare against.
106  */
107 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
108 
109 static void __init xen_banner(void)
110 {
111 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
112 	struct xen_extraversion extra;
113 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
114 
115 	pr_info("Booting paravirtualized kernel on %s\n", pv_info.name);
116 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
117 	       version >> 16, version & 0xffff, extra.extraversion,
118 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
119 }
120 /* Check if running on Xen version (major, minor) or later */
121 bool
122 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
123 {
124 	unsigned int version;
125 
126 	if (!xen_domain())
127 		return false;
128 
129 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
130 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
131 		((version >> 16) > major))
132 		return true;
133 	return false;
134 }
135 
136 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
137 static __read_mostly unsigned int cpuid_leaf5_edx_val;
138 
139 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
140 		      unsigned int *cx, unsigned int *dx)
141 {
142 	unsigned maskebx = ~0;
143 
144 	/*
145 	 * Mask out inconvenient features, to try and disable as many
146 	 * unsupported kernel subsystems as possible.
147 	 */
148 	switch (*ax) {
149 	case CPUID_MWAIT_LEAF:
150 		/* Synthesize the values.. */
151 		*ax = 0;
152 		*bx = 0;
153 		*cx = cpuid_leaf5_ecx_val;
154 		*dx = cpuid_leaf5_edx_val;
155 		return;
156 
157 	case 0xb:
158 		/* Suppress extended topology stuff */
159 		maskebx = 0;
160 		break;
161 	}
162 
163 	asm(XEN_EMULATE_PREFIX "cpuid"
164 		: "=a" (*ax),
165 		  "=b" (*bx),
166 		  "=c" (*cx),
167 		  "=d" (*dx)
168 		: "0" (*ax), "2" (*cx));
169 
170 	*bx &= maskebx;
171 }
172 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
173 
174 static bool __init xen_check_mwait(void)
175 {
176 #ifdef CONFIG_ACPI
177 	struct xen_platform_op op = {
178 		.cmd			= XENPF_set_processor_pminfo,
179 		.u.set_pminfo.id	= -1,
180 		.u.set_pminfo.type	= XEN_PM_PDC,
181 	};
182 	uint32_t buf[3];
183 	unsigned int ax, bx, cx, dx;
184 	unsigned int mwait_mask;
185 
186 	/* We need to determine whether it is OK to expose the MWAIT
187 	 * capability to the kernel to harvest deeper than C3 states from ACPI
188 	 * _CST using the processor_harvest_xen.c module. For this to work, we
189 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
190 	 * checks against). The hypervisor won't expose the MWAIT flag because
191 	 * it would break backwards compatibility; so we will find out directly
192 	 * from the hardware and hypercall.
193 	 */
194 	if (!xen_initial_domain())
195 		return false;
196 
197 	/*
198 	 * When running under platform earlier than Xen4.2, do not expose
199 	 * mwait, to avoid the risk of loading native acpi pad driver
200 	 */
201 	if (!xen_running_on_version_or_later(4, 2))
202 		return false;
203 
204 	ax = 1;
205 	cx = 0;
206 
207 	native_cpuid(&ax, &bx, &cx, &dx);
208 
209 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
210 		     (1 << (X86_FEATURE_MWAIT % 32));
211 
212 	if ((cx & mwait_mask) != mwait_mask)
213 		return false;
214 
215 	/* We need to emulate the MWAIT_LEAF and for that we need both
216 	 * ecx and edx. The hypercall provides only partial information.
217 	 */
218 
219 	ax = CPUID_MWAIT_LEAF;
220 	bx = 0;
221 	cx = 0;
222 	dx = 0;
223 
224 	native_cpuid(&ax, &bx, &cx, &dx);
225 
226 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
227 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
228 	 */
229 	buf[0] = ACPI_PDC_REVISION_ID;
230 	buf[1] = 1;
231 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
232 
233 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
234 
235 	if ((HYPERVISOR_platform_op(&op) == 0) &&
236 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
237 		cpuid_leaf5_ecx_val = cx;
238 		cpuid_leaf5_edx_val = dx;
239 	}
240 	return true;
241 #else
242 	return false;
243 #endif
244 }
245 
246 static bool __init xen_check_xsave(void)
247 {
248 	unsigned int cx, xsave_mask;
249 
250 	cx = cpuid_ecx(1);
251 
252 	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
253 		     (1 << (X86_FEATURE_OSXSAVE % 32));
254 
255 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
256 	return (cx & xsave_mask) == xsave_mask;
257 }
258 
259 static void __init xen_init_capabilities(void)
260 {
261 	setup_force_cpu_cap(X86_FEATURE_XENPV);
262 	setup_clear_cpu_cap(X86_FEATURE_DCA);
263 	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
264 	setup_clear_cpu_cap(X86_FEATURE_MTRR);
265 	setup_clear_cpu_cap(X86_FEATURE_ACC);
266 	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
267 	setup_clear_cpu_cap(X86_FEATURE_SME);
268 
269 	/*
270 	 * Xen PV would need some work to support PCID: CR3 handling as well
271 	 * as xen_flush_tlb_others() would need updating.
272 	 */
273 	setup_clear_cpu_cap(X86_FEATURE_PCID);
274 
275 	if (!xen_initial_domain())
276 		setup_clear_cpu_cap(X86_FEATURE_ACPI);
277 
278 	if (xen_check_mwait())
279 		setup_force_cpu_cap(X86_FEATURE_MWAIT);
280 	else
281 		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
282 
283 	if (!xen_check_xsave()) {
284 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
285 		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
286 	}
287 }
288 
289 static void xen_set_debugreg(int reg, unsigned long val)
290 {
291 	HYPERVISOR_set_debugreg(reg, val);
292 }
293 
294 static unsigned long xen_get_debugreg(int reg)
295 {
296 	return HYPERVISOR_get_debugreg(reg);
297 }
298 
299 static void xen_end_context_switch(struct task_struct *next)
300 {
301 	xen_mc_flush();
302 	paravirt_end_context_switch(next);
303 }
304 
305 static unsigned long xen_store_tr(void)
306 {
307 	return 0;
308 }
309 
310 /*
311  * Set the page permissions for a particular virtual address.  If the
312  * address is a vmalloc mapping (or other non-linear mapping), then
313  * find the linear mapping of the page and also set its protections to
314  * match.
315  */
316 static void set_aliased_prot(void *v, pgprot_t prot)
317 {
318 	int level;
319 	pte_t *ptep;
320 	pte_t pte;
321 	unsigned long pfn;
322 	struct page *page;
323 	unsigned char dummy;
324 
325 	ptep = lookup_address((unsigned long)v, &level);
326 	BUG_ON(ptep == NULL);
327 
328 	pfn = pte_pfn(*ptep);
329 	page = pfn_to_page(pfn);
330 
331 	pte = pfn_pte(pfn, prot);
332 
333 	/*
334 	 * Careful: update_va_mapping() will fail if the virtual address
335 	 * we're poking isn't populated in the page tables.  We don't
336 	 * need to worry about the direct map (that's always in the page
337 	 * tables), but we need to be careful about vmap space.  In
338 	 * particular, the top level page table can lazily propagate
339 	 * entries between processes, so if we've switched mms since we
340 	 * vmapped the target in the first place, we might not have the
341 	 * top-level page table entry populated.
342 	 *
343 	 * We disable preemption because we want the same mm active when
344 	 * we probe the target and when we issue the hypercall.  We'll
345 	 * have the same nominal mm, but if we're a kernel thread, lazy
346 	 * mm dropping could change our pgd.
347 	 *
348 	 * Out of an abundance of caution, this uses __get_user() to fault
349 	 * in the target address just in case there's some obscure case
350 	 * in which the target address isn't readable.
351 	 */
352 
353 	preempt_disable();
354 
355 	probe_kernel_read(&dummy, v, 1);
356 
357 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
358 		BUG();
359 
360 	if (!PageHighMem(page)) {
361 		void *av = __va(PFN_PHYS(pfn));
362 
363 		if (av != v)
364 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
365 				BUG();
366 	} else
367 		kmap_flush_unused();
368 
369 	preempt_enable();
370 }
371 
372 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
373 {
374 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
375 	int i;
376 
377 	/*
378 	 * We need to mark the all aliases of the LDT pages RO.  We
379 	 * don't need to call vm_flush_aliases(), though, since that's
380 	 * only responsible for flushing aliases out the TLBs, not the
381 	 * page tables, and Xen will flush the TLB for us if needed.
382 	 *
383 	 * To avoid confusing future readers: none of this is necessary
384 	 * to load the LDT.  The hypervisor only checks this when the
385 	 * LDT is faulted in due to subsequent descriptor access.
386 	 */
387 
388 	for (i = 0; i < entries; i += entries_per_page)
389 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
390 }
391 
392 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
393 {
394 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
395 	int i;
396 
397 	for (i = 0; i < entries; i += entries_per_page)
398 		set_aliased_prot(ldt + i, PAGE_KERNEL);
399 }
400 
401 static void xen_set_ldt(const void *addr, unsigned entries)
402 {
403 	struct mmuext_op *op;
404 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
405 
406 	trace_xen_cpu_set_ldt(addr, entries);
407 
408 	op = mcs.args;
409 	op->cmd = MMUEXT_SET_LDT;
410 	op->arg1.linear_addr = (unsigned long)addr;
411 	op->arg2.nr_ents = entries;
412 
413 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
414 
415 	xen_mc_issue(PARAVIRT_LAZY_CPU);
416 }
417 
418 static void xen_load_gdt(const struct desc_ptr *dtr)
419 {
420 	unsigned long va = dtr->address;
421 	unsigned int size = dtr->size + 1;
422 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
423 	unsigned long frames[pages];
424 	int f;
425 
426 	/*
427 	 * A GDT can be up to 64k in size, which corresponds to 8192
428 	 * 8-byte entries, or 16 4k pages..
429 	 */
430 
431 	BUG_ON(size > 65536);
432 	BUG_ON(va & ~PAGE_MASK);
433 
434 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
435 		int level;
436 		pte_t *ptep;
437 		unsigned long pfn, mfn;
438 		void *virt;
439 
440 		/*
441 		 * The GDT is per-cpu and is in the percpu data area.
442 		 * That can be virtually mapped, so we need to do a
443 		 * page-walk to get the underlying MFN for the
444 		 * hypercall.  The page can also be in the kernel's
445 		 * linear range, so we need to RO that mapping too.
446 		 */
447 		ptep = lookup_address(va, &level);
448 		BUG_ON(ptep == NULL);
449 
450 		pfn = pte_pfn(*ptep);
451 		mfn = pfn_to_mfn(pfn);
452 		virt = __va(PFN_PHYS(pfn));
453 
454 		frames[f] = mfn;
455 
456 		make_lowmem_page_readonly((void *)va);
457 		make_lowmem_page_readonly(virt);
458 	}
459 
460 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
461 		BUG();
462 }
463 
464 /*
465  * load_gdt for early boot, when the gdt is only mapped once
466  */
467 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
468 {
469 	unsigned long va = dtr->address;
470 	unsigned int size = dtr->size + 1;
471 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
472 	unsigned long frames[pages];
473 	int f;
474 
475 	/*
476 	 * A GDT can be up to 64k in size, which corresponds to 8192
477 	 * 8-byte entries, or 16 4k pages..
478 	 */
479 
480 	BUG_ON(size > 65536);
481 	BUG_ON(va & ~PAGE_MASK);
482 
483 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
484 		pte_t pte;
485 		unsigned long pfn, mfn;
486 
487 		pfn = virt_to_pfn(va);
488 		mfn = pfn_to_mfn(pfn);
489 
490 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
491 
492 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
493 			BUG();
494 
495 		frames[f] = mfn;
496 	}
497 
498 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
499 		BUG();
500 }
501 
502 static inline bool desc_equal(const struct desc_struct *d1,
503 			      const struct desc_struct *d2)
504 {
505 	return !memcmp(d1, d2, sizeof(*d1));
506 }
507 
508 static void load_TLS_descriptor(struct thread_struct *t,
509 				unsigned int cpu, unsigned int i)
510 {
511 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
512 	struct desc_struct *gdt;
513 	xmaddr_t maddr;
514 	struct multicall_space mc;
515 
516 	if (desc_equal(shadow, &t->tls_array[i]))
517 		return;
518 
519 	*shadow = t->tls_array[i];
520 
521 	gdt = get_cpu_gdt_rw(cpu);
522 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
523 	mc = __xen_mc_entry(0);
524 
525 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
526 }
527 
528 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
529 {
530 	/*
531 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
532 	 * and lazy gs handling is enabled, it means we're in a
533 	 * context switch, and %gs has just been saved.  This means we
534 	 * can zero it out to prevent faults on exit from the
535 	 * hypervisor if the next process has no %gs.  Either way, it
536 	 * has been saved, and the new value will get loaded properly.
537 	 * This will go away as soon as Xen has been modified to not
538 	 * save/restore %gs for normal hypercalls.
539 	 *
540 	 * On x86_64, this hack is not used for %gs, because gs points
541 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
542 	 * must not zero %gs on x86_64
543 	 *
544 	 * For x86_64, we need to zero %fs, otherwise we may get an
545 	 * exception between the new %fs descriptor being loaded and
546 	 * %fs being effectively cleared at __switch_to().
547 	 */
548 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
549 #ifdef CONFIG_X86_32
550 		lazy_load_gs(0);
551 #else
552 		loadsegment(fs, 0);
553 #endif
554 	}
555 
556 	xen_mc_batch();
557 
558 	load_TLS_descriptor(t, cpu, 0);
559 	load_TLS_descriptor(t, cpu, 1);
560 	load_TLS_descriptor(t, cpu, 2);
561 
562 	xen_mc_issue(PARAVIRT_LAZY_CPU);
563 }
564 
565 #ifdef CONFIG_X86_64
566 static void xen_load_gs_index(unsigned int idx)
567 {
568 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
569 		BUG();
570 }
571 #endif
572 
573 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
574 				const void *ptr)
575 {
576 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
577 	u64 entry = *(u64 *)ptr;
578 
579 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
580 
581 	preempt_disable();
582 
583 	xen_mc_flush();
584 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
585 		BUG();
586 
587 	preempt_enable();
588 }
589 
590 #ifdef CONFIG_X86_64
591 struct trap_array_entry {
592 	void (*orig)(void);
593 	void (*xen)(void);
594 	bool ist_okay;
595 };
596 
597 static struct trap_array_entry trap_array[] = {
598 	{ debug,                       xen_xendebug,                    true },
599 	{ int3,                        xen_xenint3,                     true },
600 	{ double_fault,                xen_double_fault,                true },
601 #ifdef CONFIG_X86_MCE
602 	{ machine_check,               xen_machine_check,               true },
603 #endif
604 	{ nmi,                         xen_xennmi,                      true },
605 	{ overflow,                    xen_overflow,                    false },
606 #ifdef CONFIG_IA32_EMULATION
607 	{ entry_INT80_compat,          xen_entry_INT80_compat,          false },
608 #endif
609 	{ page_fault,                  xen_page_fault,                  false },
610 	{ divide_error,                xen_divide_error,                false },
611 	{ bounds,                      xen_bounds,                      false },
612 	{ invalid_op,                  xen_invalid_op,                  false },
613 	{ device_not_available,        xen_device_not_available,        false },
614 	{ coprocessor_segment_overrun, xen_coprocessor_segment_overrun, false },
615 	{ invalid_TSS,                 xen_invalid_TSS,                 false },
616 	{ segment_not_present,         xen_segment_not_present,         false },
617 	{ stack_segment,               xen_stack_segment,               false },
618 	{ general_protection,          xen_general_protection,          false },
619 	{ spurious_interrupt_bug,      xen_spurious_interrupt_bug,      false },
620 	{ coprocessor_error,           xen_coprocessor_error,           false },
621 	{ alignment_check,             xen_alignment_check,             false },
622 	{ simd_coprocessor_error,      xen_simd_coprocessor_error,      false },
623 };
624 
625 static bool get_trap_addr(void **addr, unsigned int ist)
626 {
627 	unsigned int nr;
628 	bool ist_okay = false;
629 
630 	/*
631 	 * Replace trap handler addresses by Xen specific ones.
632 	 * Check for known traps using IST and whitelist them.
633 	 * The debugger ones are the only ones we care about.
634 	 * Xen will handle faults like double_fault, * so we should never see
635 	 * them.  Warn if there's an unexpected IST-using fault handler.
636 	 */
637 	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
638 		struct trap_array_entry *entry = trap_array + nr;
639 
640 		if (*addr == entry->orig) {
641 			*addr = entry->xen;
642 			ist_okay = entry->ist_okay;
643 			break;
644 		}
645 	}
646 
647 	if (WARN_ON(ist != 0 && !ist_okay))
648 		return false;
649 
650 	return true;
651 }
652 #endif
653 
654 static int cvt_gate_to_trap(int vector, const gate_desc *val,
655 			    struct trap_info *info)
656 {
657 	unsigned long addr;
658 
659 	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
660 		return 0;
661 
662 	info->vector = vector;
663 
664 	addr = gate_offset(val);
665 #ifdef CONFIG_X86_64
666 	if (!get_trap_addr((void **)&addr, val->bits.ist))
667 		return 0;
668 #endif	/* CONFIG_X86_64 */
669 	info->address = addr;
670 
671 	info->cs = gate_segment(val);
672 	info->flags = val->bits.dpl;
673 	/* interrupt gates clear IF */
674 	if (val->bits.type == GATE_INTERRUPT)
675 		info->flags |= 1 << 2;
676 
677 	return 1;
678 }
679 
680 /* Locations of each CPU's IDT */
681 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
682 
683 /* Set an IDT entry.  If the entry is part of the current IDT, then
684    also update Xen. */
685 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
686 {
687 	unsigned long p = (unsigned long)&dt[entrynum];
688 	unsigned long start, end;
689 
690 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
691 
692 	preempt_disable();
693 
694 	start = __this_cpu_read(idt_desc.address);
695 	end = start + __this_cpu_read(idt_desc.size) + 1;
696 
697 	xen_mc_flush();
698 
699 	native_write_idt_entry(dt, entrynum, g);
700 
701 	if (p >= start && (p + 8) <= end) {
702 		struct trap_info info[2];
703 
704 		info[1].address = 0;
705 
706 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
707 			if (HYPERVISOR_set_trap_table(info))
708 				BUG();
709 	}
710 
711 	preempt_enable();
712 }
713 
714 static void xen_convert_trap_info(const struct desc_ptr *desc,
715 				  struct trap_info *traps)
716 {
717 	unsigned in, out, count;
718 
719 	count = (desc->size+1) / sizeof(gate_desc);
720 	BUG_ON(count > 256);
721 
722 	for (in = out = 0; in < count; in++) {
723 		gate_desc *entry = (gate_desc *)(desc->address) + in;
724 
725 		if (cvt_gate_to_trap(in, entry, &traps[out]))
726 			out++;
727 	}
728 	traps[out].address = 0;
729 }
730 
731 void xen_copy_trap_info(struct trap_info *traps)
732 {
733 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
734 
735 	xen_convert_trap_info(desc, traps);
736 }
737 
738 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
739    hold a spinlock to protect the static traps[] array (static because
740    it avoids allocation, and saves stack space). */
741 static void xen_load_idt(const struct desc_ptr *desc)
742 {
743 	static DEFINE_SPINLOCK(lock);
744 	static struct trap_info traps[257];
745 
746 	trace_xen_cpu_load_idt(desc);
747 
748 	spin_lock(&lock);
749 
750 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
751 
752 	xen_convert_trap_info(desc, traps);
753 
754 	xen_mc_flush();
755 	if (HYPERVISOR_set_trap_table(traps))
756 		BUG();
757 
758 	spin_unlock(&lock);
759 }
760 
761 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
762    they're handled differently. */
763 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
764 				const void *desc, int type)
765 {
766 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
767 
768 	preempt_disable();
769 
770 	switch (type) {
771 	case DESC_LDT:
772 	case DESC_TSS:
773 		/* ignore */
774 		break;
775 
776 	default: {
777 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
778 
779 		xen_mc_flush();
780 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
781 			BUG();
782 	}
783 
784 	}
785 
786 	preempt_enable();
787 }
788 
789 /*
790  * Version of write_gdt_entry for use at early boot-time needed to
791  * update an entry as simply as possible.
792  */
793 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
794 					    const void *desc, int type)
795 {
796 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
797 
798 	switch (type) {
799 	case DESC_LDT:
800 	case DESC_TSS:
801 		/* ignore */
802 		break;
803 
804 	default: {
805 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
806 
807 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
808 			dt[entry] = *(struct desc_struct *)desc;
809 	}
810 
811 	}
812 }
813 
814 static void xen_load_sp0(unsigned long sp0)
815 {
816 	struct multicall_space mcs;
817 
818 	mcs = xen_mc_entry(0);
819 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
820 	xen_mc_issue(PARAVIRT_LAZY_CPU);
821 	this_cpu_write(cpu_tss.x86_tss.sp0, sp0);
822 }
823 
824 void xen_set_iopl_mask(unsigned mask)
825 {
826 	struct physdev_set_iopl set_iopl;
827 
828 	/* Force the change at ring 0. */
829 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
830 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
831 }
832 
833 static void xen_io_delay(void)
834 {
835 }
836 
837 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
838 
839 static unsigned long xen_read_cr0(void)
840 {
841 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
842 
843 	if (unlikely(cr0 == 0)) {
844 		cr0 = native_read_cr0();
845 		this_cpu_write(xen_cr0_value, cr0);
846 	}
847 
848 	return cr0;
849 }
850 
851 static void xen_write_cr0(unsigned long cr0)
852 {
853 	struct multicall_space mcs;
854 
855 	this_cpu_write(xen_cr0_value, cr0);
856 
857 	/* Only pay attention to cr0.TS; everything else is
858 	   ignored. */
859 	mcs = xen_mc_entry(0);
860 
861 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
862 
863 	xen_mc_issue(PARAVIRT_LAZY_CPU);
864 }
865 
866 static void xen_write_cr4(unsigned long cr4)
867 {
868 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
869 
870 	native_write_cr4(cr4);
871 }
872 #ifdef CONFIG_X86_64
873 static inline unsigned long xen_read_cr8(void)
874 {
875 	return 0;
876 }
877 static inline void xen_write_cr8(unsigned long val)
878 {
879 	BUG_ON(val);
880 }
881 #endif
882 
883 static u64 xen_read_msr_safe(unsigned int msr, int *err)
884 {
885 	u64 val;
886 
887 	if (pmu_msr_read(msr, &val, err))
888 		return val;
889 
890 	val = native_read_msr_safe(msr, err);
891 	switch (msr) {
892 	case MSR_IA32_APICBASE:
893 #ifdef CONFIG_X86_X2APIC
894 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
895 #endif
896 			val &= ~X2APIC_ENABLE;
897 		break;
898 	}
899 	return val;
900 }
901 
902 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
903 {
904 	int ret;
905 
906 	ret = 0;
907 
908 	switch (msr) {
909 #ifdef CONFIG_X86_64
910 		unsigned which;
911 		u64 base;
912 
913 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
914 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
915 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
916 
917 	set:
918 		base = ((u64)high << 32) | low;
919 		if (HYPERVISOR_set_segment_base(which, base) != 0)
920 			ret = -EIO;
921 		break;
922 #endif
923 
924 	case MSR_STAR:
925 	case MSR_CSTAR:
926 	case MSR_LSTAR:
927 	case MSR_SYSCALL_MASK:
928 	case MSR_IA32_SYSENTER_CS:
929 	case MSR_IA32_SYSENTER_ESP:
930 	case MSR_IA32_SYSENTER_EIP:
931 		/* Fast syscall setup is all done in hypercalls, so
932 		   these are all ignored.  Stub them out here to stop
933 		   Xen console noise. */
934 		break;
935 
936 	default:
937 		if (!pmu_msr_write(msr, low, high, &ret))
938 			ret = native_write_msr_safe(msr, low, high);
939 	}
940 
941 	return ret;
942 }
943 
944 static u64 xen_read_msr(unsigned int msr)
945 {
946 	/*
947 	 * This will silently swallow a #GP from RDMSR.  It may be worth
948 	 * changing that.
949 	 */
950 	int err;
951 
952 	return xen_read_msr_safe(msr, &err);
953 }
954 
955 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
956 {
957 	/*
958 	 * This will silently swallow a #GP from WRMSR.  It may be worth
959 	 * changing that.
960 	 */
961 	xen_write_msr_safe(msr, low, high);
962 }
963 
964 void xen_setup_shared_info(void)
965 {
966 	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
967 
968 	HYPERVISOR_shared_info =
969 		(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
970 
971 	xen_setup_mfn_list_list();
972 
973 	if (system_state == SYSTEM_BOOTING) {
974 #ifndef CONFIG_SMP
975 		/*
976 		 * In UP this is as good a place as any to set up shared info.
977 		 * Limit this to boot only, at restore vcpu setup is done via
978 		 * xen_vcpu_restore().
979 		 */
980 		xen_setup_vcpu_info_placement();
981 #endif
982 		/*
983 		 * Now that shared info is set up we can start using routines
984 		 * that point to pvclock area.
985 		 */
986 		xen_init_time_ops();
987 	}
988 }
989 
990 /* This is called once we have the cpu_possible_mask */
991 void __ref xen_setup_vcpu_info_placement(void)
992 {
993 	int cpu;
994 
995 	for_each_possible_cpu(cpu) {
996 		/* Set up direct vCPU id mapping for PV guests. */
997 		per_cpu(xen_vcpu_id, cpu) = cpu;
998 
999 		/*
1000 		 * xen_vcpu_setup(cpu) can fail  -- in which case it
1001 		 * falls back to the shared_info version for cpus
1002 		 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1003 		 *
1004 		 * xen_cpu_up_prepare_pv() handles the rest by failing
1005 		 * them in hotplug.
1006 		 */
1007 		(void) xen_vcpu_setup(cpu);
1008 	}
1009 
1010 	/*
1011 	 * xen_vcpu_setup managed to place the vcpu_info within the
1012 	 * percpu area for all cpus, so make use of it.
1013 	 */
1014 	if (xen_have_vcpu_info_placement) {
1015 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1016 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1017 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1018 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1019 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1020 	}
1021 }
1022 
1023 static const struct pv_info xen_info __initconst = {
1024 	.shared_kernel_pmd = 0,
1025 
1026 #ifdef CONFIG_X86_64
1027 	.extra_user_64bit_cs = FLAT_USER_CS64,
1028 #endif
1029 	.name = "Xen",
1030 };
1031 
1032 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1033 	.cpuid = xen_cpuid,
1034 
1035 	.set_debugreg = xen_set_debugreg,
1036 	.get_debugreg = xen_get_debugreg,
1037 
1038 	.read_cr0 = xen_read_cr0,
1039 	.write_cr0 = xen_write_cr0,
1040 
1041 	.write_cr4 = xen_write_cr4,
1042 
1043 #ifdef CONFIG_X86_64
1044 	.read_cr8 = xen_read_cr8,
1045 	.write_cr8 = xen_write_cr8,
1046 #endif
1047 
1048 	.wbinvd = native_wbinvd,
1049 
1050 	.read_msr = xen_read_msr,
1051 	.write_msr = xen_write_msr,
1052 
1053 	.read_msr_safe = xen_read_msr_safe,
1054 	.write_msr_safe = xen_write_msr_safe,
1055 
1056 	.read_pmc = xen_read_pmc,
1057 
1058 	.iret = xen_iret,
1059 #ifdef CONFIG_X86_64
1060 	.usergs_sysret64 = xen_sysret64,
1061 #endif
1062 
1063 	.load_tr_desc = paravirt_nop,
1064 	.set_ldt = xen_set_ldt,
1065 	.load_gdt = xen_load_gdt,
1066 	.load_idt = xen_load_idt,
1067 	.load_tls = xen_load_tls,
1068 #ifdef CONFIG_X86_64
1069 	.load_gs_index = xen_load_gs_index,
1070 #endif
1071 
1072 	.alloc_ldt = xen_alloc_ldt,
1073 	.free_ldt = xen_free_ldt,
1074 
1075 	.store_tr = xen_store_tr,
1076 
1077 	.write_ldt_entry = xen_write_ldt_entry,
1078 	.write_gdt_entry = xen_write_gdt_entry,
1079 	.write_idt_entry = xen_write_idt_entry,
1080 	.load_sp0 = xen_load_sp0,
1081 
1082 	.set_iopl_mask = xen_set_iopl_mask,
1083 	.io_delay = xen_io_delay,
1084 
1085 	/* Xen takes care of %gs when switching to usermode for us */
1086 	.swapgs = paravirt_nop,
1087 
1088 	.start_context_switch = paravirt_start_context_switch,
1089 	.end_context_switch = xen_end_context_switch,
1090 };
1091 
1092 static void xen_restart(char *msg)
1093 {
1094 	xen_reboot(SHUTDOWN_reboot);
1095 }
1096 
1097 static void xen_machine_halt(void)
1098 {
1099 	xen_reboot(SHUTDOWN_poweroff);
1100 }
1101 
1102 static void xen_machine_power_off(void)
1103 {
1104 	if (pm_power_off)
1105 		pm_power_off();
1106 	xen_reboot(SHUTDOWN_poweroff);
1107 }
1108 
1109 static void xen_crash_shutdown(struct pt_regs *regs)
1110 {
1111 	xen_reboot(SHUTDOWN_crash);
1112 }
1113 
1114 static const struct machine_ops xen_machine_ops __initconst = {
1115 	.restart = xen_restart,
1116 	.halt = xen_machine_halt,
1117 	.power_off = xen_machine_power_off,
1118 	.shutdown = xen_machine_halt,
1119 	.crash_shutdown = xen_crash_shutdown,
1120 	.emergency_restart = xen_emergency_restart,
1121 };
1122 
1123 static unsigned char xen_get_nmi_reason(void)
1124 {
1125 	unsigned char reason = 0;
1126 
1127 	/* Construct a value which looks like it came from port 0x61. */
1128 	if (test_bit(_XEN_NMIREASON_io_error,
1129 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1130 		reason |= NMI_REASON_IOCHK;
1131 	if (test_bit(_XEN_NMIREASON_pci_serr,
1132 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1133 		reason |= NMI_REASON_SERR;
1134 
1135 	return reason;
1136 }
1137 
1138 static void __init xen_boot_params_init_edd(void)
1139 {
1140 #if IS_ENABLED(CONFIG_EDD)
1141 	struct xen_platform_op op;
1142 	struct edd_info *edd_info;
1143 	u32 *mbr_signature;
1144 	unsigned nr;
1145 	int ret;
1146 
1147 	edd_info = boot_params.eddbuf;
1148 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1149 
1150 	op.cmd = XENPF_firmware_info;
1151 
1152 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1153 	for (nr = 0; nr < EDDMAXNR; nr++) {
1154 		struct edd_info *info = edd_info + nr;
1155 
1156 		op.u.firmware_info.index = nr;
1157 		info->params.length = sizeof(info->params);
1158 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1159 				     &info->params);
1160 		ret = HYPERVISOR_platform_op(&op);
1161 		if (ret)
1162 			break;
1163 
1164 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1165 		C(device);
1166 		C(version);
1167 		C(interface_support);
1168 		C(legacy_max_cylinder);
1169 		C(legacy_max_head);
1170 		C(legacy_sectors_per_track);
1171 #undef C
1172 	}
1173 	boot_params.eddbuf_entries = nr;
1174 
1175 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1176 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1177 		op.u.firmware_info.index = nr;
1178 		ret = HYPERVISOR_platform_op(&op);
1179 		if (ret)
1180 			break;
1181 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1182 	}
1183 	boot_params.edd_mbr_sig_buf_entries = nr;
1184 #endif
1185 }
1186 
1187 /*
1188  * Set up the GDT and segment registers for -fstack-protector.  Until
1189  * we do this, we have to be careful not to call any stack-protected
1190  * function, which is most of the kernel.
1191  */
1192 static void xen_setup_gdt(int cpu)
1193 {
1194 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1195 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1196 
1197 	setup_stack_canary_segment(0);
1198 	switch_to_new_gdt(0);
1199 
1200 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1201 	pv_cpu_ops.load_gdt = xen_load_gdt;
1202 }
1203 
1204 static void __init xen_dom0_set_legacy_features(void)
1205 {
1206 	x86_platform.legacy.rtc = 1;
1207 }
1208 
1209 /* First C function to be called on Xen boot */
1210 asmlinkage __visible void __init xen_start_kernel(void)
1211 {
1212 	struct physdev_set_iopl set_iopl;
1213 	unsigned long initrd_start = 0;
1214 	int rc;
1215 
1216 	if (!xen_start_info)
1217 		return;
1218 
1219 	xen_domain_type = XEN_PV_DOMAIN;
1220 
1221 	xen_setup_features();
1222 
1223 	xen_setup_machphys_mapping();
1224 
1225 	/* Install Xen paravirt ops */
1226 	pv_info = xen_info;
1227 	pv_init_ops.patch = paravirt_patch_default;
1228 	pv_cpu_ops = xen_cpu_ops;
1229 
1230 	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1231 
1232 	x86_init.resources.memory_setup = xen_memory_setup;
1233 	x86_init.irqs.intr_mode_init	= x86_init_noop;
1234 	x86_init.oem.arch_setup = xen_arch_setup;
1235 	x86_init.oem.banner = xen_banner;
1236 
1237 	/*
1238 	 * Set up some pagetable state before starting to set any ptes.
1239 	 */
1240 
1241 	xen_init_mmu_ops();
1242 
1243 	/* Prevent unwanted bits from being set in PTEs. */
1244 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1245 
1246 	/*
1247 	 * Prevent page tables from being allocated in highmem, even
1248 	 * if CONFIG_HIGHPTE is enabled.
1249 	 */
1250 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1251 
1252 	/* Work out if we support NX */
1253 	x86_configure_nx();
1254 
1255 	/* Get mfn list */
1256 	xen_build_dynamic_phys_to_machine();
1257 
1258 	/*
1259 	 * Set up kernel GDT and segment registers, mainly so that
1260 	 * -fstack-protector code can be executed.
1261 	 */
1262 	xen_setup_gdt(0);
1263 
1264 	xen_init_irq_ops();
1265 	xen_init_capabilities();
1266 
1267 #ifdef CONFIG_X86_LOCAL_APIC
1268 	/*
1269 	 * set up the basic apic ops.
1270 	 */
1271 	xen_init_apic();
1272 #endif
1273 
1274 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1275 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1276 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1277 	}
1278 
1279 	machine_ops = xen_machine_ops;
1280 
1281 	/*
1282 	 * The only reliable way to retain the initial address of the
1283 	 * percpu gdt_page is to remember it here, so we can go and
1284 	 * mark it RW later, when the initial percpu area is freed.
1285 	 */
1286 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1287 
1288 	xen_smp_init();
1289 
1290 #ifdef CONFIG_ACPI_NUMA
1291 	/*
1292 	 * The pages we from Xen are not related to machine pages, so
1293 	 * any NUMA information the kernel tries to get from ACPI will
1294 	 * be meaningless.  Prevent it from trying.
1295 	 */
1296 	acpi_numa = -1;
1297 #endif
1298 	/* Let's presume PV guests always boot on vCPU with id 0. */
1299 	per_cpu(xen_vcpu_id, 0) = 0;
1300 
1301 	/*
1302 	 * Setup xen_vcpu early because start_kernel needs it for
1303 	 * local_irq_disable(), irqs_disabled().
1304 	 *
1305 	 * Don't do the full vcpu_info placement stuff until we have
1306 	 * the cpu_possible_mask and a non-dummy shared_info.
1307 	 */
1308 	xen_vcpu_info_reset(0);
1309 
1310 	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1311 
1312 	local_irq_disable();
1313 	early_boot_irqs_disabled = true;
1314 
1315 	xen_raw_console_write("mapping kernel into physical memory\n");
1316 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1317 				   xen_start_info->nr_pages);
1318 	xen_reserve_special_pages();
1319 
1320 	/* keep using Xen gdt for now; no urgent need to change it */
1321 
1322 #ifdef CONFIG_X86_32
1323 	pv_info.kernel_rpl = 1;
1324 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1325 		pv_info.kernel_rpl = 0;
1326 #else
1327 	pv_info.kernel_rpl = 0;
1328 #endif
1329 	/* set the limit of our address space */
1330 	xen_reserve_top();
1331 
1332 	/*
1333 	 * We used to do this in xen_arch_setup, but that is too late
1334 	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1335 	 * early_amd_init which pokes 0xcf8 port.
1336 	 */
1337 	set_iopl.iopl = 1;
1338 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1339 	if (rc != 0)
1340 		xen_raw_printk("physdev_op failed %d\n", rc);
1341 
1342 #ifdef CONFIG_X86_32
1343 	/* set up basic CPUID stuff */
1344 	cpu_detect(&new_cpu_data);
1345 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1346 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1347 #endif
1348 
1349 	if (xen_start_info->mod_start) {
1350 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1351 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1352 	    else
1353 		initrd_start = __pa(xen_start_info->mod_start);
1354 	}
1355 
1356 	/* Poke various useful things into boot_params */
1357 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1358 	boot_params.hdr.ramdisk_image = initrd_start;
1359 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1360 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1361 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1362 
1363 	if (!xen_initial_domain()) {
1364 		add_preferred_console("xenboot", 0, NULL);
1365 		add_preferred_console("tty", 0, NULL);
1366 		add_preferred_console("hvc", 0, NULL);
1367 		if (pci_xen)
1368 			x86_init.pci.arch_init = pci_xen_init;
1369 	} else {
1370 		const struct dom0_vga_console_info *info =
1371 			(void *)((char *)xen_start_info +
1372 				 xen_start_info->console.dom0.info_off);
1373 		struct xen_platform_op op = {
1374 			.cmd = XENPF_firmware_info,
1375 			.interface_version = XENPF_INTERFACE_VERSION,
1376 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1377 		};
1378 
1379 		x86_platform.set_legacy_features =
1380 				xen_dom0_set_legacy_features;
1381 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1382 		xen_start_info->console.domU.mfn = 0;
1383 		xen_start_info->console.domU.evtchn = 0;
1384 
1385 		if (HYPERVISOR_platform_op(&op) == 0)
1386 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1387 
1388 		/* Make sure ACS will be enabled */
1389 		pci_request_acs();
1390 
1391 		xen_acpi_sleep_register();
1392 
1393 		/* Avoid searching for BIOS MP tables */
1394 		x86_init.mpparse.find_smp_config = x86_init_noop;
1395 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1396 
1397 		xen_boot_params_init_edd();
1398 	}
1399 #ifdef CONFIG_PCI
1400 	/* PCI BIOS service won't work from a PV guest. */
1401 	pci_probe &= ~PCI_PROBE_BIOS;
1402 #endif
1403 	xen_raw_console_write("about to get started...\n");
1404 
1405 	/* We need this for printk timestamps */
1406 	xen_setup_runstate_info(0);
1407 
1408 	xen_efi_init();
1409 
1410 	/* Start the world */
1411 #ifdef CONFIG_X86_32
1412 	i386_start_kernel();
1413 #else
1414 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1415 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1416 #endif
1417 }
1418 
1419 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1420 {
1421 	int rc;
1422 
1423 	if (per_cpu(xen_vcpu, cpu) == NULL)
1424 		return -ENODEV;
1425 
1426 	xen_setup_timer(cpu);
1427 
1428 	rc = xen_smp_intr_init(cpu);
1429 	if (rc) {
1430 		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1431 		     cpu, rc);
1432 		return rc;
1433 	}
1434 
1435 	rc = xen_smp_intr_init_pv(cpu);
1436 	if (rc) {
1437 		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1438 		     cpu, rc);
1439 		return rc;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static int xen_cpu_dead_pv(unsigned int cpu)
1446 {
1447 	xen_smp_intr_free(cpu);
1448 	xen_smp_intr_free_pv(cpu);
1449 
1450 	xen_teardown_timer(cpu);
1451 
1452 	return 0;
1453 }
1454 
1455 static uint32_t __init xen_platform_pv(void)
1456 {
1457 	if (xen_pv_domain())
1458 		return xen_cpuid_base();
1459 
1460 	return 0;
1461 }
1462 
1463 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1464 	.name                   = "Xen PV",
1465 	.detect                 = xen_platform_pv,
1466 	.type			= X86_HYPER_XEN_PV,
1467 	.runtime.pin_vcpu       = xen_pin_vcpu,
1468 };
1469