xref: /linux/arch/x86/xen/enlighten.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69 
70 EXPORT_SYMBOL_GPL(hypercall_page);
71 
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74 
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77 
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned long  machine_to_phys_nr;
81 EXPORT_SYMBOL(machine_to_phys_nr);
82 
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85 
86 struct shared_info xen_dummy_shared_info;
87 
88 void *xen_initial_gdt;
89 
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93 
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99 
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114 
115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118 	if (setup_max_cpus > MAX_VIRT_CPUS)
119 		setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122 
123 static void xen_vcpu_setup(int cpu)
124 {
125 	struct vcpu_register_vcpu_info info;
126 	int err;
127 	struct vcpu_info *vcpup;
128 
129 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130 
131 	if (cpu < MAX_VIRT_CPUS)
132 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133 
134 	if (!have_vcpu_info_placement) {
135 		if (cpu >= MAX_VIRT_CPUS)
136 			clamp_max_cpus();
137 		return;
138 	}
139 
140 	vcpup = &per_cpu(xen_vcpu_info, cpu);
141 	info.mfn = arbitrary_virt_to_mfn(vcpup);
142 	info.offset = offset_in_page(vcpup);
143 
144 	/* Check to see if the hypervisor will put the vcpu_info
145 	   structure where we want it, which allows direct access via
146 	   a percpu-variable. */
147 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148 
149 	if (err) {
150 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151 		have_vcpu_info_placement = 0;
152 		clamp_max_cpus();
153 	} else {
154 		/* This cpu is using the registered vcpu info, even if
155 		   later ones fail to. */
156 		per_cpu(xen_vcpu, cpu) = vcpup;
157 	}
158 }
159 
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167 	int cpu;
168 
169 	for_each_online_cpu(cpu) {
170 		bool other_cpu = (cpu != smp_processor_id());
171 
172 		if (other_cpu &&
173 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 			BUG();
175 
176 		xen_setup_runstate_info(cpu);
177 
178 		if (have_vcpu_info_placement)
179 			xen_vcpu_setup(cpu);
180 
181 		if (other_cpu &&
182 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 			BUG();
184 	}
185 }
186 
187 static void __init xen_banner(void)
188 {
189 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 	struct xen_extraversion extra;
191 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192 
193 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 	       pv_info.name);
195 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 	       version >> 16, version & 0xffff, extra.extraversion,
197 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199 
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202 
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 		      unsigned int *cx, unsigned int *dx)
205 {
206 	unsigned maskebx = ~0;
207 	unsigned maskecx = ~0;
208 	unsigned maskedx = ~0;
209 
210 	/*
211 	 * Mask out inconvenient features, to try and disable as many
212 	 * unsupported kernel subsystems as possible.
213 	 */
214 	switch (*ax) {
215 	case 1:
216 		maskecx = cpuid_leaf1_ecx_mask;
217 		maskedx = cpuid_leaf1_edx_mask;
218 		break;
219 
220 	case 0xb:
221 		/* Suppress extended topology stuff */
222 		maskebx = 0;
223 		break;
224 	}
225 
226 	asm(XEN_EMULATE_PREFIX "cpuid"
227 		: "=a" (*ax),
228 		  "=b" (*bx),
229 		  "=c" (*cx),
230 		  "=d" (*dx)
231 		: "0" (*ax), "2" (*cx));
232 
233 	*bx &= maskebx;
234 	*cx &= maskecx;
235 	*dx &= maskedx;
236 }
237 
238 static void __init xen_init_cpuid_mask(void)
239 {
240 	unsigned int ax, bx, cx, dx;
241 	unsigned int xsave_mask;
242 
243 	cpuid_leaf1_edx_mask =
244 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
245 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
246 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
247 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
248 
249 	if (!xen_initial_domain())
250 		cpuid_leaf1_edx_mask &=
251 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
252 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
253 	ax = 1;
254 	cx = 0;
255 	xen_cpuid(&ax, &bx, &cx, &dx);
256 
257 	xsave_mask =
258 		(1 << (X86_FEATURE_XSAVE % 32)) |
259 		(1 << (X86_FEATURE_OSXSAVE % 32));
260 
261 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
262 	if ((cx & xsave_mask) != xsave_mask)
263 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
264 }
265 
266 static void xen_set_debugreg(int reg, unsigned long val)
267 {
268 	HYPERVISOR_set_debugreg(reg, val);
269 }
270 
271 static unsigned long xen_get_debugreg(int reg)
272 {
273 	return HYPERVISOR_get_debugreg(reg);
274 }
275 
276 static void xen_end_context_switch(struct task_struct *next)
277 {
278 	xen_mc_flush();
279 	paravirt_end_context_switch(next);
280 }
281 
282 static unsigned long xen_store_tr(void)
283 {
284 	return 0;
285 }
286 
287 /*
288  * Set the page permissions for a particular virtual address.  If the
289  * address is a vmalloc mapping (or other non-linear mapping), then
290  * find the linear mapping of the page and also set its protections to
291  * match.
292  */
293 static void set_aliased_prot(void *v, pgprot_t prot)
294 {
295 	int level;
296 	pte_t *ptep;
297 	pte_t pte;
298 	unsigned long pfn;
299 	struct page *page;
300 
301 	ptep = lookup_address((unsigned long)v, &level);
302 	BUG_ON(ptep == NULL);
303 
304 	pfn = pte_pfn(*ptep);
305 	page = pfn_to_page(pfn);
306 
307 	pte = pfn_pte(pfn, prot);
308 
309 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
310 		BUG();
311 
312 	if (!PageHighMem(page)) {
313 		void *av = __va(PFN_PHYS(pfn));
314 
315 		if (av != v)
316 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
317 				BUG();
318 	} else
319 		kmap_flush_unused();
320 }
321 
322 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
323 {
324 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
325 	int i;
326 
327 	for(i = 0; i < entries; i += entries_per_page)
328 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
329 }
330 
331 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
332 {
333 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
334 	int i;
335 
336 	for(i = 0; i < entries; i += entries_per_page)
337 		set_aliased_prot(ldt + i, PAGE_KERNEL);
338 }
339 
340 static void xen_set_ldt(const void *addr, unsigned entries)
341 {
342 	struct mmuext_op *op;
343 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
344 
345 	trace_xen_cpu_set_ldt(addr, entries);
346 
347 	op = mcs.args;
348 	op->cmd = MMUEXT_SET_LDT;
349 	op->arg1.linear_addr = (unsigned long)addr;
350 	op->arg2.nr_ents = entries;
351 
352 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
353 
354 	xen_mc_issue(PARAVIRT_LAZY_CPU);
355 }
356 
357 static void xen_load_gdt(const struct desc_ptr *dtr)
358 {
359 	unsigned long va = dtr->address;
360 	unsigned int size = dtr->size + 1;
361 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
362 	unsigned long frames[pages];
363 	int f;
364 
365 	/*
366 	 * A GDT can be up to 64k in size, which corresponds to 8192
367 	 * 8-byte entries, or 16 4k pages..
368 	 */
369 
370 	BUG_ON(size > 65536);
371 	BUG_ON(va & ~PAGE_MASK);
372 
373 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
374 		int level;
375 		pte_t *ptep;
376 		unsigned long pfn, mfn;
377 		void *virt;
378 
379 		/*
380 		 * The GDT is per-cpu and is in the percpu data area.
381 		 * That can be virtually mapped, so we need to do a
382 		 * page-walk to get the underlying MFN for the
383 		 * hypercall.  The page can also be in the kernel's
384 		 * linear range, so we need to RO that mapping too.
385 		 */
386 		ptep = lookup_address(va, &level);
387 		BUG_ON(ptep == NULL);
388 
389 		pfn = pte_pfn(*ptep);
390 		mfn = pfn_to_mfn(pfn);
391 		virt = __va(PFN_PHYS(pfn));
392 
393 		frames[f] = mfn;
394 
395 		make_lowmem_page_readonly((void *)va);
396 		make_lowmem_page_readonly(virt);
397 	}
398 
399 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
400 		BUG();
401 }
402 
403 /*
404  * load_gdt for early boot, when the gdt is only mapped once
405  */
406 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
407 {
408 	unsigned long va = dtr->address;
409 	unsigned int size = dtr->size + 1;
410 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
411 	unsigned long frames[pages];
412 	int f;
413 
414 	/*
415 	 * A GDT can be up to 64k in size, which corresponds to 8192
416 	 * 8-byte entries, or 16 4k pages..
417 	 */
418 
419 	BUG_ON(size > 65536);
420 	BUG_ON(va & ~PAGE_MASK);
421 
422 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
423 		pte_t pte;
424 		unsigned long pfn, mfn;
425 
426 		pfn = virt_to_pfn(va);
427 		mfn = pfn_to_mfn(pfn);
428 
429 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
430 
431 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
432 			BUG();
433 
434 		frames[f] = mfn;
435 	}
436 
437 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
438 		BUG();
439 }
440 
441 static void load_TLS_descriptor(struct thread_struct *t,
442 				unsigned int cpu, unsigned int i)
443 {
444 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
445 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
446 	struct multicall_space mc = __xen_mc_entry(0);
447 
448 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
449 }
450 
451 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
452 {
453 	/*
454 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
455 	 * and lazy gs handling is enabled, it means we're in a
456 	 * context switch, and %gs has just been saved.  This means we
457 	 * can zero it out to prevent faults on exit from the
458 	 * hypervisor if the next process has no %gs.  Either way, it
459 	 * has been saved, and the new value will get loaded properly.
460 	 * This will go away as soon as Xen has been modified to not
461 	 * save/restore %gs for normal hypercalls.
462 	 *
463 	 * On x86_64, this hack is not used for %gs, because gs points
464 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
465 	 * must not zero %gs on x86_64
466 	 *
467 	 * For x86_64, we need to zero %fs, otherwise we may get an
468 	 * exception between the new %fs descriptor being loaded and
469 	 * %fs being effectively cleared at __switch_to().
470 	 */
471 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
472 #ifdef CONFIG_X86_32
473 		lazy_load_gs(0);
474 #else
475 		loadsegment(fs, 0);
476 #endif
477 	}
478 
479 	xen_mc_batch();
480 
481 	load_TLS_descriptor(t, cpu, 0);
482 	load_TLS_descriptor(t, cpu, 1);
483 	load_TLS_descriptor(t, cpu, 2);
484 
485 	xen_mc_issue(PARAVIRT_LAZY_CPU);
486 }
487 
488 #ifdef CONFIG_X86_64
489 static void xen_load_gs_index(unsigned int idx)
490 {
491 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
492 		BUG();
493 }
494 #endif
495 
496 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
497 				const void *ptr)
498 {
499 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
500 	u64 entry = *(u64 *)ptr;
501 
502 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
503 
504 	preempt_disable();
505 
506 	xen_mc_flush();
507 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
508 		BUG();
509 
510 	preempt_enable();
511 }
512 
513 static int cvt_gate_to_trap(int vector, const gate_desc *val,
514 			    struct trap_info *info)
515 {
516 	unsigned long addr;
517 
518 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
519 		return 0;
520 
521 	info->vector = vector;
522 
523 	addr = gate_offset(*val);
524 #ifdef CONFIG_X86_64
525 	/*
526 	 * Look for known traps using IST, and substitute them
527 	 * appropriately.  The debugger ones are the only ones we care
528 	 * about.  Xen will handle faults like double_fault and
529 	 * machine_check, so we should never see them.  Warn if
530 	 * there's an unexpected IST-using fault handler.
531 	 */
532 	if (addr == (unsigned long)debug)
533 		addr = (unsigned long)xen_debug;
534 	else if (addr == (unsigned long)int3)
535 		addr = (unsigned long)xen_int3;
536 	else if (addr == (unsigned long)stack_segment)
537 		addr = (unsigned long)xen_stack_segment;
538 	else if (addr == (unsigned long)double_fault ||
539 		 addr == (unsigned long)nmi) {
540 		/* Don't need to handle these */
541 		return 0;
542 #ifdef CONFIG_X86_MCE
543 	} else if (addr == (unsigned long)machine_check) {
544 		return 0;
545 #endif
546 	} else {
547 		/* Some other trap using IST? */
548 		if (WARN_ON(val->ist != 0))
549 			return 0;
550 	}
551 #endif	/* CONFIG_X86_64 */
552 	info->address = addr;
553 
554 	info->cs = gate_segment(*val);
555 	info->flags = val->dpl;
556 	/* interrupt gates clear IF */
557 	if (val->type == GATE_INTERRUPT)
558 		info->flags |= 1 << 2;
559 
560 	return 1;
561 }
562 
563 /* Locations of each CPU's IDT */
564 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
565 
566 /* Set an IDT entry.  If the entry is part of the current IDT, then
567    also update Xen. */
568 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
569 {
570 	unsigned long p = (unsigned long)&dt[entrynum];
571 	unsigned long start, end;
572 
573 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
574 
575 	preempt_disable();
576 
577 	start = __this_cpu_read(idt_desc.address);
578 	end = start + __this_cpu_read(idt_desc.size) + 1;
579 
580 	xen_mc_flush();
581 
582 	native_write_idt_entry(dt, entrynum, g);
583 
584 	if (p >= start && (p + 8) <= end) {
585 		struct trap_info info[2];
586 
587 		info[1].address = 0;
588 
589 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
590 			if (HYPERVISOR_set_trap_table(info))
591 				BUG();
592 	}
593 
594 	preempt_enable();
595 }
596 
597 static void xen_convert_trap_info(const struct desc_ptr *desc,
598 				  struct trap_info *traps)
599 {
600 	unsigned in, out, count;
601 
602 	count = (desc->size+1) / sizeof(gate_desc);
603 	BUG_ON(count > 256);
604 
605 	for (in = out = 0; in < count; in++) {
606 		gate_desc *entry = (gate_desc*)(desc->address) + in;
607 
608 		if (cvt_gate_to_trap(in, entry, &traps[out]))
609 			out++;
610 	}
611 	traps[out].address = 0;
612 }
613 
614 void xen_copy_trap_info(struct trap_info *traps)
615 {
616 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
617 
618 	xen_convert_trap_info(desc, traps);
619 }
620 
621 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
622    hold a spinlock to protect the static traps[] array (static because
623    it avoids allocation, and saves stack space). */
624 static void xen_load_idt(const struct desc_ptr *desc)
625 {
626 	static DEFINE_SPINLOCK(lock);
627 	static struct trap_info traps[257];
628 
629 	trace_xen_cpu_load_idt(desc);
630 
631 	spin_lock(&lock);
632 
633 	__get_cpu_var(idt_desc) = *desc;
634 
635 	xen_convert_trap_info(desc, traps);
636 
637 	xen_mc_flush();
638 	if (HYPERVISOR_set_trap_table(traps))
639 		BUG();
640 
641 	spin_unlock(&lock);
642 }
643 
644 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
645    they're handled differently. */
646 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
647 				const void *desc, int type)
648 {
649 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
650 
651 	preempt_disable();
652 
653 	switch (type) {
654 	case DESC_LDT:
655 	case DESC_TSS:
656 		/* ignore */
657 		break;
658 
659 	default: {
660 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
661 
662 		xen_mc_flush();
663 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
664 			BUG();
665 	}
666 
667 	}
668 
669 	preempt_enable();
670 }
671 
672 /*
673  * Version of write_gdt_entry for use at early boot-time needed to
674  * update an entry as simply as possible.
675  */
676 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
677 					    const void *desc, int type)
678 {
679 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
680 
681 	switch (type) {
682 	case DESC_LDT:
683 	case DESC_TSS:
684 		/* ignore */
685 		break;
686 
687 	default: {
688 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
689 
690 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
691 			dt[entry] = *(struct desc_struct *)desc;
692 	}
693 
694 	}
695 }
696 
697 static void xen_load_sp0(struct tss_struct *tss,
698 			 struct thread_struct *thread)
699 {
700 	struct multicall_space mcs;
701 
702 	mcs = xen_mc_entry(0);
703 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
704 	xen_mc_issue(PARAVIRT_LAZY_CPU);
705 }
706 
707 static void xen_set_iopl_mask(unsigned mask)
708 {
709 	struct physdev_set_iopl set_iopl;
710 
711 	/* Force the change at ring 0. */
712 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
713 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
714 }
715 
716 static void xen_io_delay(void)
717 {
718 }
719 
720 #ifdef CONFIG_X86_LOCAL_APIC
721 static u32 xen_apic_read(u32 reg)
722 {
723 	return 0;
724 }
725 
726 static void xen_apic_write(u32 reg, u32 val)
727 {
728 	/* Warn to see if there's any stray references */
729 	WARN_ON(1);
730 }
731 
732 static u64 xen_apic_icr_read(void)
733 {
734 	return 0;
735 }
736 
737 static void xen_apic_icr_write(u32 low, u32 id)
738 {
739 	/* Warn to see if there's any stray references */
740 	WARN_ON(1);
741 }
742 
743 static void xen_apic_wait_icr_idle(void)
744 {
745         return;
746 }
747 
748 static u32 xen_safe_apic_wait_icr_idle(void)
749 {
750         return 0;
751 }
752 
753 static void set_xen_basic_apic_ops(void)
754 {
755 	apic->read = xen_apic_read;
756 	apic->write = xen_apic_write;
757 	apic->icr_read = xen_apic_icr_read;
758 	apic->icr_write = xen_apic_icr_write;
759 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
760 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
761 }
762 
763 #endif
764 
765 static void xen_clts(void)
766 {
767 	struct multicall_space mcs;
768 
769 	mcs = xen_mc_entry(0);
770 
771 	MULTI_fpu_taskswitch(mcs.mc, 0);
772 
773 	xen_mc_issue(PARAVIRT_LAZY_CPU);
774 }
775 
776 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
777 
778 static unsigned long xen_read_cr0(void)
779 {
780 	unsigned long cr0 = percpu_read(xen_cr0_value);
781 
782 	if (unlikely(cr0 == 0)) {
783 		cr0 = native_read_cr0();
784 		percpu_write(xen_cr0_value, cr0);
785 	}
786 
787 	return cr0;
788 }
789 
790 static void xen_write_cr0(unsigned long cr0)
791 {
792 	struct multicall_space mcs;
793 
794 	percpu_write(xen_cr0_value, cr0);
795 
796 	/* Only pay attention to cr0.TS; everything else is
797 	   ignored. */
798 	mcs = xen_mc_entry(0);
799 
800 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
801 
802 	xen_mc_issue(PARAVIRT_LAZY_CPU);
803 }
804 
805 static void xen_write_cr4(unsigned long cr4)
806 {
807 	cr4 &= ~X86_CR4_PGE;
808 	cr4 &= ~X86_CR4_PSE;
809 
810 	native_write_cr4(cr4);
811 }
812 
813 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
814 {
815 	int ret;
816 
817 	ret = 0;
818 
819 	switch (msr) {
820 #ifdef CONFIG_X86_64
821 		unsigned which;
822 		u64 base;
823 
824 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
825 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
826 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
827 
828 	set:
829 		base = ((u64)high << 32) | low;
830 		if (HYPERVISOR_set_segment_base(which, base) != 0)
831 			ret = -EIO;
832 		break;
833 #endif
834 
835 	case MSR_STAR:
836 	case MSR_CSTAR:
837 	case MSR_LSTAR:
838 	case MSR_SYSCALL_MASK:
839 	case MSR_IA32_SYSENTER_CS:
840 	case MSR_IA32_SYSENTER_ESP:
841 	case MSR_IA32_SYSENTER_EIP:
842 		/* Fast syscall setup is all done in hypercalls, so
843 		   these are all ignored.  Stub them out here to stop
844 		   Xen console noise. */
845 		break;
846 
847 	case MSR_IA32_CR_PAT:
848 		if (smp_processor_id() == 0)
849 			xen_set_pat(((u64)high << 32) | low);
850 		break;
851 
852 	default:
853 		ret = native_write_msr_safe(msr, low, high);
854 	}
855 
856 	return ret;
857 }
858 
859 void xen_setup_shared_info(void)
860 {
861 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
862 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
863 			   xen_start_info->shared_info);
864 
865 		HYPERVISOR_shared_info =
866 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
867 	} else
868 		HYPERVISOR_shared_info =
869 			(struct shared_info *)__va(xen_start_info->shared_info);
870 
871 #ifndef CONFIG_SMP
872 	/* In UP this is as good a place as any to set up shared info */
873 	xen_setup_vcpu_info_placement();
874 #endif
875 
876 	xen_setup_mfn_list_list();
877 }
878 
879 /* This is called once we have the cpu_possible_map */
880 void xen_setup_vcpu_info_placement(void)
881 {
882 	int cpu;
883 
884 	for_each_possible_cpu(cpu)
885 		xen_vcpu_setup(cpu);
886 
887 	/* xen_vcpu_setup managed to place the vcpu_info within the
888 	   percpu area for all cpus, so make use of it */
889 	if (have_vcpu_info_placement) {
890 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
891 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
892 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
893 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
894 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
895 	}
896 }
897 
898 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
899 			  unsigned long addr, unsigned len)
900 {
901 	char *start, *end, *reloc;
902 	unsigned ret;
903 
904 	start = end = reloc = NULL;
905 
906 #define SITE(op, x)							\
907 	case PARAVIRT_PATCH(op.x):					\
908 	if (have_vcpu_info_placement) {					\
909 		start = (char *)xen_##x##_direct;			\
910 		end = xen_##x##_direct_end;				\
911 		reloc = xen_##x##_direct_reloc;				\
912 	}								\
913 	goto patch_site
914 
915 	switch (type) {
916 		SITE(pv_irq_ops, irq_enable);
917 		SITE(pv_irq_ops, irq_disable);
918 		SITE(pv_irq_ops, save_fl);
919 		SITE(pv_irq_ops, restore_fl);
920 #undef SITE
921 
922 	patch_site:
923 		if (start == NULL || (end-start) > len)
924 			goto default_patch;
925 
926 		ret = paravirt_patch_insns(insnbuf, len, start, end);
927 
928 		/* Note: because reloc is assigned from something that
929 		   appears to be an array, gcc assumes it's non-null,
930 		   but doesn't know its relationship with start and
931 		   end. */
932 		if (reloc > start && reloc < end) {
933 			int reloc_off = reloc - start;
934 			long *relocp = (long *)(insnbuf + reloc_off);
935 			long delta = start - (char *)addr;
936 
937 			*relocp += delta;
938 		}
939 		break;
940 
941 	default_patch:
942 	default:
943 		ret = paravirt_patch_default(type, clobbers, insnbuf,
944 					     addr, len);
945 		break;
946 	}
947 
948 	return ret;
949 }
950 
951 static const struct pv_info xen_info __initconst = {
952 	.paravirt_enabled = 1,
953 	.shared_kernel_pmd = 0,
954 
955 #ifdef CONFIG_X86_64
956 	.extra_user_64bit_cs = FLAT_USER_CS64,
957 #endif
958 
959 	.name = "Xen",
960 };
961 
962 static const struct pv_init_ops xen_init_ops __initconst = {
963 	.patch = xen_patch,
964 };
965 
966 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
967 	.cpuid = xen_cpuid,
968 
969 	.set_debugreg = xen_set_debugreg,
970 	.get_debugreg = xen_get_debugreg,
971 
972 	.clts = xen_clts,
973 
974 	.read_cr0 = xen_read_cr0,
975 	.write_cr0 = xen_write_cr0,
976 
977 	.read_cr4 = native_read_cr4,
978 	.read_cr4_safe = native_read_cr4_safe,
979 	.write_cr4 = xen_write_cr4,
980 
981 	.wbinvd = native_wbinvd,
982 
983 	.read_msr = native_read_msr_safe,
984 	.write_msr = xen_write_msr_safe,
985 	.read_tsc = native_read_tsc,
986 	.read_pmc = native_read_pmc,
987 
988 	.iret = xen_iret,
989 	.irq_enable_sysexit = xen_sysexit,
990 #ifdef CONFIG_X86_64
991 	.usergs_sysret32 = xen_sysret32,
992 	.usergs_sysret64 = xen_sysret64,
993 #endif
994 
995 	.load_tr_desc = paravirt_nop,
996 	.set_ldt = xen_set_ldt,
997 	.load_gdt = xen_load_gdt,
998 	.load_idt = xen_load_idt,
999 	.load_tls = xen_load_tls,
1000 #ifdef CONFIG_X86_64
1001 	.load_gs_index = xen_load_gs_index,
1002 #endif
1003 
1004 	.alloc_ldt = xen_alloc_ldt,
1005 	.free_ldt = xen_free_ldt,
1006 
1007 	.store_gdt = native_store_gdt,
1008 	.store_idt = native_store_idt,
1009 	.store_tr = xen_store_tr,
1010 
1011 	.write_ldt_entry = xen_write_ldt_entry,
1012 	.write_gdt_entry = xen_write_gdt_entry,
1013 	.write_idt_entry = xen_write_idt_entry,
1014 	.load_sp0 = xen_load_sp0,
1015 
1016 	.set_iopl_mask = xen_set_iopl_mask,
1017 	.io_delay = xen_io_delay,
1018 
1019 	/* Xen takes care of %gs when switching to usermode for us */
1020 	.swapgs = paravirt_nop,
1021 
1022 	.start_context_switch = paravirt_start_context_switch,
1023 	.end_context_switch = xen_end_context_switch,
1024 };
1025 
1026 static const struct pv_apic_ops xen_apic_ops __initconst = {
1027 #ifdef CONFIG_X86_LOCAL_APIC
1028 	.startup_ipi_hook = paravirt_nop,
1029 #endif
1030 };
1031 
1032 static void xen_reboot(int reason)
1033 {
1034 	struct sched_shutdown r = { .reason = reason };
1035 
1036 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1037 		BUG();
1038 }
1039 
1040 static void xen_restart(char *msg)
1041 {
1042 	xen_reboot(SHUTDOWN_reboot);
1043 }
1044 
1045 static void xen_emergency_restart(void)
1046 {
1047 	xen_reboot(SHUTDOWN_reboot);
1048 }
1049 
1050 static void xen_machine_halt(void)
1051 {
1052 	xen_reboot(SHUTDOWN_poweroff);
1053 }
1054 
1055 static void xen_machine_power_off(void)
1056 {
1057 	if (pm_power_off)
1058 		pm_power_off();
1059 	xen_reboot(SHUTDOWN_poweroff);
1060 }
1061 
1062 static void xen_crash_shutdown(struct pt_regs *regs)
1063 {
1064 	xen_reboot(SHUTDOWN_crash);
1065 }
1066 
1067 static int
1068 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1069 {
1070 	xen_reboot(SHUTDOWN_crash);
1071 	return NOTIFY_DONE;
1072 }
1073 
1074 static struct notifier_block xen_panic_block = {
1075 	.notifier_call= xen_panic_event,
1076 };
1077 
1078 int xen_panic_handler_init(void)
1079 {
1080 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1081 	return 0;
1082 }
1083 
1084 static const struct machine_ops xen_machine_ops __initconst = {
1085 	.restart = xen_restart,
1086 	.halt = xen_machine_halt,
1087 	.power_off = xen_machine_power_off,
1088 	.shutdown = xen_machine_halt,
1089 	.crash_shutdown = xen_crash_shutdown,
1090 	.emergency_restart = xen_emergency_restart,
1091 };
1092 
1093 /*
1094  * Set up the GDT and segment registers for -fstack-protector.  Until
1095  * we do this, we have to be careful not to call any stack-protected
1096  * function, which is most of the kernel.
1097  */
1098 static void __init xen_setup_stackprotector(void)
1099 {
1100 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1101 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1102 
1103 	setup_stack_canary_segment(0);
1104 	switch_to_new_gdt(0);
1105 
1106 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1107 	pv_cpu_ops.load_gdt = xen_load_gdt;
1108 }
1109 
1110 /* First C function to be called on Xen boot */
1111 asmlinkage void __init xen_start_kernel(void)
1112 {
1113 	struct physdev_set_iopl set_iopl;
1114 	int rc;
1115 	pgd_t *pgd;
1116 
1117 	if (!xen_start_info)
1118 		return;
1119 
1120 	xen_domain_type = XEN_PV_DOMAIN;
1121 
1122 	xen_setup_machphys_mapping();
1123 
1124 	/* Install Xen paravirt ops */
1125 	pv_info = xen_info;
1126 	pv_init_ops = xen_init_ops;
1127 	pv_cpu_ops = xen_cpu_ops;
1128 	pv_apic_ops = xen_apic_ops;
1129 
1130 	x86_init.resources.memory_setup = xen_memory_setup;
1131 	x86_init.oem.arch_setup = xen_arch_setup;
1132 	x86_init.oem.banner = xen_banner;
1133 
1134 	xen_init_time_ops();
1135 
1136 	/*
1137 	 * Set up some pagetable state before starting to set any ptes.
1138 	 */
1139 
1140 	xen_init_mmu_ops();
1141 
1142 	/* Prevent unwanted bits from being set in PTEs. */
1143 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1144 	if (!xen_initial_domain())
1145 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1146 
1147 	__supported_pte_mask |= _PAGE_IOMAP;
1148 
1149 	/*
1150 	 * Prevent page tables from being allocated in highmem, even
1151 	 * if CONFIG_HIGHPTE is enabled.
1152 	 */
1153 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1154 
1155 	/* Work out if we support NX */
1156 	x86_configure_nx();
1157 
1158 	xen_setup_features();
1159 
1160 	/* Get mfn list */
1161 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1162 		xen_build_dynamic_phys_to_machine();
1163 
1164 	/*
1165 	 * Set up kernel GDT and segment registers, mainly so that
1166 	 * -fstack-protector code can be executed.
1167 	 */
1168 	xen_setup_stackprotector();
1169 
1170 	xen_init_irq_ops();
1171 	xen_init_cpuid_mask();
1172 
1173 #ifdef CONFIG_X86_LOCAL_APIC
1174 	/*
1175 	 * set up the basic apic ops.
1176 	 */
1177 	set_xen_basic_apic_ops();
1178 #endif
1179 
1180 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1181 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1182 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1183 	}
1184 
1185 	machine_ops = xen_machine_ops;
1186 
1187 	/*
1188 	 * The only reliable way to retain the initial address of the
1189 	 * percpu gdt_page is to remember it here, so we can go and
1190 	 * mark it RW later, when the initial percpu area is freed.
1191 	 */
1192 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1193 
1194 	xen_smp_init();
1195 
1196 #ifdef CONFIG_ACPI_NUMA
1197 	/*
1198 	 * The pages we from Xen are not related to machine pages, so
1199 	 * any NUMA information the kernel tries to get from ACPI will
1200 	 * be meaningless.  Prevent it from trying.
1201 	 */
1202 	acpi_numa = -1;
1203 #endif
1204 
1205 	pgd = (pgd_t *)xen_start_info->pt_base;
1206 
1207 	if (!xen_initial_domain())
1208 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1209 
1210 	__supported_pte_mask |= _PAGE_IOMAP;
1211 	/* Don't do the full vcpu_info placement stuff until we have a
1212 	   possible map and a non-dummy shared_info. */
1213 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1214 
1215 	local_irq_disable();
1216 	early_boot_irqs_disabled = true;
1217 
1218 	memblock_init();
1219 
1220 	xen_raw_console_write("mapping kernel into physical memory\n");
1221 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1222 	xen_ident_map_ISA();
1223 
1224 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1225 	xen_build_mfn_list_list();
1226 
1227 	/* keep using Xen gdt for now; no urgent need to change it */
1228 
1229 #ifdef CONFIG_X86_32
1230 	pv_info.kernel_rpl = 1;
1231 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1232 		pv_info.kernel_rpl = 0;
1233 #else
1234 	pv_info.kernel_rpl = 0;
1235 #endif
1236 	/* set the limit of our address space */
1237 	xen_reserve_top();
1238 
1239 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1240 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1241 	 * which pokes 0xcf8 port.
1242 	 */
1243 	set_iopl.iopl = 1;
1244 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1245 	if (rc != 0)
1246 		xen_raw_printk("physdev_op failed %d\n", rc);
1247 
1248 #ifdef CONFIG_X86_32
1249 	/* set up basic CPUID stuff */
1250 	cpu_detect(&new_cpu_data);
1251 	new_cpu_data.hard_math = 1;
1252 	new_cpu_data.wp_works_ok = 1;
1253 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1254 #endif
1255 
1256 	/* Poke various useful things into boot_params */
1257 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1258 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1259 		? __pa(xen_start_info->mod_start) : 0;
1260 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1261 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1262 
1263 	if (!xen_initial_domain()) {
1264 		add_preferred_console("xenboot", 0, NULL);
1265 		add_preferred_console("tty", 0, NULL);
1266 		add_preferred_console("hvc", 0, NULL);
1267 		if (pci_xen)
1268 			x86_init.pci.arch_init = pci_xen_init;
1269 	} else {
1270 		const struct dom0_vga_console_info *info =
1271 			(void *)((char *)xen_start_info +
1272 				 xen_start_info->console.dom0.info_off);
1273 
1274 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1275 		xen_start_info->console.domU.mfn = 0;
1276 		xen_start_info->console.domU.evtchn = 0;
1277 
1278 		/* Make sure ACS will be enabled */
1279 		pci_request_acs();
1280 	}
1281 
1282 
1283 	xen_raw_console_write("about to get started...\n");
1284 
1285 	xen_setup_runstate_info(0);
1286 
1287 	/* Start the world */
1288 #ifdef CONFIG_X86_32
1289 	i386_start_kernel();
1290 #else
1291 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1292 #endif
1293 }
1294 
1295 static int init_hvm_pv_info(int *major, int *minor)
1296 {
1297 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1298 	u64 pfn;
1299 
1300 	base = xen_cpuid_base();
1301 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1302 
1303 	*major = eax >> 16;
1304 	*minor = eax & 0xffff;
1305 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1306 
1307 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1308 
1309 	pfn = __pa(hypercall_page);
1310 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1311 
1312 	xen_setup_features();
1313 
1314 	pv_info.name = "Xen HVM";
1315 
1316 	xen_domain_type = XEN_HVM_DOMAIN;
1317 
1318 	return 0;
1319 }
1320 
1321 void __ref xen_hvm_init_shared_info(void)
1322 {
1323 	int cpu;
1324 	struct xen_add_to_physmap xatp;
1325 	static struct shared_info *shared_info_page = 0;
1326 
1327 	if (!shared_info_page)
1328 		shared_info_page = (struct shared_info *)
1329 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1330 	xatp.domid = DOMID_SELF;
1331 	xatp.idx = 0;
1332 	xatp.space = XENMAPSPACE_shared_info;
1333 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1334 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1335 		BUG();
1336 
1337 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1338 
1339 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1340 	 * page, we use it in the event channel upcall and in some pvclock
1341 	 * related functions. We don't need the vcpu_info placement
1342 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1343 	 * HVM.
1344 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1345 	 * online but xen_hvm_init_shared_info is run at resume time too and
1346 	 * in that case multiple vcpus might be online. */
1347 	for_each_online_cpu(cpu) {
1348 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1349 	}
1350 }
1351 
1352 #ifdef CONFIG_XEN_PVHVM
1353 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1354 				    unsigned long action, void *hcpu)
1355 {
1356 	int cpu = (long)hcpu;
1357 	switch (action) {
1358 	case CPU_UP_PREPARE:
1359 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1360 		if (xen_have_vector_callback)
1361 			xen_init_lock_cpu(cpu);
1362 		break;
1363 	default:
1364 		break;
1365 	}
1366 	return NOTIFY_OK;
1367 }
1368 
1369 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1370 	.notifier_call	= xen_hvm_cpu_notify,
1371 };
1372 
1373 static void __init xen_hvm_guest_init(void)
1374 {
1375 	int r;
1376 	int major, minor;
1377 
1378 	r = init_hvm_pv_info(&major, &minor);
1379 	if (r < 0)
1380 		return;
1381 
1382 	xen_hvm_init_shared_info();
1383 
1384 	if (xen_feature(XENFEAT_hvm_callback_vector))
1385 		xen_have_vector_callback = 1;
1386 	xen_hvm_smp_init();
1387 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1388 	xen_unplug_emulated_devices();
1389 	have_vcpu_info_placement = 0;
1390 	x86_init.irqs.intr_init = xen_init_IRQ;
1391 	xen_hvm_init_time_ops();
1392 	xen_hvm_init_mmu_ops();
1393 }
1394 
1395 static bool __init xen_hvm_platform(void)
1396 {
1397 	if (xen_pv_domain())
1398 		return false;
1399 
1400 	if (!xen_cpuid_base())
1401 		return false;
1402 
1403 	return true;
1404 }
1405 
1406 bool xen_hvm_need_lapic(void)
1407 {
1408 	if (xen_pv_domain())
1409 		return false;
1410 	if (!xen_hvm_domain())
1411 		return false;
1412 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1413 		return false;
1414 	return true;
1415 }
1416 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1417 
1418 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1419 	.name			= "Xen HVM",
1420 	.detect			= xen_hvm_platform,
1421 	.init_platform		= xen_hvm_guest_init,
1422 };
1423 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1424 #endif
1425