xref: /linux/arch/x86/xen/enlighten.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
44 
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/hypercall.h>
49 #include <asm/xen/hypervisor.h>
50 #include <asm/fixmap.h>
51 #include <asm/processor.h>
52 #include <asm/proto.h>
53 #include <asm/msr-index.h>
54 #include <asm/traps.h>
55 #include <asm/setup.h>
56 #include <asm/desc.h>
57 #include <asm/pgalloc.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/reboot.h>
61 #include <asm/setup.h>
62 #include <asm/stackprotector.h>
63 #include <asm/hypervisor.h>
64 
65 #include "xen-ops.h"
66 #include "mmu.h"
67 #include "multicalls.h"
68 
69 EXPORT_SYMBOL_GPL(hypercall_page);
70 
71 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
72 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
73 
74 enum xen_domain_type xen_domain_type = XEN_NATIVE;
75 EXPORT_SYMBOL_GPL(xen_domain_type);
76 
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79 
80 struct shared_info xen_dummy_shared_info;
81 
82 void *xen_initial_gdt;
83 
84 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
85 __read_mostly int xen_have_vector_callback;
86 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
87 
88 /*
89  * Point at some empty memory to start with. We map the real shared_info
90  * page as soon as fixmap is up and running.
91  */
92 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
93 
94 /*
95  * Flag to determine whether vcpu info placement is available on all
96  * VCPUs.  We assume it is to start with, and then set it to zero on
97  * the first failure.  This is because it can succeed on some VCPUs
98  * and not others, since it can involve hypervisor memory allocation,
99  * or because the guest failed to guarantee all the appropriate
100  * constraints on all VCPUs (ie buffer can't cross a page boundary).
101  *
102  * Note that any particular CPU may be using a placed vcpu structure,
103  * but we can only optimise if the all are.
104  *
105  * 0: not available, 1: available
106  */
107 static int have_vcpu_info_placement = 1;
108 
109 static void clamp_max_cpus(void)
110 {
111 #ifdef CONFIG_SMP
112 	if (setup_max_cpus > MAX_VIRT_CPUS)
113 		setup_max_cpus = MAX_VIRT_CPUS;
114 #endif
115 }
116 
117 static void xen_vcpu_setup(int cpu)
118 {
119 	struct vcpu_register_vcpu_info info;
120 	int err;
121 	struct vcpu_info *vcpup;
122 
123 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
124 
125 	if (cpu < MAX_VIRT_CPUS)
126 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
127 
128 	if (!have_vcpu_info_placement) {
129 		if (cpu >= MAX_VIRT_CPUS)
130 			clamp_max_cpus();
131 		return;
132 	}
133 
134 	vcpup = &per_cpu(xen_vcpu_info, cpu);
135 	info.mfn = arbitrary_virt_to_mfn(vcpup);
136 	info.offset = offset_in_page(vcpup);
137 
138 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
139 	       cpu, vcpup, info.mfn, info.offset);
140 
141 	/* Check to see if the hypervisor will put the vcpu_info
142 	   structure where we want it, which allows direct access via
143 	   a percpu-variable. */
144 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
145 
146 	if (err) {
147 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
148 		have_vcpu_info_placement = 0;
149 		clamp_max_cpus();
150 	} else {
151 		/* This cpu is using the registered vcpu info, even if
152 		   later ones fail to. */
153 		per_cpu(xen_vcpu, cpu) = vcpup;
154 
155 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
156 		       cpu, vcpup);
157 	}
158 }
159 
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167 	int cpu;
168 
169 	for_each_online_cpu(cpu) {
170 		bool other_cpu = (cpu != smp_processor_id());
171 
172 		if (other_cpu &&
173 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174 			BUG();
175 
176 		xen_setup_runstate_info(cpu);
177 
178 		if (have_vcpu_info_placement)
179 			xen_vcpu_setup(cpu);
180 
181 		if (other_cpu &&
182 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183 			BUG();
184 	}
185 }
186 
187 static void __init xen_banner(void)
188 {
189 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190 	struct xen_extraversion extra;
191 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192 
193 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194 	       pv_info.name);
195 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196 	       version >> 16, version & 0xffff, extra.extraversion,
197 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199 
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202 
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204 		      unsigned int *cx, unsigned int *dx)
205 {
206 	unsigned maskebx = ~0;
207 	unsigned maskecx = ~0;
208 	unsigned maskedx = ~0;
209 
210 	/*
211 	 * Mask out inconvenient features, to try and disable as many
212 	 * unsupported kernel subsystems as possible.
213 	 */
214 	switch (*ax) {
215 	case 1:
216 		maskecx = cpuid_leaf1_ecx_mask;
217 		maskedx = cpuid_leaf1_edx_mask;
218 		break;
219 
220 	case 0xb:
221 		/* Suppress extended topology stuff */
222 		maskebx = 0;
223 		break;
224 	}
225 
226 	asm(XEN_EMULATE_PREFIX "cpuid"
227 		: "=a" (*ax),
228 		  "=b" (*bx),
229 		  "=c" (*cx),
230 		  "=d" (*dx)
231 		: "0" (*ax), "2" (*cx));
232 
233 	*bx &= maskebx;
234 	*cx &= maskecx;
235 	*dx &= maskedx;
236 }
237 
238 static __init void xen_init_cpuid_mask(void)
239 {
240 	unsigned int ax, bx, cx, dx;
241 
242 	cpuid_leaf1_edx_mask =
243 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
244 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
245 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
246 
247 	if (!xen_initial_domain())
248 		cpuid_leaf1_edx_mask &=
249 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
250 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
251 
252 	ax = 1;
253 	cx = 0;
254 	xen_cpuid(&ax, &bx, &cx, &dx);
255 
256 	/* cpuid claims we support xsave; try enabling it to see what happens */
257 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
258 		unsigned long cr4;
259 
260 		set_in_cr4(X86_CR4_OSXSAVE);
261 
262 		cr4 = read_cr4();
263 
264 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
265 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
266 
267 		clear_in_cr4(X86_CR4_OSXSAVE);
268 	}
269 }
270 
271 static void xen_set_debugreg(int reg, unsigned long val)
272 {
273 	HYPERVISOR_set_debugreg(reg, val);
274 }
275 
276 static unsigned long xen_get_debugreg(int reg)
277 {
278 	return HYPERVISOR_get_debugreg(reg);
279 }
280 
281 static void xen_end_context_switch(struct task_struct *next)
282 {
283 	xen_mc_flush();
284 	paravirt_end_context_switch(next);
285 }
286 
287 static unsigned long xen_store_tr(void)
288 {
289 	return 0;
290 }
291 
292 /*
293  * Set the page permissions for a particular virtual address.  If the
294  * address is a vmalloc mapping (or other non-linear mapping), then
295  * find the linear mapping of the page and also set its protections to
296  * match.
297  */
298 static void set_aliased_prot(void *v, pgprot_t prot)
299 {
300 	int level;
301 	pte_t *ptep;
302 	pte_t pte;
303 	unsigned long pfn;
304 	struct page *page;
305 
306 	ptep = lookup_address((unsigned long)v, &level);
307 	BUG_ON(ptep == NULL);
308 
309 	pfn = pte_pfn(*ptep);
310 	page = pfn_to_page(pfn);
311 
312 	pte = pfn_pte(pfn, prot);
313 
314 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
315 		BUG();
316 
317 	if (!PageHighMem(page)) {
318 		void *av = __va(PFN_PHYS(pfn));
319 
320 		if (av != v)
321 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
322 				BUG();
323 	} else
324 		kmap_flush_unused();
325 }
326 
327 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
328 {
329 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
330 	int i;
331 
332 	for(i = 0; i < entries; i += entries_per_page)
333 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
334 }
335 
336 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
337 {
338 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
339 	int i;
340 
341 	for(i = 0; i < entries; i += entries_per_page)
342 		set_aliased_prot(ldt + i, PAGE_KERNEL);
343 }
344 
345 static void xen_set_ldt(const void *addr, unsigned entries)
346 {
347 	struct mmuext_op *op;
348 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
349 
350 	op = mcs.args;
351 	op->cmd = MMUEXT_SET_LDT;
352 	op->arg1.linear_addr = (unsigned long)addr;
353 	op->arg2.nr_ents = entries;
354 
355 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
356 
357 	xen_mc_issue(PARAVIRT_LAZY_CPU);
358 }
359 
360 static void xen_load_gdt(const struct desc_ptr *dtr)
361 {
362 	unsigned long va = dtr->address;
363 	unsigned int size = dtr->size + 1;
364 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
365 	unsigned long frames[pages];
366 	int f;
367 
368 	/*
369 	 * A GDT can be up to 64k in size, which corresponds to 8192
370 	 * 8-byte entries, or 16 4k pages..
371 	 */
372 
373 	BUG_ON(size > 65536);
374 	BUG_ON(va & ~PAGE_MASK);
375 
376 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
377 		int level;
378 		pte_t *ptep;
379 		unsigned long pfn, mfn;
380 		void *virt;
381 
382 		/*
383 		 * The GDT is per-cpu and is in the percpu data area.
384 		 * That can be virtually mapped, so we need to do a
385 		 * page-walk to get the underlying MFN for the
386 		 * hypercall.  The page can also be in the kernel's
387 		 * linear range, so we need to RO that mapping too.
388 		 */
389 		ptep = lookup_address(va, &level);
390 		BUG_ON(ptep == NULL);
391 
392 		pfn = pte_pfn(*ptep);
393 		mfn = pfn_to_mfn(pfn);
394 		virt = __va(PFN_PHYS(pfn));
395 
396 		frames[f] = mfn;
397 
398 		make_lowmem_page_readonly((void *)va);
399 		make_lowmem_page_readonly(virt);
400 	}
401 
402 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
403 		BUG();
404 }
405 
406 /*
407  * load_gdt for early boot, when the gdt is only mapped once
408  */
409 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
410 {
411 	unsigned long va = dtr->address;
412 	unsigned int size = dtr->size + 1;
413 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
414 	unsigned long frames[pages];
415 	int f;
416 
417 	/*
418 	 * A GDT can be up to 64k in size, which corresponds to 8192
419 	 * 8-byte entries, or 16 4k pages..
420 	 */
421 
422 	BUG_ON(size > 65536);
423 	BUG_ON(va & ~PAGE_MASK);
424 
425 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
426 		pte_t pte;
427 		unsigned long pfn, mfn;
428 
429 		pfn = virt_to_pfn(va);
430 		mfn = pfn_to_mfn(pfn);
431 
432 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
433 
434 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
435 			BUG();
436 
437 		frames[f] = mfn;
438 	}
439 
440 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
441 		BUG();
442 }
443 
444 static void load_TLS_descriptor(struct thread_struct *t,
445 				unsigned int cpu, unsigned int i)
446 {
447 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
448 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
449 	struct multicall_space mc = __xen_mc_entry(0);
450 
451 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
452 }
453 
454 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
455 {
456 	/*
457 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
458 	 * and lazy gs handling is enabled, it means we're in a
459 	 * context switch, and %gs has just been saved.  This means we
460 	 * can zero it out to prevent faults on exit from the
461 	 * hypervisor if the next process has no %gs.  Either way, it
462 	 * has been saved, and the new value will get loaded properly.
463 	 * This will go away as soon as Xen has been modified to not
464 	 * save/restore %gs for normal hypercalls.
465 	 *
466 	 * On x86_64, this hack is not used for %gs, because gs points
467 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
468 	 * must not zero %gs on x86_64
469 	 *
470 	 * For x86_64, we need to zero %fs, otherwise we may get an
471 	 * exception between the new %fs descriptor being loaded and
472 	 * %fs being effectively cleared at __switch_to().
473 	 */
474 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
475 #ifdef CONFIG_X86_32
476 		lazy_load_gs(0);
477 #else
478 		loadsegment(fs, 0);
479 #endif
480 	}
481 
482 	xen_mc_batch();
483 
484 	load_TLS_descriptor(t, cpu, 0);
485 	load_TLS_descriptor(t, cpu, 1);
486 	load_TLS_descriptor(t, cpu, 2);
487 
488 	xen_mc_issue(PARAVIRT_LAZY_CPU);
489 }
490 
491 #ifdef CONFIG_X86_64
492 static void xen_load_gs_index(unsigned int idx)
493 {
494 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
495 		BUG();
496 }
497 #endif
498 
499 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
500 				const void *ptr)
501 {
502 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
503 	u64 entry = *(u64 *)ptr;
504 
505 	preempt_disable();
506 
507 	xen_mc_flush();
508 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
509 		BUG();
510 
511 	preempt_enable();
512 }
513 
514 static int cvt_gate_to_trap(int vector, const gate_desc *val,
515 			    struct trap_info *info)
516 {
517 	unsigned long addr;
518 
519 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
520 		return 0;
521 
522 	info->vector = vector;
523 
524 	addr = gate_offset(*val);
525 #ifdef CONFIG_X86_64
526 	/*
527 	 * Look for known traps using IST, and substitute them
528 	 * appropriately.  The debugger ones are the only ones we care
529 	 * about.  Xen will handle faults like double_fault and
530 	 * machine_check, so we should never see them.  Warn if
531 	 * there's an unexpected IST-using fault handler.
532 	 */
533 	if (addr == (unsigned long)debug)
534 		addr = (unsigned long)xen_debug;
535 	else if (addr == (unsigned long)int3)
536 		addr = (unsigned long)xen_int3;
537 	else if (addr == (unsigned long)stack_segment)
538 		addr = (unsigned long)xen_stack_segment;
539 	else if (addr == (unsigned long)double_fault ||
540 		 addr == (unsigned long)nmi) {
541 		/* Don't need to handle these */
542 		return 0;
543 #ifdef CONFIG_X86_MCE
544 	} else if (addr == (unsigned long)machine_check) {
545 		return 0;
546 #endif
547 	} else {
548 		/* Some other trap using IST? */
549 		if (WARN_ON(val->ist != 0))
550 			return 0;
551 	}
552 #endif	/* CONFIG_X86_64 */
553 	info->address = addr;
554 
555 	info->cs = gate_segment(*val);
556 	info->flags = val->dpl;
557 	/* interrupt gates clear IF */
558 	if (val->type == GATE_INTERRUPT)
559 		info->flags |= 1 << 2;
560 
561 	return 1;
562 }
563 
564 /* Locations of each CPU's IDT */
565 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
566 
567 /* Set an IDT entry.  If the entry is part of the current IDT, then
568    also update Xen. */
569 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
570 {
571 	unsigned long p = (unsigned long)&dt[entrynum];
572 	unsigned long start, end;
573 
574 	preempt_disable();
575 
576 	start = __get_cpu_var(idt_desc).address;
577 	end = start + __get_cpu_var(idt_desc).size + 1;
578 
579 	xen_mc_flush();
580 
581 	native_write_idt_entry(dt, entrynum, g);
582 
583 	if (p >= start && (p + 8) <= end) {
584 		struct trap_info info[2];
585 
586 		info[1].address = 0;
587 
588 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
589 			if (HYPERVISOR_set_trap_table(info))
590 				BUG();
591 	}
592 
593 	preempt_enable();
594 }
595 
596 static void xen_convert_trap_info(const struct desc_ptr *desc,
597 				  struct trap_info *traps)
598 {
599 	unsigned in, out, count;
600 
601 	count = (desc->size+1) / sizeof(gate_desc);
602 	BUG_ON(count > 256);
603 
604 	for (in = out = 0; in < count; in++) {
605 		gate_desc *entry = (gate_desc*)(desc->address) + in;
606 
607 		if (cvt_gate_to_trap(in, entry, &traps[out]))
608 			out++;
609 	}
610 	traps[out].address = 0;
611 }
612 
613 void xen_copy_trap_info(struct trap_info *traps)
614 {
615 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
616 
617 	xen_convert_trap_info(desc, traps);
618 }
619 
620 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
621    hold a spinlock to protect the static traps[] array (static because
622    it avoids allocation, and saves stack space). */
623 static void xen_load_idt(const struct desc_ptr *desc)
624 {
625 	static DEFINE_SPINLOCK(lock);
626 	static struct trap_info traps[257];
627 
628 	spin_lock(&lock);
629 
630 	__get_cpu_var(idt_desc) = *desc;
631 
632 	xen_convert_trap_info(desc, traps);
633 
634 	xen_mc_flush();
635 	if (HYPERVISOR_set_trap_table(traps))
636 		BUG();
637 
638 	spin_unlock(&lock);
639 }
640 
641 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
642    they're handled differently. */
643 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
644 				const void *desc, int type)
645 {
646 	preempt_disable();
647 
648 	switch (type) {
649 	case DESC_LDT:
650 	case DESC_TSS:
651 		/* ignore */
652 		break;
653 
654 	default: {
655 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
656 
657 		xen_mc_flush();
658 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
659 			BUG();
660 	}
661 
662 	}
663 
664 	preempt_enable();
665 }
666 
667 /*
668  * Version of write_gdt_entry for use at early boot-time needed to
669  * update an entry as simply as possible.
670  */
671 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
672 					    const void *desc, int type)
673 {
674 	switch (type) {
675 	case DESC_LDT:
676 	case DESC_TSS:
677 		/* ignore */
678 		break;
679 
680 	default: {
681 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
682 
683 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
684 			dt[entry] = *(struct desc_struct *)desc;
685 	}
686 
687 	}
688 }
689 
690 static void xen_load_sp0(struct tss_struct *tss,
691 			 struct thread_struct *thread)
692 {
693 	struct multicall_space mcs = xen_mc_entry(0);
694 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
695 	xen_mc_issue(PARAVIRT_LAZY_CPU);
696 }
697 
698 static void xen_set_iopl_mask(unsigned mask)
699 {
700 	struct physdev_set_iopl set_iopl;
701 
702 	/* Force the change at ring 0. */
703 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
704 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
705 }
706 
707 static void xen_io_delay(void)
708 {
709 }
710 
711 #ifdef CONFIG_X86_LOCAL_APIC
712 static u32 xen_apic_read(u32 reg)
713 {
714 	return 0;
715 }
716 
717 static void xen_apic_write(u32 reg, u32 val)
718 {
719 	/* Warn to see if there's any stray references */
720 	WARN_ON(1);
721 }
722 
723 static u64 xen_apic_icr_read(void)
724 {
725 	return 0;
726 }
727 
728 static void xen_apic_icr_write(u32 low, u32 id)
729 {
730 	/* Warn to see if there's any stray references */
731 	WARN_ON(1);
732 }
733 
734 static void xen_apic_wait_icr_idle(void)
735 {
736         return;
737 }
738 
739 static u32 xen_safe_apic_wait_icr_idle(void)
740 {
741         return 0;
742 }
743 
744 static void set_xen_basic_apic_ops(void)
745 {
746 	apic->read = xen_apic_read;
747 	apic->write = xen_apic_write;
748 	apic->icr_read = xen_apic_icr_read;
749 	apic->icr_write = xen_apic_icr_write;
750 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
751 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
752 }
753 
754 #endif
755 
756 static void xen_clts(void)
757 {
758 	struct multicall_space mcs;
759 
760 	mcs = xen_mc_entry(0);
761 
762 	MULTI_fpu_taskswitch(mcs.mc, 0);
763 
764 	xen_mc_issue(PARAVIRT_LAZY_CPU);
765 }
766 
767 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
768 
769 static unsigned long xen_read_cr0(void)
770 {
771 	unsigned long cr0 = percpu_read(xen_cr0_value);
772 
773 	if (unlikely(cr0 == 0)) {
774 		cr0 = native_read_cr0();
775 		percpu_write(xen_cr0_value, cr0);
776 	}
777 
778 	return cr0;
779 }
780 
781 static void xen_write_cr0(unsigned long cr0)
782 {
783 	struct multicall_space mcs;
784 
785 	percpu_write(xen_cr0_value, cr0);
786 
787 	/* Only pay attention to cr0.TS; everything else is
788 	   ignored. */
789 	mcs = xen_mc_entry(0);
790 
791 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
792 
793 	xen_mc_issue(PARAVIRT_LAZY_CPU);
794 }
795 
796 static void xen_write_cr4(unsigned long cr4)
797 {
798 	cr4 &= ~X86_CR4_PGE;
799 	cr4 &= ~X86_CR4_PSE;
800 
801 	native_write_cr4(cr4);
802 }
803 
804 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
805 {
806 	int ret;
807 
808 	ret = 0;
809 
810 	switch (msr) {
811 #ifdef CONFIG_X86_64
812 		unsigned which;
813 		u64 base;
814 
815 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
816 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
817 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
818 
819 	set:
820 		base = ((u64)high << 32) | low;
821 		if (HYPERVISOR_set_segment_base(which, base) != 0)
822 			ret = -EIO;
823 		break;
824 #endif
825 
826 	case MSR_STAR:
827 	case MSR_CSTAR:
828 	case MSR_LSTAR:
829 	case MSR_SYSCALL_MASK:
830 	case MSR_IA32_SYSENTER_CS:
831 	case MSR_IA32_SYSENTER_ESP:
832 	case MSR_IA32_SYSENTER_EIP:
833 		/* Fast syscall setup is all done in hypercalls, so
834 		   these are all ignored.  Stub them out here to stop
835 		   Xen console noise. */
836 		break;
837 
838 	default:
839 		ret = native_write_msr_safe(msr, low, high);
840 	}
841 
842 	return ret;
843 }
844 
845 void xen_setup_shared_info(void)
846 {
847 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
848 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
849 			   xen_start_info->shared_info);
850 
851 		HYPERVISOR_shared_info =
852 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
853 	} else
854 		HYPERVISOR_shared_info =
855 			(struct shared_info *)__va(xen_start_info->shared_info);
856 
857 #ifndef CONFIG_SMP
858 	/* In UP this is as good a place as any to set up shared info */
859 	xen_setup_vcpu_info_placement();
860 #endif
861 
862 	xen_setup_mfn_list_list();
863 }
864 
865 /* This is called once we have the cpu_possible_map */
866 void xen_setup_vcpu_info_placement(void)
867 {
868 	int cpu;
869 
870 	for_each_possible_cpu(cpu)
871 		xen_vcpu_setup(cpu);
872 
873 	/* xen_vcpu_setup managed to place the vcpu_info within the
874 	   percpu area for all cpus, so make use of it */
875 	if (have_vcpu_info_placement) {
876 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
877 
878 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
879 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
880 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
881 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
882 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
883 	}
884 }
885 
886 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
887 			  unsigned long addr, unsigned len)
888 {
889 	char *start, *end, *reloc;
890 	unsigned ret;
891 
892 	start = end = reloc = NULL;
893 
894 #define SITE(op, x)							\
895 	case PARAVIRT_PATCH(op.x):					\
896 	if (have_vcpu_info_placement) {					\
897 		start = (char *)xen_##x##_direct;			\
898 		end = xen_##x##_direct_end;				\
899 		reloc = xen_##x##_direct_reloc;				\
900 	}								\
901 	goto patch_site
902 
903 	switch (type) {
904 		SITE(pv_irq_ops, irq_enable);
905 		SITE(pv_irq_ops, irq_disable);
906 		SITE(pv_irq_ops, save_fl);
907 		SITE(pv_irq_ops, restore_fl);
908 #undef SITE
909 
910 	patch_site:
911 		if (start == NULL || (end-start) > len)
912 			goto default_patch;
913 
914 		ret = paravirt_patch_insns(insnbuf, len, start, end);
915 
916 		/* Note: because reloc is assigned from something that
917 		   appears to be an array, gcc assumes it's non-null,
918 		   but doesn't know its relationship with start and
919 		   end. */
920 		if (reloc > start && reloc < end) {
921 			int reloc_off = reloc - start;
922 			long *relocp = (long *)(insnbuf + reloc_off);
923 			long delta = start - (char *)addr;
924 
925 			*relocp += delta;
926 		}
927 		break;
928 
929 	default_patch:
930 	default:
931 		ret = paravirt_patch_default(type, clobbers, insnbuf,
932 					     addr, len);
933 		break;
934 	}
935 
936 	return ret;
937 }
938 
939 static const struct pv_info xen_info __initdata = {
940 	.paravirt_enabled = 1,
941 	.shared_kernel_pmd = 0,
942 
943 	.name = "Xen",
944 };
945 
946 static const struct pv_init_ops xen_init_ops __initdata = {
947 	.patch = xen_patch,
948 };
949 
950 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
951 	.cpuid = xen_cpuid,
952 
953 	.set_debugreg = xen_set_debugreg,
954 	.get_debugreg = xen_get_debugreg,
955 
956 	.clts = xen_clts,
957 
958 	.read_cr0 = xen_read_cr0,
959 	.write_cr0 = xen_write_cr0,
960 
961 	.read_cr4 = native_read_cr4,
962 	.read_cr4_safe = native_read_cr4_safe,
963 	.write_cr4 = xen_write_cr4,
964 
965 	.wbinvd = native_wbinvd,
966 
967 	.read_msr = native_read_msr_safe,
968 	.write_msr = xen_write_msr_safe,
969 	.read_tsc = native_read_tsc,
970 	.read_pmc = native_read_pmc,
971 
972 	.iret = xen_iret,
973 	.irq_enable_sysexit = xen_sysexit,
974 #ifdef CONFIG_X86_64
975 	.usergs_sysret32 = xen_sysret32,
976 	.usergs_sysret64 = xen_sysret64,
977 #endif
978 
979 	.load_tr_desc = paravirt_nop,
980 	.set_ldt = xen_set_ldt,
981 	.load_gdt = xen_load_gdt,
982 	.load_idt = xen_load_idt,
983 	.load_tls = xen_load_tls,
984 #ifdef CONFIG_X86_64
985 	.load_gs_index = xen_load_gs_index,
986 #endif
987 
988 	.alloc_ldt = xen_alloc_ldt,
989 	.free_ldt = xen_free_ldt,
990 
991 	.store_gdt = native_store_gdt,
992 	.store_idt = native_store_idt,
993 	.store_tr = xen_store_tr,
994 
995 	.write_ldt_entry = xen_write_ldt_entry,
996 	.write_gdt_entry = xen_write_gdt_entry,
997 	.write_idt_entry = xen_write_idt_entry,
998 	.load_sp0 = xen_load_sp0,
999 
1000 	.set_iopl_mask = xen_set_iopl_mask,
1001 	.io_delay = xen_io_delay,
1002 
1003 	/* Xen takes care of %gs when switching to usermode for us */
1004 	.swapgs = paravirt_nop,
1005 
1006 	.start_context_switch = paravirt_start_context_switch,
1007 	.end_context_switch = xen_end_context_switch,
1008 };
1009 
1010 static const struct pv_apic_ops xen_apic_ops __initdata = {
1011 #ifdef CONFIG_X86_LOCAL_APIC
1012 	.startup_ipi_hook = paravirt_nop,
1013 #endif
1014 };
1015 
1016 static void xen_reboot(int reason)
1017 {
1018 	struct sched_shutdown r = { .reason = reason };
1019 
1020 #ifdef CONFIG_SMP
1021 	smp_send_stop();
1022 #endif
1023 
1024 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1025 		BUG();
1026 }
1027 
1028 static void xen_restart(char *msg)
1029 {
1030 	xen_reboot(SHUTDOWN_reboot);
1031 }
1032 
1033 static void xen_emergency_restart(void)
1034 {
1035 	xen_reboot(SHUTDOWN_reboot);
1036 }
1037 
1038 static void xen_machine_halt(void)
1039 {
1040 	xen_reboot(SHUTDOWN_poweroff);
1041 }
1042 
1043 static void xen_crash_shutdown(struct pt_regs *regs)
1044 {
1045 	xen_reboot(SHUTDOWN_crash);
1046 }
1047 
1048 static int
1049 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1050 {
1051 	xen_reboot(SHUTDOWN_crash);
1052 	return NOTIFY_DONE;
1053 }
1054 
1055 static struct notifier_block xen_panic_block = {
1056 	.notifier_call= xen_panic_event,
1057 };
1058 
1059 int xen_panic_handler_init(void)
1060 {
1061 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1062 	return 0;
1063 }
1064 
1065 static const struct machine_ops __initdata xen_machine_ops = {
1066 	.restart = xen_restart,
1067 	.halt = xen_machine_halt,
1068 	.power_off = xen_machine_halt,
1069 	.shutdown = xen_machine_halt,
1070 	.crash_shutdown = xen_crash_shutdown,
1071 	.emergency_restart = xen_emergency_restart,
1072 };
1073 
1074 /*
1075  * Set up the GDT and segment registers for -fstack-protector.  Until
1076  * we do this, we have to be careful not to call any stack-protected
1077  * function, which is most of the kernel.
1078  */
1079 static void __init xen_setup_stackprotector(void)
1080 {
1081 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1082 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1083 
1084 	setup_stack_canary_segment(0);
1085 	switch_to_new_gdt(0);
1086 
1087 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1088 	pv_cpu_ops.load_gdt = xen_load_gdt;
1089 }
1090 
1091 /* First C function to be called on Xen boot */
1092 asmlinkage void __init xen_start_kernel(void)
1093 {
1094 	pgd_t *pgd;
1095 
1096 	if (!xen_start_info)
1097 		return;
1098 
1099 	xen_domain_type = XEN_PV_DOMAIN;
1100 
1101 	/* Install Xen paravirt ops */
1102 	pv_info = xen_info;
1103 	pv_init_ops = xen_init_ops;
1104 	pv_cpu_ops = xen_cpu_ops;
1105 	pv_apic_ops = xen_apic_ops;
1106 
1107 	x86_init.resources.memory_setup = xen_memory_setup;
1108 	x86_init.oem.arch_setup = xen_arch_setup;
1109 	x86_init.oem.banner = xen_banner;
1110 
1111 	xen_init_time_ops();
1112 
1113 	/*
1114 	 * Set up some pagetable state before starting to set any ptes.
1115 	 */
1116 
1117 	xen_init_mmu_ops();
1118 
1119 	/* Prevent unwanted bits from being set in PTEs. */
1120 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1121 	if (!xen_initial_domain())
1122 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1123 
1124 	__supported_pte_mask |= _PAGE_IOMAP;
1125 
1126 	/*
1127 	 * Prevent page tables from being allocated in highmem, even
1128 	 * if CONFIG_HIGHPTE is enabled.
1129 	 */
1130 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1131 
1132 	/* Work out if we support NX */
1133 	x86_configure_nx();
1134 
1135 	xen_setup_features();
1136 
1137 	/* Get mfn list */
1138 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1139 		xen_build_dynamic_phys_to_machine();
1140 
1141 	/*
1142 	 * Set up kernel GDT and segment registers, mainly so that
1143 	 * -fstack-protector code can be executed.
1144 	 */
1145 	xen_setup_stackprotector();
1146 
1147 	xen_init_irq_ops();
1148 	xen_init_cpuid_mask();
1149 
1150 #ifdef CONFIG_X86_LOCAL_APIC
1151 	/*
1152 	 * set up the basic apic ops.
1153 	 */
1154 	set_xen_basic_apic_ops();
1155 #endif
1156 
1157 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1158 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1159 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1160 	}
1161 
1162 	machine_ops = xen_machine_ops;
1163 
1164 	/*
1165 	 * The only reliable way to retain the initial address of the
1166 	 * percpu gdt_page is to remember it here, so we can go and
1167 	 * mark it RW later, when the initial percpu area is freed.
1168 	 */
1169 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1170 
1171 	xen_smp_init();
1172 
1173 	pgd = (pgd_t *)xen_start_info->pt_base;
1174 
1175 	if (!xen_initial_domain())
1176 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1177 
1178 	__supported_pte_mask |= _PAGE_IOMAP;
1179 	/* Don't do the full vcpu_info placement stuff until we have a
1180 	   possible map and a non-dummy shared_info. */
1181 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1182 
1183 	local_irq_disable();
1184 	early_boot_irqs_off();
1185 
1186 	xen_raw_console_write("mapping kernel into physical memory\n");
1187 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1188 
1189 	init_mm.pgd = pgd;
1190 
1191 	/* keep using Xen gdt for now; no urgent need to change it */
1192 
1193 #ifdef CONFIG_X86_32
1194 	pv_info.kernel_rpl = 1;
1195 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1196 		pv_info.kernel_rpl = 0;
1197 #else
1198 	pv_info.kernel_rpl = 0;
1199 #endif
1200 
1201 	/* set the limit of our address space */
1202 	xen_reserve_top();
1203 
1204 #ifdef CONFIG_X86_32
1205 	/* set up basic CPUID stuff */
1206 	cpu_detect(&new_cpu_data);
1207 	new_cpu_data.hard_math = 1;
1208 	new_cpu_data.wp_works_ok = 1;
1209 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1210 #endif
1211 
1212 	/* Poke various useful things into boot_params */
1213 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1214 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1215 		? __pa(xen_start_info->mod_start) : 0;
1216 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1217 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1218 
1219 	if (!xen_initial_domain()) {
1220 		add_preferred_console("xenboot", 0, NULL);
1221 		add_preferred_console("tty", 0, NULL);
1222 		add_preferred_console("hvc", 0, NULL);
1223 	} else {
1224 		/* Make sure ACS will be enabled */
1225 		pci_request_acs();
1226 	}
1227 
1228 
1229 	xen_raw_console_write("about to get started...\n");
1230 
1231 	xen_setup_runstate_info(0);
1232 
1233 	/* Start the world */
1234 #ifdef CONFIG_X86_32
1235 	i386_start_kernel();
1236 #else
1237 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1238 #endif
1239 }
1240 
1241 static uint32_t xen_cpuid_base(void)
1242 {
1243 	uint32_t base, eax, ebx, ecx, edx;
1244 	char signature[13];
1245 
1246 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1247 		cpuid(base, &eax, &ebx, &ecx, &edx);
1248 		*(uint32_t *)(signature + 0) = ebx;
1249 		*(uint32_t *)(signature + 4) = ecx;
1250 		*(uint32_t *)(signature + 8) = edx;
1251 		signature[12] = 0;
1252 
1253 		if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1254 			return base;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static int init_hvm_pv_info(int *major, int *minor)
1261 {
1262 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1263 	u64 pfn;
1264 
1265 	base = xen_cpuid_base();
1266 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1267 
1268 	*major = eax >> 16;
1269 	*minor = eax & 0xffff;
1270 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1271 
1272 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1273 
1274 	pfn = __pa(hypercall_page);
1275 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1276 
1277 	xen_setup_features();
1278 
1279 	pv_info = xen_info;
1280 	pv_info.kernel_rpl = 0;
1281 
1282 	xen_domain_type = XEN_HVM_DOMAIN;
1283 
1284 	return 0;
1285 }
1286 
1287 void xen_hvm_init_shared_info(void)
1288 {
1289 	int cpu;
1290 	struct xen_add_to_physmap xatp;
1291 	static struct shared_info *shared_info_page = 0;
1292 
1293 	if (!shared_info_page)
1294 		shared_info_page = (struct shared_info *)
1295 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1296 	xatp.domid = DOMID_SELF;
1297 	xatp.idx = 0;
1298 	xatp.space = XENMAPSPACE_shared_info;
1299 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1300 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1301 		BUG();
1302 
1303 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1304 
1305 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1306 	 * page, we use it in the event channel upcall and in some pvclock
1307 	 * related functions. We don't need the vcpu_info placement
1308 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1309 	 * HVM.
1310 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1311 	 * online but xen_hvm_init_shared_info is run at resume time too and
1312 	 * in that case multiple vcpus might be online. */
1313 	for_each_online_cpu(cpu) {
1314 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1315 	}
1316 }
1317 
1318 #ifdef CONFIG_XEN_PVHVM
1319 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1320 				    unsigned long action, void *hcpu)
1321 {
1322 	int cpu = (long)hcpu;
1323 	switch (action) {
1324 	case CPU_UP_PREPARE:
1325 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1326 		break;
1327 	default:
1328 		break;
1329 	}
1330 	return NOTIFY_OK;
1331 }
1332 
1333 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1334 	.notifier_call	= xen_hvm_cpu_notify,
1335 };
1336 
1337 static void __init xen_hvm_guest_init(void)
1338 {
1339 	int r;
1340 	int major, minor;
1341 
1342 	r = init_hvm_pv_info(&major, &minor);
1343 	if (r < 0)
1344 		return;
1345 
1346 	xen_hvm_init_shared_info();
1347 
1348 	if (xen_feature(XENFEAT_hvm_callback_vector))
1349 		xen_have_vector_callback = 1;
1350 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1351 	xen_unplug_emulated_devices();
1352 	have_vcpu_info_placement = 0;
1353 	x86_init.irqs.intr_init = xen_init_IRQ;
1354 	xen_hvm_init_time_ops();
1355 	xen_hvm_init_mmu_ops();
1356 }
1357 
1358 static bool __init xen_hvm_platform(void)
1359 {
1360 	if (xen_pv_domain())
1361 		return false;
1362 
1363 	if (!xen_cpuid_base())
1364 		return false;
1365 
1366 	return true;
1367 }
1368 
1369 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1370 	.name			= "Xen HVM",
1371 	.detect			= xen_hvm_platform,
1372 	.init_platform		= xen_hvm_guest_init,
1373 };
1374 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1375 #endif
1376