xref: /linux/arch/x86/xen/enlighten.c (revision bf992fa2bc1ad1bb2aeb0bdfadb43f236b9297fd)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30 
31 #include <xen/interface/xen.h>
32 #include <xen/interface/version.h>
33 #include <xen/interface/physdev.h>
34 #include <xen/interface/vcpu.h>
35 #include <xen/features.h>
36 #include <xen/page.h>
37 #include <xen/hvc-console.h>
38 
39 #include <asm/paravirt.h>
40 #include <asm/apic.h>
41 #include <asm/page.h>
42 #include <asm/xen/hypercall.h>
43 #include <asm/xen/hypervisor.h>
44 #include <asm/fixmap.h>
45 #include <asm/processor.h>
46 #include <asm/proto.h>
47 #include <asm/msr-index.h>
48 #include <asm/traps.h>
49 #include <asm/setup.h>
50 #include <asm/desc.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/reboot.h>
54 
55 #include "xen-ops.h"
56 #include "mmu.h"
57 #include "multicalls.h"
58 
59 EXPORT_SYMBOL_GPL(hypercall_page);
60 
61 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
62 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
63 
64 enum xen_domain_type xen_domain_type = XEN_NATIVE;
65 EXPORT_SYMBOL_GPL(xen_domain_type);
66 
67 struct start_info *xen_start_info;
68 EXPORT_SYMBOL_GPL(xen_start_info);
69 
70 struct shared_info xen_dummy_shared_info;
71 
72 void *xen_initial_gdt;
73 
74 /*
75  * Point at some empty memory to start with. We map the real shared_info
76  * page as soon as fixmap is up and running.
77  */
78 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
79 
80 /*
81  * Flag to determine whether vcpu info placement is available on all
82  * VCPUs.  We assume it is to start with, and then set it to zero on
83  * the first failure.  This is because it can succeed on some VCPUs
84  * and not others, since it can involve hypervisor memory allocation,
85  * or because the guest failed to guarantee all the appropriate
86  * constraints on all VCPUs (ie buffer can't cross a page boundary).
87  *
88  * Note that any particular CPU may be using a placed vcpu structure,
89  * but we can only optimise if the all are.
90  *
91  * 0: not available, 1: available
92  */
93 static int have_vcpu_info_placement = 1;
94 
95 static void xen_vcpu_setup(int cpu)
96 {
97 	struct vcpu_register_vcpu_info info;
98 	int err;
99 	struct vcpu_info *vcpup;
100 
101 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
102 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
103 
104 	if (!have_vcpu_info_placement)
105 		return;		/* already tested, not available */
106 
107 	vcpup = &per_cpu(xen_vcpu_info, cpu);
108 
109 	info.mfn = arbitrary_virt_to_mfn(vcpup);
110 	info.offset = offset_in_page(vcpup);
111 
112 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
113 	       cpu, vcpup, info.mfn, info.offset);
114 
115 	/* Check to see if the hypervisor will put the vcpu_info
116 	   structure where we want it, which allows direct access via
117 	   a percpu-variable. */
118 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
119 
120 	if (err) {
121 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
122 		have_vcpu_info_placement = 0;
123 	} else {
124 		/* This cpu is using the registered vcpu info, even if
125 		   later ones fail to. */
126 		per_cpu(xen_vcpu, cpu) = vcpup;
127 
128 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
129 		       cpu, vcpup);
130 	}
131 }
132 
133 /*
134  * On restore, set the vcpu placement up again.
135  * If it fails, then we're in a bad state, since
136  * we can't back out from using it...
137  */
138 void xen_vcpu_restore(void)
139 {
140 	if (have_vcpu_info_placement) {
141 		int cpu;
142 
143 		for_each_online_cpu(cpu) {
144 			bool other_cpu = (cpu != smp_processor_id());
145 
146 			if (other_cpu &&
147 			    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
148 				BUG();
149 
150 			xen_vcpu_setup(cpu);
151 
152 			if (other_cpu &&
153 			    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
154 				BUG();
155 		}
156 
157 		BUG_ON(!have_vcpu_info_placement);
158 	}
159 }
160 
161 static void __init xen_banner(void)
162 {
163 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
164 	struct xen_extraversion extra;
165 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
166 
167 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
168 	       pv_info.name);
169 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
170 	       version >> 16, version & 0xffff, extra.extraversion,
171 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
172 }
173 
174 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
175 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
176 
177 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
178 		      unsigned int *cx, unsigned int *dx)
179 {
180 	unsigned maskecx = ~0;
181 	unsigned maskedx = ~0;
182 
183 	/*
184 	 * Mask out inconvenient features, to try and disable as many
185 	 * unsupported kernel subsystems as possible.
186 	 */
187 	if (*ax == 1) {
188 		maskecx = cpuid_leaf1_ecx_mask;
189 		maskedx = cpuid_leaf1_edx_mask;
190 	}
191 
192 	asm(XEN_EMULATE_PREFIX "cpuid"
193 		: "=a" (*ax),
194 		  "=b" (*bx),
195 		  "=c" (*cx),
196 		  "=d" (*dx)
197 		: "0" (*ax), "2" (*cx));
198 
199 	*cx &= maskecx;
200 	*dx &= maskedx;
201 }
202 
203 static __init void xen_init_cpuid_mask(void)
204 {
205 	unsigned int ax, bx, cx, dx;
206 
207 	cpuid_leaf1_edx_mask =
208 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
209 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
210 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
211 
212 	if (!xen_initial_domain())
213 		cpuid_leaf1_edx_mask &=
214 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
215 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
216 
217 	ax = 1;
218 	cx = 0;
219 	xen_cpuid(&ax, &bx, &cx, &dx);
220 
221 	/* cpuid claims we support xsave; try enabling it to see what happens */
222 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
223 		unsigned long cr4;
224 
225 		set_in_cr4(X86_CR4_OSXSAVE);
226 
227 		cr4 = read_cr4();
228 
229 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
230 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
231 
232 		clear_in_cr4(X86_CR4_OSXSAVE);
233 	}
234 }
235 
236 static void xen_set_debugreg(int reg, unsigned long val)
237 {
238 	HYPERVISOR_set_debugreg(reg, val);
239 }
240 
241 static unsigned long xen_get_debugreg(int reg)
242 {
243 	return HYPERVISOR_get_debugreg(reg);
244 }
245 
246 static void xen_end_context_switch(struct task_struct *next)
247 {
248 	xen_mc_flush();
249 	paravirt_end_context_switch(next);
250 }
251 
252 static unsigned long xen_store_tr(void)
253 {
254 	return 0;
255 }
256 
257 /*
258  * Set the page permissions for a particular virtual address.  If the
259  * address is a vmalloc mapping (or other non-linear mapping), then
260  * find the linear mapping of the page and also set its protections to
261  * match.
262  */
263 static void set_aliased_prot(void *v, pgprot_t prot)
264 {
265 	int level;
266 	pte_t *ptep;
267 	pte_t pte;
268 	unsigned long pfn;
269 	struct page *page;
270 
271 	ptep = lookup_address((unsigned long)v, &level);
272 	BUG_ON(ptep == NULL);
273 
274 	pfn = pte_pfn(*ptep);
275 	page = pfn_to_page(pfn);
276 
277 	pte = pfn_pte(pfn, prot);
278 
279 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
280 		BUG();
281 
282 	if (!PageHighMem(page)) {
283 		void *av = __va(PFN_PHYS(pfn));
284 
285 		if (av != v)
286 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
287 				BUG();
288 	} else
289 		kmap_flush_unused();
290 }
291 
292 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
293 {
294 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
295 	int i;
296 
297 	for(i = 0; i < entries; i += entries_per_page)
298 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
299 }
300 
301 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
302 {
303 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
304 	int i;
305 
306 	for(i = 0; i < entries; i += entries_per_page)
307 		set_aliased_prot(ldt + i, PAGE_KERNEL);
308 }
309 
310 static void xen_set_ldt(const void *addr, unsigned entries)
311 {
312 	struct mmuext_op *op;
313 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
314 
315 	op = mcs.args;
316 	op->cmd = MMUEXT_SET_LDT;
317 	op->arg1.linear_addr = (unsigned long)addr;
318 	op->arg2.nr_ents = entries;
319 
320 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
321 
322 	xen_mc_issue(PARAVIRT_LAZY_CPU);
323 }
324 
325 static void xen_load_gdt(const struct desc_ptr *dtr)
326 {
327 	unsigned long va = dtr->address;
328 	unsigned int size = dtr->size + 1;
329 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
330 	unsigned long frames[pages];
331 	int f;
332 
333 	/* A GDT can be up to 64k in size, which corresponds to 8192
334 	   8-byte entries, or 16 4k pages.. */
335 
336 	BUG_ON(size > 65536);
337 	BUG_ON(va & ~PAGE_MASK);
338 
339 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
340 		int level;
341 		pte_t *ptep = lookup_address(va, &level);
342 		unsigned long pfn, mfn;
343 		void *virt;
344 
345 		BUG_ON(ptep == NULL);
346 
347 		pfn = pte_pfn(*ptep);
348 		mfn = pfn_to_mfn(pfn);
349 		virt = __va(PFN_PHYS(pfn));
350 
351 		frames[f] = mfn;
352 
353 		make_lowmem_page_readonly((void *)va);
354 		make_lowmem_page_readonly(virt);
355 	}
356 
357 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
358 		BUG();
359 }
360 
361 static void load_TLS_descriptor(struct thread_struct *t,
362 				unsigned int cpu, unsigned int i)
363 {
364 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
365 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
366 	struct multicall_space mc = __xen_mc_entry(0);
367 
368 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
369 }
370 
371 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
372 {
373 	/*
374 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
375 	 * and lazy gs handling is enabled, it means we're in a
376 	 * context switch, and %gs has just been saved.  This means we
377 	 * can zero it out to prevent faults on exit from the
378 	 * hypervisor if the next process has no %gs.  Either way, it
379 	 * has been saved, and the new value will get loaded properly.
380 	 * This will go away as soon as Xen has been modified to not
381 	 * save/restore %gs for normal hypercalls.
382 	 *
383 	 * On x86_64, this hack is not used for %gs, because gs points
384 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
385 	 * must not zero %gs on x86_64
386 	 *
387 	 * For x86_64, we need to zero %fs, otherwise we may get an
388 	 * exception between the new %fs descriptor being loaded and
389 	 * %fs being effectively cleared at __switch_to().
390 	 */
391 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
392 #ifdef CONFIG_X86_32
393 		lazy_load_gs(0);
394 #else
395 		loadsegment(fs, 0);
396 #endif
397 	}
398 
399 	xen_mc_batch();
400 
401 	load_TLS_descriptor(t, cpu, 0);
402 	load_TLS_descriptor(t, cpu, 1);
403 	load_TLS_descriptor(t, cpu, 2);
404 
405 	xen_mc_issue(PARAVIRT_LAZY_CPU);
406 }
407 
408 #ifdef CONFIG_X86_64
409 static void xen_load_gs_index(unsigned int idx)
410 {
411 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
412 		BUG();
413 }
414 #endif
415 
416 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
417 				const void *ptr)
418 {
419 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
420 	u64 entry = *(u64 *)ptr;
421 
422 	preempt_disable();
423 
424 	xen_mc_flush();
425 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
426 		BUG();
427 
428 	preempt_enable();
429 }
430 
431 static int cvt_gate_to_trap(int vector, const gate_desc *val,
432 			    struct trap_info *info)
433 {
434 	unsigned long addr;
435 
436 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
437 		return 0;
438 
439 	info->vector = vector;
440 
441 	addr = gate_offset(*val);
442 #ifdef CONFIG_X86_64
443 	/*
444 	 * Look for known traps using IST, and substitute them
445 	 * appropriately.  The debugger ones are the only ones we care
446 	 * about.  Xen will handle faults like double_fault and
447 	 * machine_check, so we should never see them.  Warn if
448 	 * there's an unexpected IST-using fault handler.
449 	 */
450 	if (addr == (unsigned long)debug)
451 		addr = (unsigned long)xen_debug;
452 	else if (addr == (unsigned long)int3)
453 		addr = (unsigned long)xen_int3;
454 	else if (addr == (unsigned long)stack_segment)
455 		addr = (unsigned long)xen_stack_segment;
456 	else if (addr == (unsigned long)double_fault ||
457 		 addr == (unsigned long)nmi) {
458 		/* Don't need to handle these */
459 		return 0;
460 #ifdef CONFIG_X86_MCE
461 	} else if (addr == (unsigned long)machine_check) {
462 		return 0;
463 #endif
464 	} else {
465 		/* Some other trap using IST? */
466 		if (WARN_ON(val->ist != 0))
467 			return 0;
468 	}
469 #endif	/* CONFIG_X86_64 */
470 	info->address = addr;
471 
472 	info->cs = gate_segment(*val);
473 	info->flags = val->dpl;
474 	/* interrupt gates clear IF */
475 	if (val->type == GATE_INTERRUPT)
476 		info->flags |= 1 << 2;
477 
478 	return 1;
479 }
480 
481 /* Locations of each CPU's IDT */
482 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
483 
484 /* Set an IDT entry.  If the entry is part of the current IDT, then
485    also update Xen. */
486 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
487 {
488 	unsigned long p = (unsigned long)&dt[entrynum];
489 	unsigned long start, end;
490 
491 	preempt_disable();
492 
493 	start = __get_cpu_var(idt_desc).address;
494 	end = start + __get_cpu_var(idt_desc).size + 1;
495 
496 	xen_mc_flush();
497 
498 	native_write_idt_entry(dt, entrynum, g);
499 
500 	if (p >= start && (p + 8) <= end) {
501 		struct trap_info info[2];
502 
503 		info[1].address = 0;
504 
505 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
506 			if (HYPERVISOR_set_trap_table(info))
507 				BUG();
508 	}
509 
510 	preempt_enable();
511 }
512 
513 static void xen_convert_trap_info(const struct desc_ptr *desc,
514 				  struct trap_info *traps)
515 {
516 	unsigned in, out, count;
517 
518 	count = (desc->size+1) / sizeof(gate_desc);
519 	BUG_ON(count > 256);
520 
521 	for (in = out = 0; in < count; in++) {
522 		gate_desc *entry = (gate_desc*)(desc->address) + in;
523 
524 		if (cvt_gate_to_trap(in, entry, &traps[out]))
525 			out++;
526 	}
527 	traps[out].address = 0;
528 }
529 
530 void xen_copy_trap_info(struct trap_info *traps)
531 {
532 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
533 
534 	xen_convert_trap_info(desc, traps);
535 }
536 
537 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
538    hold a spinlock to protect the static traps[] array (static because
539    it avoids allocation, and saves stack space). */
540 static void xen_load_idt(const struct desc_ptr *desc)
541 {
542 	static DEFINE_SPINLOCK(lock);
543 	static struct trap_info traps[257];
544 
545 	spin_lock(&lock);
546 
547 	__get_cpu_var(idt_desc) = *desc;
548 
549 	xen_convert_trap_info(desc, traps);
550 
551 	xen_mc_flush();
552 	if (HYPERVISOR_set_trap_table(traps))
553 		BUG();
554 
555 	spin_unlock(&lock);
556 }
557 
558 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
559    they're handled differently. */
560 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
561 				const void *desc, int type)
562 {
563 	preempt_disable();
564 
565 	switch (type) {
566 	case DESC_LDT:
567 	case DESC_TSS:
568 		/* ignore */
569 		break;
570 
571 	default: {
572 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
573 
574 		xen_mc_flush();
575 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
576 			BUG();
577 	}
578 
579 	}
580 
581 	preempt_enable();
582 }
583 
584 static void xen_load_sp0(struct tss_struct *tss,
585 			 struct thread_struct *thread)
586 {
587 	struct multicall_space mcs = xen_mc_entry(0);
588 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
589 	xen_mc_issue(PARAVIRT_LAZY_CPU);
590 }
591 
592 static void xen_set_iopl_mask(unsigned mask)
593 {
594 	struct physdev_set_iopl set_iopl;
595 
596 	/* Force the change at ring 0. */
597 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
598 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
599 }
600 
601 static void xen_io_delay(void)
602 {
603 }
604 
605 #ifdef CONFIG_X86_LOCAL_APIC
606 static u32 xen_apic_read(u32 reg)
607 {
608 	return 0;
609 }
610 
611 static void xen_apic_write(u32 reg, u32 val)
612 {
613 	/* Warn to see if there's any stray references */
614 	WARN_ON(1);
615 }
616 
617 static u64 xen_apic_icr_read(void)
618 {
619 	return 0;
620 }
621 
622 static void xen_apic_icr_write(u32 low, u32 id)
623 {
624 	/* Warn to see if there's any stray references */
625 	WARN_ON(1);
626 }
627 
628 static void xen_apic_wait_icr_idle(void)
629 {
630         return;
631 }
632 
633 static u32 xen_safe_apic_wait_icr_idle(void)
634 {
635         return 0;
636 }
637 
638 static void set_xen_basic_apic_ops(void)
639 {
640 	apic->read = xen_apic_read;
641 	apic->write = xen_apic_write;
642 	apic->icr_read = xen_apic_icr_read;
643 	apic->icr_write = xen_apic_icr_write;
644 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
645 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
646 }
647 
648 #endif
649 
650 
651 static void xen_clts(void)
652 {
653 	struct multicall_space mcs;
654 
655 	mcs = xen_mc_entry(0);
656 
657 	MULTI_fpu_taskswitch(mcs.mc, 0);
658 
659 	xen_mc_issue(PARAVIRT_LAZY_CPU);
660 }
661 
662 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
663 
664 static unsigned long xen_read_cr0(void)
665 {
666 	unsigned long cr0 = percpu_read(xen_cr0_value);
667 
668 	if (unlikely(cr0 == 0)) {
669 		cr0 = native_read_cr0();
670 		percpu_write(xen_cr0_value, cr0);
671 	}
672 
673 	return cr0;
674 }
675 
676 static void xen_write_cr0(unsigned long cr0)
677 {
678 	struct multicall_space mcs;
679 
680 	percpu_write(xen_cr0_value, cr0);
681 
682 	/* Only pay attention to cr0.TS; everything else is
683 	   ignored. */
684 	mcs = xen_mc_entry(0);
685 
686 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
687 
688 	xen_mc_issue(PARAVIRT_LAZY_CPU);
689 }
690 
691 static void xen_write_cr4(unsigned long cr4)
692 {
693 	cr4 &= ~X86_CR4_PGE;
694 	cr4 &= ~X86_CR4_PSE;
695 
696 	native_write_cr4(cr4);
697 }
698 
699 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
700 {
701 	int ret;
702 
703 	ret = 0;
704 
705 	switch (msr) {
706 #ifdef CONFIG_X86_64
707 		unsigned which;
708 		u64 base;
709 
710 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
711 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
712 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
713 
714 	set:
715 		base = ((u64)high << 32) | low;
716 		if (HYPERVISOR_set_segment_base(which, base) != 0)
717 			ret = -EFAULT;
718 		break;
719 #endif
720 
721 	case MSR_STAR:
722 	case MSR_CSTAR:
723 	case MSR_LSTAR:
724 	case MSR_SYSCALL_MASK:
725 	case MSR_IA32_SYSENTER_CS:
726 	case MSR_IA32_SYSENTER_ESP:
727 	case MSR_IA32_SYSENTER_EIP:
728 		/* Fast syscall setup is all done in hypercalls, so
729 		   these are all ignored.  Stub them out here to stop
730 		   Xen console noise. */
731 		break;
732 
733 	default:
734 		ret = native_write_msr_safe(msr, low, high);
735 	}
736 
737 	return ret;
738 }
739 
740 void xen_setup_shared_info(void)
741 {
742 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
743 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
744 			   xen_start_info->shared_info);
745 
746 		HYPERVISOR_shared_info =
747 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
748 	} else
749 		HYPERVISOR_shared_info =
750 			(struct shared_info *)__va(xen_start_info->shared_info);
751 
752 #ifndef CONFIG_SMP
753 	/* In UP this is as good a place as any to set up shared info */
754 	xen_setup_vcpu_info_placement();
755 #endif
756 
757 	xen_setup_mfn_list_list();
758 }
759 
760 /* This is called once we have the cpu_possible_map */
761 void xen_setup_vcpu_info_placement(void)
762 {
763 	int cpu;
764 
765 	for_each_possible_cpu(cpu)
766 		xen_vcpu_setup(cpu);
767 
768 	/* xen_vcpu_setup managed to place the vcpu_info within the
769 	   percpu area for all cpus, so make use of it */
770 	if (have_vcpu_info_placement) {
771 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
772 
773 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
774 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
775 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
776 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
777 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
778 	}
779 }
780 
781 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
782 			  unsigned long addr, unsigned len)
783 {
784 	char *start, *end, *reloc;
785 	unsigned ret;
786 
787 	start = end = reloc = NULL;
788 
789 #define SITE(op, x)							\
790 	case PARAVIRT_PATCH(op.x):					\
791 	if (have_vcpu_info_placement) {					\
792 		start = (char *)xen_##x##_direct;			\
793 		end = xen_##x##_direct_end;				\
794 		reloc = xen_##x##_direct_reloc;				\
795 	}								\
796 	goto patch_site
797 
798 	switch (type) {
799 		SITE(pv_irq_ops, irq_enable);
800 		SITE(pv_irq_ops, irq_disable);
801 		SITE(pv_irq_ops, save_fl);
802 		SITE(pv_irq_ops, restore_fl);
803 #undef SITE
804 
805 	patch_site:
806 		if (start == NULL || (end-start) > len)
807 			goto default_patch;
808 
809 		ret = paravirt_patch_insns(insnbuf, len, start, end);
810 
811 		/* Note: because reloc is assigned from something that
812 		   appears to be an array, gcc assumes it's non-null,
813 		   but doesn't know its relationship with start and
814 		   end. */
815 		if (reloc > start && reloc < end) {
816 			int reloc_off = reloc - start;
817 			long *relocp = (long *)(insnbuf + reloc_off);
818 			long delta = start - (char *)addr;
819 
820 			*relocp += delta;
821 		}
822 		break;
823 
824 	default_patch:
825 	default:
826 		ret = paravirt_patch_default(type, clobbers, insnbuf,
827 					     addr, len);
828 		break;
829 	}
830 
831 	return ret;
832 }
833 
834 static const struct pv_info xen_info __initdata = {
835 	.paravirt_enabled = 1,
836 	.shared_kernel_pmd = 0,
837 
838 	.name = "Xen",
839 };
840 
841 static const struct pv_init_ops xen_init_ops __initdata = {
842 	.patch = xen_patch,
843 
844 	.banner = xen_banner,
845 	.memory_setup = xen_memory_setup,
846 	.arch_setup = xen_arch_setup,
847 	.post_allocator_init = xen_post_allocator_init,
848 };
849 
850 static const struct pv_time_ops xen_time_ops __initdata = {
851 	.time_init = xen_time_init,
852 
853 	.set_wallclock = xen_set_wallclock,
854 	.get_wallclock = xen_get_wallclock,
855 	.get_tsc_khz = xen_tsc_khz,
856 	.sched_clock = xen_sched_clock,
857 };
858 
859 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
860 	.cpuid = xen_cpuid,
861 
862 	.set_debugreg = xen_set_debugreg,
863 	.get_debugreg = xen_get_debugreg,
864 
865 	.clts = xen_clts,
866 
867 	.read_cr0 = xen_read_cr0,
868 	.write_cr0 = xen_write_cr0,
869 
870 	.read_cr4 = native_read_cr4,
871 	.read_cr4_safe = native_read_cr4_safe,
872 	.write_cr4 = xen_write_cr4,
873 
874 	.wbinvd = native_wbinvd,
875 
876 	.read_msr = native_read_msr_safe,
877 	.write_msr = xen_write_msr_safe,
878 	.read_tsc = native_read_tsc,
879 	.read_pmc = native_read_pmc,
880 
881 	.iret = xen_iret,
882 	.irq_enable_sysexit = xen_sysexit,
883 #ifdef CONFIG_X86_64
884 	.usergs_sysret32 = xen_sysret32,
885 	.usergs_sysret64 = xen_sysret64,
886 #endif
887 
888 	.load_tr_desc = paravirt_nop,
889 	.set_ldt = xen_set_ldt,
890 	.load_gdt = xen_load_gdt,
891 	.load_idt = xen_load_idt,
892 	.load_tls = xen_load_tls,
893 #ifdef CONFIG_X86_64
894 	.load_gs_index = xen_load_gs_index,
895 #endif
896 
897 	.alloc_ldt = xen_alloc_ldt,
898 	.free_ldt = xen_free_ldt,
899 
900 	.store_gdt = native_store_gdt,
901 	.store_idt = native_store_idt,
902 	.store_tr = xen_store_tr,
903 
904 	.write_ldt_entry = xen_write_ldt_entry,
905 	.write_gdt_entry = xen_write_gdt_entry,
906 	.write_idt_entry = xen_write_idt_entry,
907 	.load_sp0 = xen_load_sp0,
908 
909 	.set_iopl_mask = xen_set_iopl_mask,
910 	.io_delay = xen_io_delay,
911 
912 	/* Xen takes care of %gs when switching to usermode for us */
913 	.swapgs = paravirt_nop,
914 
915 	.start_context_switch = paravirt_start_context_switch,
916 	.end_context_switch = xen_end_context_switch,
917 };
918 
919 static const struct pv_apic_ops xen_apic_ops __initdata = {
920 #ifdef CONFIG_X86_LOCAL_APIC
921 	.setup_boot_clock = paravirt_nop,
922 	.setup_secondary_clock = paravirt_nop,
923 	.startup_ipi_hook = paravirt_nop,
924 #endif
925 };
926 
927 static void xen_reboot(int reason)
928 {
929 	struct sched_shutdown r = { .reason = reason };
930 
931 #ifdef CONFIG_SMP
932 	smp_send_stop();
933 #endif
934 
935 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
936 		BUG();
937 }
938 
939 static void xen_restart(char *msg)
940 {
941 	xen_reboot(SHUTDOWN_reboot);
942 }
943 
944 static void xen_emergency_restart(void)
945 {
946 	xen_reboot(SHUTDOWN_reboot);
947 }
948 
949 static void xen_machine_halt(void)
950 {
951 	xen_reboot(SHUTDOWN_poweroff);
952 }
953 
954 static void xen_crash_shutdown(struct pt_regs *regs)
955 {
956 	xen_reboot(SHUTDOWN_crash);
957 }
958 
959 static const struct machine_ops __initdata xen_machine_ops = {
960 	.restart = xen_restart,
961 	.halt = xen_machine_halt,
962 	.power_off = xen_machine_halt,
963 	.shutdown = xen_machine_halt,
964 	.crash_shutdown = xen_crash_shutdown,
965 	.emergency_restart = xen_emergency_restart,
966 };
967 
968 /* First C function to be called on Xen boot */
969 asmlinkage void __init xen_start_kernel(void)
970 {
971 	pgd_t *pgd;
972 
973 	if (!xen_start_info)
974 		return;
975 
976 	xen_domain_type = XEN_PV_DOMAIN;
977 
978 	/* Install Xen paravirt ops */
979 	pv_info = xen_info;
980 	pv_init_ops = xen_init_ops;
981 	pv_time_ops = xen_time_ops;
982 	pv_cpu_ops = xen_cpu_ops;
983 	pv_apic_ops = xen_apic_ops;
984 	pv_mmu_ops = xen_mmu_ops;
985 
986 #ifdef CONFIG_X86_64
987 	/*
988 	 * Setup percpu state.  We only need to do this for 64-bit
989 	 * because 32-bit already has %fs set properly.
990 	 */
991 	load_percpu_segment(0);
992 #endif
993 
994 	xen_init_irq_ops();
995 	xen_init_cpuid_mask();
996 
997 #ifdef CONFIG_X86_LOCAL_APIC
998 	/*
999 	 * set up the basic apic ops.
1000 	 */
1001 	set_xen_basic_apic_ops();
1002 #endif
1003 
1004 	xen_setup_features();
1005 
1006 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1007 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1008 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1009 	}
1010 
1011 	machine_ops = xen_machine_ops;
1012 
1013 	/*
1014 	 * The only reliable way to retain the initial address of the
1015 	 * percpu gdt_page is to remember it here, so we can go and
1016 	 * mark it RW later, when the initial percpu area is freed.
1017 	 */
1018 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1019 
1020 	xen_smp_init();
1021 
1022 	/* Get mfn list */
1023 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1024 		xen_build_dynamic_phys_to_machine();
1025 
1026 	pgd = (pgd_t *)xen_start_info->pt_base;
1027 
1028 	/* Prevent unwanted bits from being set in PTEs. */
1029 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1030 	if (!xen_initial_domain())
1031 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1032 
1033 #ifdef CONFIG_X86_64
1034 	/* Work out if we support NX */
1035 	check_efer();
1036 #endif
1037 
1038 	/* Don't do the full vcpu_info placement stuff until we have a
1039 	   possible map and a non-dummy shared_info. */
1040 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1041 
1042 	local_irq_disable();
1043 	early_boot_irqs_off();
1044 
1045 	xen_raw_console_write("mapping kernel into physical memory\n");
1046 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1047 
1048 	init_mm.pgd = pgd;
1049 
1050 	/* keep using Xen gdt for now; no urgent need to change it */
1051 
1052 	pv_info.kernel_rpl = 1;
1053 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1054 		pv_info.kernel_rpl = 0;
1055 
1056 	/* set the limit of our address space */
1057 	xen_reserve_top();
1058 
1059 #ifdef CONFIG_X86_32
1060 	/* set up basic CPUID stuff */
1061 	cpu_detect(&new_cpu_data);
1062 	new_cpu_data.hard_math = 1;
1063 	new_cpu_data.wp_works_ok = 1;
1064 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1065 #endif
1066 
1067 	/* Poke various useful things into boot_params */
1068 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1069 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1070 		? __pa(xen_start_info->mod_start) : 0;
1071 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1072 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1073 
1074 	if (!xen_initial_domain()) {
1075 		add_preferred_console("xenboot", 0, NULL);
1076 		add_preferred_console("tty", 0, NULL);
1077 		add_preferred_console("hvc", 0, NULL);
1078 	}
1079 
1080 	xen_raw_console_write("about to get started...\n");
1081 
1082 	/* Start the world */
1083 #ifdef CONFIG_X86_32
1084 	i386_start_kernel();
1085 #else
1086 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1087 #endif
1088 }
1089