xref: /linux/arch/x86/xen/enlighten.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29 
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37 
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/msr-index.h>
46 #include <asm/setup.h>
47 #include <asm/desc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/reboot.h>
51 
52 #include "xen-ops.h"
53 #include "mmu.h"
54 #include "multicalls.h"
55 
56 EXPORT_SYMBOL_GPL(hypercall_page);
57 
58 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
59 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60 
61 enum xen_domain_type xen_domain_type = XEN_NATIVE;
62 EXPORT_SYMBOL_GPL(xen_domain_type);
63 
64 struct start_info *xen_start_info;
65 EXPORT_SYMBOL_GPL(xen_start_info);
66 
67 struct shared_info xen_dummy_shared_info;
68 
69 void *xen_initial_gdt;
70 
71 /*
72  * Point at some empty memory to start with. We map the real shared_info
73  * page as soon as fixmap is up and running.
74  */
75 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
76 
77 /*
78  * Flag to determine whether vcpu info placement is available on all
79  * VCPUs.  We assume it is to start with, and then set it to zero on
80  * the first failure.  This is because it can succeed on some VCPUs
81  * and not others, since it can involve hypervisor memory allocation,
82  * or because the guest failed to guarantee all the appropriate
83  * constraints on all VCPUs (ie buffer can't cross a page boundary).
84  *
85  * Note that any particular CPU may be using a placed vcpu structure,
86  * but we can only optimise if the all are.
87  *
88  * 0: not available, 1: available
89  */
90 static int have_vcpu_info_placement = 1;
91 
92 static void xen_vcpu_setup(int cpu)
93 {
94 	struct vcpu_register_vcpu_info info;
95 	int err;
96 	struct vcpu_info *vcpup;
97 
98 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
99 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
100 
101 	if (!have_vcpu_info_placement)
102 		return;		/* already tested, not available */
103 
104 	vcpup = &per_cpu(xen_vcpu_info, cpu);
105 
106 	info.mfn = arbitrary_virt_to_mfn(vcpup);
107 	info.offset = offset_in_page(vcpup);
108 
109 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
110 	       cpu, vcpup, info.mfn, info.offset);
111 
112 	/* Check to see if the hypervisor will put the vcpu_info
113 	   structure where we want it, which allows direct access via
114 	   a percpu-variable. */
115 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
116 
117 	if (err) {
118 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
119 		have_vcpu_info_placement = 0;
120 	} else {
121 		/* This cpu is using the registered vcpu info, even if
122 		   later ones fail to. */
123 		per_cpu(xen_vcpu, cpu) = vcpup;
124 
125 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
126 		       cpu, vcpup);
127 	}
128 }
129 
130 /*
131  * On restore, set the vcpu placement up again.
132  * If it fails, then we're in a bad state, since
133  * we can't back out from using it...
134  */
135 void xen_vcpu_restore(void)
136 {
137 	if (have_vcpu_info_placement) {
138 		int cpu;
139 
140 		for_each_online_cpu(cpu) {
141 			bool other_cpu = (cpu != smp_processor_id());
142 
143 			if (other_cpu &&
144 			    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
145 				BUG();
146 
147 			xen_vcpu_setup(cpu);
148 
149 			if (other_cpu &&
150 			    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
151 				BUG();
152 		}
153 
154 		BUG_ON(!have_vcpu_info_placement);
155 	}
156 }
157 
158 static void __init xen_banner(void)
159 {
160 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
161 	struct xen_extraversion extra;
162 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
163 
164 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
165 	       pv_info.name);
166 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
167 	       version >> 16, version & 0xffff, extra.extraversion,
168 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
169 }
170 
171 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
172 		      unsigned int *cx, unsigned int *dx)
173 {
174 	unsigned maskedx = ~0;
175 
176 	/*
177 	 * Mask out inconvenient features, to try and disable as many
178 	 * unsupported kernel subsystems as possible.
179 	 */
180 	if (*ax == 1)
181 		maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
182 			    (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
183 			    (1 << X86_FEATURE_MCE)  |  /* disable MCE */
184 			    (1 << X86_FEATURE_MCA)  |  /* disable MCA */
185 			    (1 << X86_FEATURE_ACC));   /* thermal monitoring */
186 
187 	asm(XEN_EMULATE_PREFIX "cpuid"
188 		: "=a" (*ax),
189 		  "=b" (*bx),
190 		  "=c" (*cx),
191 		  "=d" (*dx)
192 		: "0" (*ax), "2" (*cx));
193 	*dx &= maskedx;
194 }
195 
196 static void xen_set_debugreg(int reg, unsigned long val)
197 {
198 	HYPERVISOR_set_debugreg(reg, val);
199 }
200 
201 static unsigned long xen_get_debugreg(int reg)
202 {
203 	return HYPERVISOR_get_debugreg(reg);
204 }
205 
206 void xen_leave_lazy(void)
207 {
208 	paravirt_leave_lazy(paravirt_get_lazy_mode());
209 	xen_mc_flush();
210 }
211 
212 static unsigned long xen_store_tr(void)
213 {
214 	return 0;
215 }
216 
217 /*
218  * Set the page permissions for a particular virtual address.  If the
219  * address is a vmalloc mapping (or other non-linear mapping), then
220  * find the linear mapping of the page and also set its protections to
221  * match.
222  */
223 static void set_aliased_prot(void *v, pgprot_t prot)
224 {
225 	int level;
226 	pte_t *ptep;
227 	pte_t pte;
228 	unsigned long pfn;
229 	struct page *page;
230 
231 	ptep = lookup_address((unsigned long)v, &level);
232 	BUG_ON(ptep == NULL);
233 
234 	pfn = pte_pfn(*ptep);
235 	page = pfn_to_page(pfn);
236 
237 	pte = pfn_pte(pfn, prot);
238 
239 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
240 		BUG();
241 
242 	if (!PageHighMem(page)) {
243 		void *av = __va(PFN_PHYS(pfn));
244 
245 		if (av != v)
246 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
247 				BUG();
248 	} else
249 		kmap_flush_unused();
250 }
251 
252 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
253 {
254 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
255 	int i;
256 
257 	for(i = 0; i < entries; i += entries_per_page)
258 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
259 }
260 
261 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
262 {
263 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
264 	int i;
265 
266 	for(i = 0; i < entries; i += entries_per_page)
267 		set_aliased_prot(ldt + i, PAGE_KERNEL);
268 }
269 
270 static void xen_set_ldt(const void *addr, unsigned entries)
271 {
272 	struct mmuext_op *op;
273 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
274 
275 	op = mcs.args;
276 	op->cmd = MMUEXT_SET_LDT;
277 	op->arg1.linear_addr = (unsigned long)addr;
278 	op->arg2.nr_ents = entries;
279 
280 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
281 
282 	xen_mc_issue(PARAVIRT_LAZY_CPU);
283 }
284 
285 static void xen_load_gdt(const struct desc_ptr *dtr)
286 {
287 	unsigned long *frames;
288 	unsigned long va = dtr->address;
289 	unsigned int size = dtr->size + 1;
290 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
291 	int f;
292 	struct multicall_space mcs;
293 
294 	/* A GDT can be up to 64k in size, which corresponds to 8192
295 	   8-byte entries, or 16 4k pages.. */
296 
297 	BUG_ON(size > 65536);
298 	BUG_ON(va & ~PAGE_MASK);
299 
300 	mcs = xen_mc_entry(sizeof(*frames) * pages);
301 	frames = mcs.args;
302 
303 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
304 		frames[f] = arbitrary_virt_to_mfn((void *)va);
305 
306 		make_lowmem_page_readonly((void *)va);
307 		make_lowmem_page_readonly(mfn_to_virt(frames[f]));
308 	}
309 
310 	MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
311 
312 	xen_mc_issue(PARAVIRT_LAZY_CPU);
313 }
314 
315 static void load_TLS_descriptor(struct thread_struct *t,
316 				unsigned int cpu, unsigned int i)
317 {
318 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
319 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
320 	struct multicall_space mc = __xen_mc_entry(0);
321 
322 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
323 }
324 
325 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
326 {
327 	/*
328 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
329 	 * and lazy gs handling is enabled, it means we're in a
330 	 * context switch, and %gs has just been saved.  This means we
331 	 * can zero it out to prevent faults on exit from the
332 	 * hypervisor if the next process has no %gs.  Either way, it
333 	 * has been saved, and the new value will get loaded properly.
334 	 * This will go away as soon as Xen has been modified to not
335 	 * save/restore %gs for normal hypercalls.
336 	 *
337 	 * On x86_64, this hack is not used for %gs, because gs points
338 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
339 	 * must not zero %gs on x86_64
340 	 *
341 	 * For x86_64, we need to zero %fs, otherwise we may get an
342 	 * exception between the new %fs descriptor being loaded and
343 	 * %fs being effectively cleared at __switch_to().
344 	 */
345 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
346 #ifdef CONFIG_X86_32
347 		lazy_load_gs(0);
348 #else
349 		loadsegment(fs, 0);
350 #endif
351 	}
352 
353 	xen_mc_batch();
354 
355 	load_TLS_descriptor(t, cpu, 0);
356 	load_TLS_descriptor(t, cpu, 1);
357 	load_TLS_descriptor(t, cpu, 2);
358 
359 	xen_mc_issue(PARAVIRT_LAZY_CPU);
360 }
361 
362 #ifdef CONFIG_X86_64
363 static void xen_load_gs_index(unsigned int idx)
364 {
365 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
366 		BUG();
367 }
368 #endif
369 
370 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
371 				const void *ptr)
372 {
373 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
374 	u64 entry = *(u64 *)ptr;
375 
376 	preempt_disable();
377 
378 	xen_mc_flush();
379 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
380 		BUG();
381 
382 	preempt_enable();
383 }
384 
385 static int cvt_gate_to_trap(int vector, const gate_desc *val,
386 			    struct trap_info *info)
387 {
388 	if (val->type != 0xf && val->type != 0xe)
389 		return 0;
390 
391 	info->vector = vector;
392 	info->address = gate_offset(*val);
393 	info->cs = gate_segment(*val);
394 	info->flags = val->dpl;
395 	/* interrupt gates clear IF */
396 	if (val->type == 0xe)
397 		info->flags |= 4;
398 
399 	return 1;
400 }
401 
402 /* Locations of each CPU's IDT */
403 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
404 
405 /* Set an IDT entry.  If the entry is part of the current IDT, then
406    also update Xen. */
407 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
408 {
409 	unsigned long p = (unsigned long)&dt[entrynum];
410 	unsigned long start, end;
411 
412 	preempt_disable();
413 
414 	start = __get_cpu_var(idt_desc).address;
415 	end = start + __get_cpu_var(idt_desc).size + 1;
416 
417 	xen_mc_flush();
418 
419 	native_write_idt_entry(dt, entrynum, g);
420 
421 	if (p >= start && (p + 8) <= end) {
422 		struct trap_info info[2];
423 
424 		info[1].address = 0;
425 
426 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
427 			if (HYPERVISOR_set_trap_table(info))
428 				BUG();
429 	}
430 
431 	preempt_enable();
432 }
433 
434 static void xen_convert_trap_info(const struct desc_ptr *desc,
435 				  struct trap_info *traps)
436 {
437 	unsigned in, out, count;
438 
439 	count = (desc->size+1) / sizeof(gate_desc);
440 	BUG_ON(count > 256);
441 
442 	for (in = out = 0; in < count; in++) {
443 		gate_desc *entry = (gate_desc*)(desc->address) + in;
444 
445 		if (cvt_gate_to_trap(in, entry, &traps[out]))
446 			out++;
447 	}
448 	traps[out].address = 0;
449 }
450 
451 void xen_copy_trap_info(struct trap_info *traps)
452 {
453 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
454 
455 	xen_convert_trap_info(desc, traps);
456 }
457 
458 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
459    hold a spinlock to protect the static traps[] array (static because
460    it avoids allocation, and saves stack space). */
461 static void xen_load_idt(const struct desc_ptr *desc)
462 {
463 	static DEFINE_SPINLOCK(lock);
464 	static struct trap_info traps[257];
465 
466 	spin_lock(&lock);
467 
468 	__get_cpu_var(idt_desc) = *desc;
469 
470 	xen_convert_trap_info(desc, traps);
471 
472 	xen_mc_flush();
473 	if (HYPERVISOR_set_trap_table(traps))
474 		BUG();
475 
476 	spin_unlock(&lock);
477 }
478 
479 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
480    they're handled differently. */
481 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
482 				const void *desc, int type)
483 {
484 	preempt_disable();
485 
486 	switch (type) {
487 	case DESC_LDT:
488 	case DESC_TSS:
489 		/* ignore */
490 		break;
491 
492 	default: {
493 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
494 
495 		xen_mc_flush();
496 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
497 			BUG();
498 	}
499 
500 	}
501 
502 	preempt_enable();
503 }
504 
505 static void xen_load_sp0(struct tss_struct *tss,
506 			 struct thread_struct *thread)
507 {
508 	struct multicall_space mcs = xen_mc_entry(0);
509 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
510 	xen_mc_issue(PARAVIRT_LAZY_CPU);
511 }
512 
513 static void xen_set_iopl_mask(unsigned mask)
514 {
515 	struct physdev_set_iopl set_iopl;
516 
517 	/* Force the change at ring 0. */
518 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
519 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
520 }
521 
522 static void xen_io_delay(void)
523 {
524 }
525 
526 #ifdef CONFIG_X86_LOCAL_APIC
527 static u32 xen_apic_read(u32 reg)
528 {
529 	return 0;
530 }
531 
532 static void xen_apic_write(u32 reg, u32 val)
533 {
534 	/* Warn to see if there's any stray references */
535 	WARN_ON(1);
536 }
537 
538 static u64 xen_apic_icr_read(void)
539 {
540 	return 0;
541 }
542 
543 static void xen_apic_icr_write(u32 low, u32 id)
544 {
545 	/* Warn to see if there's any stray references */
546 	WARN_ON(1);
547 }
548 
549 static void xen_apic_wait_icr_idle(void)
550 {
551         return;
552 }
553 
554 static u32 xen_safe_apic_wait_icr_idle(void)
555 {
556         return 0;
557 }
558 
559 static void set_xen_basic_apic_ops(void)
560 {
561 	apic->read = xen_apic_read;
562 	apic->write = xen_apic_write;
563 	apic->icr_read = xen_apic_icr_read;
564 	apic->icr_write = xen_apic_icr_write;
565 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
566 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
567 }
568 
569 #endif
570 
571 
572 static void xen_clts(void)
573 {
574 	struct multicall_space mcs;
575 
576 	mcs = xen_mc_entry(0);
577 
578 	MULTI_fpu_taskswitch(mcs.mc, 0);
579 
580 	xen_mc_issue(PARAVIRT_LAZY_CPU);
581 }
582 
583 static void xen_write_cr0(unsigned long cr0)
584 {
585 	struct multicall_space mcs;
586 
587 	/* Only pay attention to cr0.TS; everything else is
588 	   ignored. */
589 	mcs = xen_mc_entry(0);
590 
591 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
592 
593 	xen_mc_issue(PARAVIRT_LAZY_CPU);
594 }
595 
596 static void xen_write_cr4(unsigned long cr4)
597 {
598 	cr4 &= ~X86_CR4_PGE;
599 	cr4 &= ~X86_CR4_PSE;
600 
601 	native_write_cr4(cr4);
602 }
603 
604 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
605 {
606 	int ret;
607 
608 	ret = 0;
609 
610 	switch (msr) {
611 #ifdef CONFIG_X86_64
612 		unsigned which;
613 		u64 base;
614 
615 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
616 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
617 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
618 
619 	set:
620 		base = ((u64)high << 32) | low;
621 		if (HYPERVISOR_set_segment_base(which, base) != 0)
622 			ret = -EFAULT;
623 		break;
624 #endif
625 
626 	case MSR_STAR:
627 	case MSR_CSTAR:
628 	case MSR_LSTAR:
629 	case MSR_SYSCALL_MASK:
630 	case MSR_IA32_SYSENTER_CS:
631 	case MSR_IA32_SYSENTER_ESP:
632 	case MSR_IA32_SYSENTER_EIP:
633 		/* Fast syscall setup is all done in hypercalls, so
634 		   these are all ignored.  Stub them out here to stop
635 		   Xen console noise. */
636 		break;
637 
638 	default:
639 		ret = native_write_msr_safe(msr, low, high);
640 	}
641 
642 	return ret;
643 }
644 
645 void xen_setup_shared_info(void)
646 {
647 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
648 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
649 			   xen_start_info->shared_info);
650 
651 		HYPERVISOR_shared_info =
652 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
653 	} else
654 		HYPERVISOR_shared_info =
655 			(struct shared_info *)__va(xen_start_info->shared_info);
656 
657 #ifndef CONFIG_SMP
658 	/* In UP this is as good a place as any to set up shared info */
659 	xen_setup_vcpu_info_placement();
660 #endif
661 
662 	xen_setup_mfn_list_list();
663 }
664 
665 /* This is called once we have the cpu_possible_map */
666 void xen_setup_vcpu_info_placement(void)
667 {
668 	int cpu;
669 
670 	for_each_possible_cpu(cpu)
671 		xen_vcpu_setup(cpu);
672 
673 	/* xen_vcpu_setup managed to place the vcpu_info within the
674 	   percpu area for all cpus, so make use of it */
675 	if (have_vcpu_info_placement) {
676 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
677 
678 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
679 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
680 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
681 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
682 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
683 	}
684 }
685 
686 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
687 			  unsigned long addr, unsigned len)
688 {
689 	char *start, *end, *reloc;
690 	unsigned ret;
691 
692 	start = end = reloc = NULL;
693 
694 #define SITE(op, x)							\
695 	case PARAVIRT_PATCH(op.x):					\
696 	if (have_vcpu_info_placement) {					\
697 		start = (char *)xen_##x##_direct;			\
698 		end = xen_##x##_direct_end;				\
699 		reloc = xen_##x##_direct_reloc;				\
700 	}								\
701 	goto patch_site
702 
703 	switch (type) {
704 		SITE(pv_irq_ops, irq_enable);
705 		SITE(pv_irq_ops, irq_disable);
706 		SITE(pv_irq_ops, save_fl);
707 		SITE(pv_irq_ops, restore_fl);
708 #undef SITE
709 
710 	patch_site:
711 		if (start == NULL || (end-start) > len)
712 			goto default_patch;
713 
714 		ret = paravirt_patch_insns(insnbuf, len, start, end);
715 
716 		/* Note: because reloc is assigned from something that
717 		   appears to be an array, gcc assumes it's non-null,
718 		   but doesn't know its relationship with start and
719 		   end. */
720 		if (reloc > start && reloc < end) {
721 			int reloc_off = reloc - start;
722 			long *relocp = (long *)(insnbuf + reloc_off);
723 			long delta = start - (char *)addr;
724 
725 			*relocp += delta;
726 		}
727 		break;
728 
729 	default_patch:
730 	default:
731 		ret = paravirt_patch_default(type, clobbers, insnbuf,
732 					     addr, len);
733 		break;
734 	}
735 
736 	return ret;
737 }
738 
739 static const struct pv_info xen_info __initdata = {
740 	.paravirt_enabled = 1,
741 	.shared_kernel_pmd = 0,
742 
743 	.name = "Xen",
744 };
745 
746 static const struct pv_init_ops xen_init_ops __initdata = {
747 	.patch = xen_patch,
748 
749 	.banner = xen_banner,
750 	.memory_setup = xen_memory_setup,
751 	.arch_setup = xen_arch_setup,
752 	.post_allocator_init = xen_post_allocator_init,
753 };
754 
755 static const struct pv_time_ops xen_time_ops __initdata = {
756 	.time_init = xen_time_init,
757 
758 	.set_wallclock = xen_set_wallclock,
759 	.get_wallclock = xen_get_wallclock,
760 	.get_tsc_khz = xen_tsc_khz,
761 	.sched_clock = xen_sched_clock,
762 };
763 
764 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
765 	.cpuid = xen_cpuid,
766 
767 	.set_debugreg = xen_set_debugreg,
768 	.get_debugreg = xen_get_debugreg,
769 
770 	.clts = xen_clts,
771 
772 	.read_cr0 = native_read_cr0,
773 	.write_cr0 = xen_write_cr0,
774 
775 	.read_cr4 = native_read_cr4,
776 	.read_cr4_safe = native_read_cr4_safe,
777 	.write_cr4 = xen_write_cr4,
778 
779 	.wbinvd = native_wbinvd,
780 
781 	.read_msr = native_read_msr_safe,
782 	.write_msr = xen_write_msr_safe,
783 	.read_tsc = native_read_tsc,
784 	.read_pmc = native_read_pmc,
785 
786 	.iret = xen_iret,
787 	.irq_enable_sysexit = xen_sysexit,
788 #ifdef CONFIG_X86_64
789 	.usergs_sysret32 = xen_sysret32,
790 	.usergs_sysret64 = xen_sysret64,
791 #endif
792 
793 	.load_tr_desc = paravirt_nop,
794 	.set_ldt = xen_set_ldt,
795 	.load_gdt = xen_load_gdt,
796 	.load_idt = xen_load_idt,
797 	.load_tls = xen_load_tls,
798 #ifdef CONFIG_X86_64
799 	.load_gs_index = xen_load_gs_index,
800 #endif
801 
802 	.alloc_ldt = xen_alloc_ldt,
803 	.free_ldt = xen_free_ldt,
804 
805 	.store_gdt = native_store_gdt,
806 	.store_idt = native_store_idt,
807 	.store_tr = xen_store_tr,
808 
809 	.write_ldt_entry = xen_write_ldt_entry,
810 	.write_gdt_entry = xen_write_gdt_entry,
811 	.write_idt_entry = xen_write_idt_entry,
812 	.load_sp0 = xen_load_sp0,
813 
814 	.set_iopl_mask = xen_set_iopl_mask,
815 	.io_delay = xen_io_delay,
816 
817 	/* Xen takes care of %gs when switching to usermode for us */
818 	.swapgs = paravirt_nop,
819 
820 	.lazy_mode = {
821 		.enter = paravirt_enter_lazy_cpu,
822 		.leave = xen_leave_lazy,
823 	},
824 };
825 
826 static const struct pv_apic_ops xen_apic_ops __initdata = {
827 #ifdef CONFIG_X86_LOCAL_APIC
828 	.setup_boot_clock = paravirt_nop,
829 	.setup_secondary_clock = paravirt_nop,
830 	.startup_ipi_hook = paravirt_nop,
831 #endif
832 };
833 
834 static void xen_reboot(int reason)
835 {
836 	struct sched_shutdown r = { .reason = reason };
837 
838 #ifdef CONFIG_SMP
839 	smp_send_stop();
840 #endif
841 
842 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
843 		BUG();
844 }
845 
846 static void xen_restart(char *msg)
847 {
848 	xen_reboot(SHUTDOWN_reboot);
849 }
850 
851 static void xen_emergency_restart(void)
852 {
853 	xen_reboot(SHUTDOWN_reboot);
854 }
855 
856 static void xen_machine_halt(void)
857 {
858 	xen_reboot(SHUTDOWN_poweroff);
859 }
860 
861 static void xen_crash_shutdown(struct pt_regs *regs)
862 {
863 	xen_reboot(SHUTDOWN_crash);
864 }
865 
866 static const struct machine_ops __initdata xen_machine_ops = {
867 	.restart = xen_restart,
868 	.halt = xen_machine_halt,
869 	.power_off = xen_machine_halt,
870 	.shutdown = xen_machine_halt,
871 	.crash_shutdown = xen_crash_shutdown,
872 	.emergency_restart = xen_emergency_restart,
873 };
874 
875 
876 /* First C function to be called on Xen boot */
877 asmlinkage void __init xen_start_kernel(void)
878 {
879 	pgd_t *pgd;
880 
881 	if (!xen_start_info)
882 		return;
883 
884 	xen_domain_type = XEN_PV_DOMAIN;
885 
886 	BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
887 
888 	xen_setup_features();
889 
890 	/* Install Xen paravirt ops */
891 	pv_info = xen_info;
892 	pv_init_ops = xen_init_ops;
893 	pv_time_ops = xen_time_ops;
894 	pv_cpu_ops = xen_cpu_ops;
895 	pv_apic_ops = xen_apic_ops;
896 	pv_mmu_ops = xen_mmu_ops;
897 
898 	xen_init_irq_ops();
899 
900 #ifdef CONFIG_X86_LOCAL_APIC
901 	/*
902 	 * set up the basic apic ops.
903 	 */
904 	set_xen_basic_apic_ops();
905 #endif
906 
907 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
908 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
909 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
910 	}
911 
912 	machine_ops = xen_machine_ops;
913 
914 #ifdef CONFIG_X86_64
915 	/*
916 	 * Setup percpu state.  We only need to do this for 64-bit
917 	 * because 32-bit already has %fs set properly.
918 	 */
919 	load_percpu_segment(0);
920 #endif
921 	/*
922 	 * The only reliable way to retain the initial address of the
923 	 * percpu gdt_page is to remember it here, so we can go and
924 	 * mark it RW later, when the initial percpu area is freed.
925 	 */
926 	xen_initial_gdt = &per_cpu(gdt_page, 0);
927 
928 	xen_smp_init();
929 
930 	/* Get mfn list */
931 	if (!xen_feature(XENFEAT_auto_translated_physmap))
932 		xen_build_dynamic_phys_to_machine();
933 
934 	pgd = (pgd_t *)xen_start_info->pt_base;
935 
936 	/* Prevent unwanted bits from being set in PTEs. */
937 	__supported_pte_mask &= ~_PAGE_GLOBAL;
938 	if (!xen_initial_domain())
939 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
940 
941 	/* Don't do the full vcpu_info placement stuff until we have a
942 	   possible map and a non-dummy shared_info. */
943 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
944 
945 	local_irq_disable();
946 	early_boot_irqs_off();
947 
948 	xen_raw_console_write("mapping kernel into physical memory\n");
949 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
950 
951 	init_mm.pgd = pgd;
952 
953 	/* keep using Xen gdt for now; no urgent need to change it */
954 
955 	pv_info.kernel_rpl = 1;
956 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
957 		pv_info.kernel_rpl = 0;
958 
959 	/* set the limit of our address space */
960 	xen_reserve_top();
961 
962 #ifdef CONFIG_X86_32
963 	/* set up basic CPUID stuff */
964 	cpu_detect(&new_cpu_data);
965 	new_cpu_data.hard_math = 1;
966 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
967 #endif
968 
969 	/* Poke various useful things into boot_params */
970 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
971 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
972 		? __pa(xen_start_info->mod_start) : 0;
973 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
974 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
975 
976 	if (!xen_initial_domain()) {
977 		add_preferred_console("xenboot", 0, NULL);
978 		add_preferred_console("tty", 0, NULL);
979 		add_preferred_console("hvc", 0, NULL);
980 	}
981 
982 	xen_raw_console_write("about to get started...\n");
983 
984 	/* Start the world */
985 #ifdef CONFIG_X86_32
986 	i386_start_kernel();
987 #else
988 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
989 #endif
990 }
991