xref: /linux/arch/x86/xen/enlighten.c (revision ad5475f9faf5186b7f59de2c6481ee3e211f1ed7)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #ifdef CONFIG_KEXEC_CORE
38 #include <linux/kexec.h>
39 #endif
40 
41 #include <xen/xen.h>
42 #include <xen/events.h>
43 #include <xen/interface/xen.h>
44 #include <xen/interface/version.h>
45 #include <xen/interface/physdev.h>
46 #include <xen/interface/vcpu.h>
47 #include <xen/interface/memory.h>
48 #include <xen/interface/nmi.h>
49 #include <xen/interface/xen-mca.h>
50 #include <xen/features.h>
51 #include <xen/page.h>
52 #include <xen/hvm.h>
53 #include <xen/hvc-console.h>
54 #include <xen/acpi.h>
55 
56 #include <asm/paravirt.h>
57 #include <asm/apic.h>
58 #include <asm/page.h>
59 #include <asm/xen/pci.h>
60 #include <asm/xen/hypercall.h>
61 #include <asm/xen/hypervisor.h>
62 #include <asm/xen/cpuid.h>
63 #include <asm/fixmap.h>
64 #include <asm/processor.h>
65 #include <asm/proto.h>
66 #include <asm/msr-index.h>
67 #include <asm/traps.h>
68 #include <asm/setup.h>
69 #include <asm/desc.h>
70 #include <asm/pgalloc.h>
71 #include <asm/pgtable.h>
72 #include <asm/tlbflush.h>
73 #include <asm/reboot.h>
74 #include <asm/stackprotector.h>
75 #include <asm/hypervisor.h>
76 #include <asm/mach_traps.h>
77 #include <asm/mwait.h>
78 #include <asm/pci_x86.h>
79 #include <asm/cpu.h>
80 
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/pdc_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88 
89 #include "xen-ops.h"
90 #include "mmu.h"
91 #include "smp.h"
92 #include "multicalls.h"
93 #include "pmu.h"
94 
95 EXPORT_SYMBOL_GPL(hypercall_page);
96 
97 /*
98  * Pointer to the xen_vcpu_info structure or
99  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
100  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
101  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
102  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
103  * acknowledge pending events.
104  * Also more subtly it is used by the patched version of irq enable/disable
105  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
106  *
107  * The desire to be able to do those mask/unmask operations as a single
108  * instruction by using the per-cpu offset held in %gs is the real reason
109  * vcpu info is in a per-cpu pointer and the original reason for this
110  * hypercall.
111  *
112  */
113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
114 
115 /*
116  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
117  * hypercall. This can be used both in PV and PVHVM mode. The structure
118  * overrides the default per_cpu(xen_vcpu, cpu) value.
119  */
120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
121 
122 /* Linux <-> Xen vCPU id mapping */
123 DEFINE_PER_CPU(int, xen_vcpu_id) = -1;
124 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
125 
126 enum xen_domain_type xen_domain_type = XEN_NATIVE;
127 EXPORT_SYMBOL_GPL(xen_domain_type);
128 
129 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
130 EXPORT_SYMBOL(machine_to_phys_mapping);
131 unsigned long  machine_to_phys_nr;
132 EXPORT_SYMBOL(machine_to_phys_nr);
133 
134 struct start_info *xen_start_info;
135 EXPORT_SYMBOL_GPL(xen_start_info);
136 
137 struct shared_info xen_dummy_shared_info;
138 
139 void *xen_initial_gdt;
140 
141 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
142 __read_mostly int xen_have_vector_callback;
143 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
144 
145 /*
146  * Point at some empty memory to start with. We map the real shared_info
147  * page as soon as fixmap is up and running.
148  */
149 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
150 
151 /*
152  * Flag to determine whether vcpu info placement is available on all
153  * VCPUs.  We assume it is to start with, and then set it to zero on
154  * the first failure.  This is because it can succeed on some VCPUs
155  * and not others, since it can involve hypervisor memory allocation,
156  * or because the guest failed to guarantee all the appropriate
157  * constraints on all VCPUs (ie buffer can't cross a page boundary).
158  *
159  * Note that any particular CPU may be using a placed vcpu structure,
160  * but we can only optimise if the all are.
161  *
162  * 0: not available, 1: available
163  */
164 static int have_vcpu_info_placement = 1;
165 
166 struct tls_descs {
167 	struct desc_struct desc[3];
168 };
169 
170 /*
171  * Updating the 3 TLS descriptors in the GDT on every task switch is
172  * surprisingly expensive so we avoid updating them if they haven't
173  * changed.  Since Xen writes different descriptors than the one
174  * passed in the update_descriptor hypercall we keep shadow copies to
175  * compare against.
176  */
177 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
178 
179 static void clamp_max_cpus(void)
180 {
181 #ifdef CONFIG_SMP
182 	if (setup_max_cpus > MAX_VIRT_CPUS)
183 		setup_max_cpus = MAX_VIRT_CPUS;
184 #endif
185 }
186 
187 static void xen_vcpu_setup(int cpu)
188 {
189 	struct vcpu_register_vcpu_info info;
190 	int err;
191 	struct vcpu_info *vcpup;
192 
193 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
194 
195 	/*
196 	 * This path is called twice on PVHVM - first during bootup via
197 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
198 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
199 	 * As we can only do the VCPUOP_register_vcpu_info once lets
200 	 * not over-write its result.
201 	 *
202 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
203 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
204 	 * use this function.
205 	 */
206 	if (xen_hvm_domain()) {
207 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
208 			return;
209 	}
210 	if (cpu < MAX_VIRT_CPUS)
211 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
212 
213 	if (!have_vcpu_info_placement) {
214 		if (cpu >= MAX_VIRT_CPUS)
215 			clamp_max_cpus();
216 		return;
217 	}
218 
219 	vcpup = &per_cpu(xen_vcpu_info, cpu);
220 	info.mfn = arbitrary_virt_to_mfn(vcpup);
221 	info.offset = offset_in_page(vcpup);
222 
223 	/* Check to see if the hypervisor will put the vcpu_info
224 	   structure where we want it, which allows direct access via
225 	   a percpu-variable.
226 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
227 	   calls will error out with -EINVAL. This is due to the fact that
228 	   hypervisor has no unregister variant and this hypercall does not
229 	   allow to over-write info.mfn and info.offset.
230 	 */
231 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
232 				 &info);
233 
234 	if (err) {
235 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
236 		have_vcpu_info_placement = 0;
237 		clamp_max_cpus();
238 	} else {
239 		/* This cpu is using the registered vcpu info, even if
240 		   later ones fail to. */
241 		per_cpu(xen_vcpu, cpu) = vcpup;
242 	}
243 }
244 
245 /*
246  * On restore, set the vcpu placement up again.
247  * If it fails, then we're in a bad state, since
248  * we can't back out from using it...
249  */
250 void xen_vcpu_restore(void)
251 {
252 	int cpu;
253 
254 	for_each_possible_cpu(cpu) {
255 		bool other_cpu = (cpu != smp_processor_id());
256 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
257 						NULL);
258 
259 		if (other_cpu && is_up &&
260 		    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
261 			BUG();
262 
263 		xen_setup_runstate_info(cpu);
264 
265 		if (have_vcpu_info_placement)
266 			xen_vcpu_setup(cpu);
267 
268 		if (other_cpu && is_up &&
269 		    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
270 			BUG();
271 	}
272 }
273 
274 static void __init xen_banner(void)
275 {
276 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
277 	struct xen_extraversion extra;
278 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
279 
280 	pr_info("Booting paravirtualized kernel %son %s\n",
281 		xen_feature(XENFEAT_auto_translated_physmap) ?
282 			"with PVH extensions " : "", pv_info.name);
283 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
284 	       version >> 16, version & 0xffff, extra.extraversion,
285 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
286 }
287 /* Check if running on Xen version (major, minor) or later */
288 bool
289 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
290 {
291 	unsigned int version;
292 
293 	if (!xen_domain())
294 		return false;
295 
296 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
297 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
298 		((version >> 16) > major))
299 		return true;
300 	return false;
301 }
302 
303 #define CPUID_THERM_POWER_LEAF 6
304 #define APERFMPERF_PRESENT 0
305 
306 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
307 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
308 
309 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
310 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
311 static __read_mostly unsigned int cpuid_leaf5_edx_val;
312 
313 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
314 		      unsigned int *cx, unsigned int *dx)
315 {
316 	unsigned maskebx = ~0;
317 	unsigned maskecx = ~0;
318 	unsigned maskedx = ~0;
319 	unsigned setecx = 0;
320 	/*
321 	 * Mask out inconvenient features, to try and disable as many
322 	 * unsupported kernel subsystems as possible.
323 	 */
324 	switch (*ax) {
325 	case 1:
326 		maskecx = cpuid_leaf1_ecx_mask;
327 		setecx = cpuid_leaf1_ecx_set_mask;
328 		maskedx = cpuid_leaf1_edx_mask;
329 		break;
330 
331 	case CPUID_MWAIT_LEAF:
332 		/* Synthesize the values.. */
333 		*ax = 0;
334 		*bx = 0;
335 		*cx = cpuid_leaf5_ecx_val;
336 		*dx = cpuid_leaf5_edx_val;
337 		return;
338 
339 	case CPUID_THERM_POWER_LEAF:
340 		/* Disabling APERFMPERF for kernel usage */
341 		maskecx = ~(1 << APERFMPERF_PRESENT);
342 		break;
343 
344 	case 0xb:
345 		/* Suppress extended topology stuff */
346 		maskebx = 0;
347 		break;
348 	}
349 
350 	asm(XEN_EMULATE_PREFIX "cpuid"
351 		: "=a" (*ax),
352 		  "=b" (*bx),
353 		  "=c" (*cx),
354 		  "=d" (*dx)
355 		: "0" (*ax), "2" (*cx));
356 
357 	*bx &= maskebx;
358 	*cx &= maskecx;
359 	*cx |= setecx;
360 	*dx &= maskedx;
361 }
362 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
363 
364 static bool __init xen_check_mwait(void)
365 {
366 #ifdef CONFIG_ACPI
367 	struct xen_platform_op op = {
368 		.cmd			= XENPF_set_processor_pminfo,
369 		.u.set_pminfo.id	= -1,
370 		.u.set_pminfo.type	= XEN_PM_PDC,
371 	};
372 	uint32_t buf[3];
373 	unsigned int ax, bx, cx, dx;
374 	unsigned int mwait_mask;
375 
376 	/* We need to determine whether it is OK to expose the MWAIT
377 	 * capability to the kernel to harvest deeper than C3 states from ACPI
378 	 * _CST using the processor_harvest_xen.c module. For this to work, we
379 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
380 	 * checks against). The hypervisor won't expose the MWAIT flag because
381 	 * it would break backwards compatibility; so we will find out directly
382 	 * from the hardware and hypercall.
383 	 */
384 	if (!xen_initial_domain())
385 		return false;
386 
387 	/*
388 	 * When running under platform earlier than Xen4.2, do not expose
389 	 * mwait, to avoid the risk of loading native acpi pad driver
390 	 */
391 	if (!xen_running_on_version_or_later(4, 2))
392 		return false;
393 
394 	ax = 1;
395 	cx = 0;
396 
397 	native_cpuid(&ax, &bx, &cx, &dx);
398 
399 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
400 		     (1 << (X86_FEATURE_MWAIT % 32));
401 
402 	if ((cx & mwait_mask) != mwait_mask)
403 		return false;
404 
405 	/* We need to emulate the MWAIT_LEAF and for that we need both
406 	 * ecx and edx. The hypercall provides only partial information.
407 	 */
408 
409 	ax = CPUID_MWAIT_LEAF;
410 	bx = 0;
411 	cx = 0;
412 	dx = 0;
413 
414 	native_cpuid(&ax, &bx, &cx, &dx);
415 
416 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
417 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
418 	 */
419 	buf[0] = ACPI_PDC_REVISION_ID;
420 	buf[1] = 1;
421 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
422 
423 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
424 
425 	if ((HYPERVISOR_platform_op(&op) == 0) &&
426 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
427 		cpuid_leaf5_ecx_val = cx;
428 		cpuid_leaf5_edx_val = dx;
429 	}
430 	return true;
431 #else
432 	return false;
433 #endif
434 }
435 static void __init xen_init_cpuid_mask(void)
436 {
437 	unsigned int ax, bx, cx, dx;
438 	unsigned int xsave_mask;
439 
440 	cpuid_leaf1_edx_mask =
441 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
442 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
443 
444 	if (!xen_initial_domain())
445 		cpuid_leaf1_edx_mask &=
446 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
447 
448 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
449 
450 	ax = 1;
451 	cx = 0;
452 	cpuid(1, &ax, &bx, &cx, &dx);
453 
454 	xsave_mask =
455 		(1 << (X86_FEATURE_XSAVE % 32)) |
456 		(1 << (X86_FEATURE_OSXSAVE % 32));
457 
458 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
459 	if ((cx & xsave_mask) != xsave_mask)
460 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
461 	if (xen_check_mwait())
462 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
463 }
464 
465 static void xen_set_debugreg(int reg, unsigned long val)
466 {
467 	HYPERVISOR_set_debugreg(reg, val);
468 }
469 
470 static unsigned long xen_get_debugreg(int reg)
471 {
472 	return HYPERVISOR_get_debugreg(reg);
473 }
474 
475 static void xen_end_context_switch(struct task_struct *next)
476 {
477 	xen_mc_flush();
478 	paravirt_end_context_switch(next);
479 }
480 
481 static unsigned long xen_store_tr(void)
482 {
483 	return 0;
484 }
485 
486 /*
487  * Set the page permissions for a particular virtual address.  If the
488  * address is a vmalloc mapping (or other non-linear mapping), then
489  * find the linear mapping of the page and also set its protections to
490  * match.
491  */
492 static void set_aliased_prot(void *v, pgprot_t prot)
493 {
494 	int level;
495 	pte_t *ptep;
496 	pte_t pte;
497 	unsigned long pfn;
498 	struct page *page;
499 	unsigned char dummy;
500 
501 	ptep = lookup_address((unsigned long)v, &level);
502 	BUG_ON(ptep == NULL);
503 
504 	pfn = pte_pfn(*ptep);
505 	page = pfn_to_page(pfn);
506 
507 	pte = pfn_pte(pfn, prot);
508 
509 	/*
510 	 * Careful: update_va_mapping() will fail if the virtual address
511 	 * we're poking isn't populated in the page tables.  We don't
512 	 * need to worry about the direct map (that's always in the page
513 	 * tables), but we need to be careful about vmap space.  In
514 	 * particular, the top level page table can lazily propagate
515 	 * entries between processes, so if we've switched mms since we
516 	 * vmapped the target in the first place, we might not have the
517 	 * top-level page table entry populated.
518 	 *
519 	 * We disable preemption because we want the same mm active when
520 	 * we probe the target and when we issue the hypercall.  We'll
521 	 * have the same nominal mm, but if we're a kernel thread, lazy
522 	 * mm dropping could change our pgd.
523 	 *
524 	 * Out of an abundance of caution, this uses __get_user() to fault
525 	 * in the target address just in case there's some obscure case
526 	 * in which the target address isn't readable.
527 	 */
528 
529 	preempt_disable();
530 
531 	pagefault_disable();	/* Avoid warnings due to being atomic. */
532 	__get_user(dummy, (unsigned char __user __force *)v);
533 	pagefault_enable();
534 
535 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
536 		BUG();
537 
538 	if (!PageHighMem(page)) {
539 		void *av = __va(PFN_PHYS(pfn));
540 
541 		if (av != v)
542 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
543 				BUG();
544 	} else
545 		kmap_flush_unused();
546 
547 	preempt_enable();
548 }
549 
550 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
551 {
552 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
553 	int i;
554 
555 	/*
556 	 * We need to mark the all aliases of the LDT pages RO.  We
557 	 * don't need to call vm_flush_aliases(), though, since that's
558 	 * only responsible for flushing aliases out the TLBs, not the
559 	 * page tables, and Xen will flush the TLB for us if needed.
560 	 *
561 	 * To avoid confusing future readers: none of this is necessary
562 	 * to load the LDT.  The hypervisor only checks this when the
563 	 * LDT is faulted in due to subsequent descriptor access.
564 	 */
565 
566 	for(i = 0; i < entries; i += entries_per_page)
567 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
568 }
569 
570 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
571 {
572 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
573 	int i;
574 
575 	for(i = 0; i < entries; i += entries_per_page)
576 		set_aliased_prot(ldt + i, PAGE_KERNEL);
577 }
578 
579 static void xen_set_ldt(const void *addr, unsigned entries)
580 {
581 	struct mmuext_op *op;
582 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
583 
584 	trace_xen_cpu_set_ldt(addr, entries);
585 
586 	op = mcs.args;
587 	op->cmd = MMUEXT_SET_LDT;
588 	op->arg1.linear_addr = (unsigned long)addr;
589 	op->arg2.nr_ents = entries;
590 
591 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
592 
593 	xen_mc_issue(PARAVIRT_LAZY_CPU);
594 }
595 
596 static void xen_load_gdt(const struct desc_ptr *dtr)
597 {
598 	unsigned long va = dtr->address;
599 	unsigned int size = dtr->size + 1;
600 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
601 	unsigned long frames[pages];
602 	int f;
603 
604 	/*
605 	 * A GDT can be up to 64k in size, which corresponds to 8192
606 	 * 8-byte entries, or 16 4k pages..
607 	 */
608 
609 	BUG_ON(size > 65536);
610 	BUG_ON(va & ~PAGE_MASK);
611 
612 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
613 		int level;
614 		pte_t *ptep;
615 		unsigned long pfn, mfn;
616 		void *virt;
617 
618 		/*
619 		 * The GDT is per-cpu and is in the percpu data area.
620 		 * That can be virtually mapped, so we need to do a
621 		 * page-walk to get the underlying MFN for the
622 		 * hypercall.  The page can also be in the kernel's
623 		 * linear range, so we need to RO that mapping too.
624 		 */
625 		ptep = lookup_address(va, &level);
626 		BUG_ON(ptep == NULL);
627 
628 		pfn = pte_pfn(*ptep);
629 		mfn = pfn_to_mfn(pfn);
630 		virt = __va(PFN_PHYS(pfn));
631 
632 		frames[f] = mfn;
633 
634 		make_lowmem_page_readonly((void *)va);
635 		make_lowmem_page_readonly(virt);
636 	}
637 
638 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
639 		BUG();
640 }
641 
642 /*
643  * load_gdt for early boot, when the gdt is only mapped once
644  */
645 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
646 {
647 	unsigned long va = dtr->address;
648 	unsigned int size = dtr->size + 1;
649 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
650 	unsigned long frames[pages];
651 	int f;
652 
653 	/*
654 	 * A GDT can be up to 64k in size, which corresponds to 8192
655 	 * 8-byte entries, or 16 4k pages..
656 	 */
657 
658 	BUG_ON(size > 65536);
659 	BUG_ON(va & ~PAGE_MASK);
660 
661 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
662 		pte_t pte;
663 		unsigned long pfn, mfn;
664 
665 		pfn = virt_to_pfn(va);
666 		mfn = pfn_to_mfn(pfn);
667 
668 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
669 
670 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
671 			BUG();
672 
673 		frames[f] = mfn;
674 	}
675 
676 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
677 		BUG();
678 }
679 
680 static inline bool desc_equal(const struct desc_struct *d1,
681 			      const struct desc_struct *d2)
682 {
683 	return d1->a == d2->a && d1->b == d2->b;
684 }
685 
686 static void load_TLS_descriptor(struct thread_struct *t,
687 				unsigned int cpu, unsigned int i)
688 {
689 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
690 	struct desc_struct *gdt;
691 	xmaddr_t maddr;
692 	struct multicall_space mc;
693 
694 	if (desc_equal(shadow, &t->tls_array[i]))
695 		return;
696 
697 	*shadow = t->tls_array[i];
698 
699 	gdt = get_cpu_gdt_table(cpu);
700 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
701 	mc = __xen_mc_entry(0);
702 
703 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
704 }
705 
706 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
707 {
708 	/*
709 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
710 	 * and lazy gs handling is enabled, it means we're in a
711 	 * context switch, and %gs has just been saved.  This means we
712 	 * can zero it out to prevent faults on exit from the
713 	 * hypervisor if the next process has no %gs.  Either way, it
714 	 * has been saved, and the new value will get loaded properly.
715 	 * This will go away as soon as Xen has been modified to not
716 	 * save/restore %gs for normal hypercalls.
717 	 *
718 	 * On x86_64, this hack is not used for %gs, because gs points
719 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
720 	 * must not zero %gs on x86_64
721 	 *
722 	 * For x86_64, we need to zero %fs, otherwise we may get an
723 	 * exception between the new %fs descriptor being loaded and
724 	 * %fs being effectively cleared at __switch_to().
725 	 */
726 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
727 #ifdef CONFIG_X86_32
728 		lazy_load_gs(0);
729 #else
730 		loadsegment(fs, 0);
731 #endif
732 	}
733 
734 	xen_mc_batch();
735 
736 	load_TLS_descriptor(t, cpu, 0);
737 	load_TLS_descriptor(t, cpu, 1);
738 	load_TLS_descriptor(t, cpu, 2);
739 
740 	xen_mc_issue(PARAVIRT_LAZY_CPU);
741 }
742 
743 #ifdef CONFIG_X86_64
744 static void xen_load_gs_index(unsigned int idx)
745 {
746 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
747 		BUG();
748 }
749 #endif
750 
751 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
752 				const void *ptr)
753 {
754 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
755 	u64 entry = *(u64 *)ptr;
756 
757 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
758 
759 	preempt_disable();
760 
761 	xen_mc_flush();
762 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
763 		BUG();
764 
765 	preempt_enable();
766 }
767 
768 static int cvt_gate_to_trap(int vector, const gate_desc *val,
769 			    struct trap_info *info)
770 {
771 	unsigned long addr;
772 
773 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
774 		return 0;
775 
776 	info->vector = vector;
777 
778 	addr = gate_offset(*val);
779 #ifdef CONFIG_X86_64
780 	/*
781 	 * Look for known traps using IST, and substitute them
782 	 * appropriately.  The debugger ones are the only ones we care
783 	 * about.  Xen will handle faults like double_fault,
784 	 * so we should never see them.  Warn if
785 	 * there's an unexpected IST-using fault handler.
786 	 */
787 	if (addr == (unsigned long)debug)
788 		addr = (unsigned long)xen_debug;
789 	else if (addr == (unsigned long)int3)
790 		addr = (unsigned long)xen_int3;
791 	else if (addr == (unsigned long)stack_segment)
792 		addr = (unsigned long)xen_stack_segment;
793 	else if (addr == (unsigned long)double_fault) {
794 		/* Don't need to handle these */
795 		return 0;
796 #ifdef CONFIG_X86_MCE
797 	} else if (addr == (unsigned long)machine_check) {
798 		/*
799 		 * when xen hypervisor inject vMCE to guest,
800 		 * use native mce handler to handle it
801 		 */
802 		;
803 #endif
804 	} else if (addr == (unsigned long)nmi)
805 		/*
806 		 * Use the native version as well.
807 		 */
808 		;
809 	else {
810 		/* Some other trap using IST? */
811 		if (WARN_ON(val->ist != 0))
812 			return 0;
813 	}
814 #endif	/* CONFIG_X86_64 */
815 	info->address = addr;
816 
817 	info->cs = gate_segment(*val);
818 	info->flags = val->dpl;
819 	/* interrupt gates clear IF */
820 	if (val->type == GATE_INTERRUPT)
821 		info->flags |= 1 << 2;
822 
823 	return 1;
824 }
825 
826 /* Locations of each CPU's IDT */
827 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
828 
829 /* Set an IDT entry.  If the entry is part of the current IDT, then
830    also update Xen. */
831 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
832 {
833 	unsigned long p = (unsigned long)&dt[entrynum];
834 	unsigned long start, end;
835 
836 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
837 
838 	preempt_disable();
839 
840 	start = __this_cpu_read(idt_desc.address);
841 	end = start + __this_cpu_read(idt_desc.size) + 1;
842 
843 	xen_mc_flush();
844 
845 	native_write_idt_entry(dt, entrynum, g);
846 
847 	if (p >= start && (p + 8) <= end) {
848 		struct trap_info info[2];
849 
850 		info[1].address = 0;
851 
852 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
853 			if (HYPERVISOR_set_trap_table(info))
854 				BUG();
855 	}
856 
857 	preempt_enable();
858 }
859 
860 static void xen_convert_trap_info(const struct desc_ptr *desc,
861 				  struct trap_info *traps)
862 {
863 	unsigned in, out, count;
864 
865 	count = (desc->size+1) / sizeof(gate_desc);
866 	BUG_ON(count > 256);
867 
868 	for (in = out = 0; in < count; in++) {
869 		gate_desc *entry = (gate_desc*)(desc->address) + in;
870 
871 		if (cvt_gate_to_trap(in, entry, &traps[out]))
872 			out++;
873 	}
874 	traps[out].address = 0;
875 }
876 
877 void xen_copy_trap_info(struct trap_info *traps)
878 {
879 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
880 
881 	xen_convert_trap_info(desc, traps);
882 }
883 
884 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
885    hold a spinlock to protect the static traps[] array (static because
886    it avoids allocation, and saves stack space). */
887 static void xen_load_idt(const struct desc_ptr *desc)
888 {
889 	static DEFINE_SPINLOCK(lock);
890 	static struct trap_info traps[257];
891 
892 	trace_xen_cpu_load_idt(desc);
893 
894 	spin_lock(&lock);
895 
896 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
897 
898 	xen_convert_trap_info(desc, traps);
899 
900 	xen_mc_flush();
901 	if (HYPERVISOR_set_trap_table(traps))
902 		BUG();
903 
904 	spin_unlock(&lock);
905 }
906 
907 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
908    they're handled differently. */
909 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
910 				const void *desc, int type)
911 {
912 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
913 
914 	preempt_disable();
915 
916 	switch (type) {
917 	case DESC_LDT:
918 	case DESC_TSS:
919 		/* ignore */
920 		break;
921 
922 	default: {
923 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
924 
925 		xen_mc_flush();
926 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
927 			BUG();
928 	}
929 
930 	}
931 
932 	preempt_enable();
933 }
934 
935 /*
936  * Version of write_gdt_entry for use at early boot-time needed to
937  * update an entry as simply as possible.
938  */
939 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
940 					    const void *desc, int type)
941 {
942 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
943 
944 	switch (type) {
945 	case DESC_LDT:
946 	case DESC_TSS:
947 		/* ignore */
948 		break;
949 
950 	default: {
951 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
952 
953 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
954 			dt[entry] = *(struct desc_struct *)desc;
955 	}
956 
957 	}
958 }
959 
960 static void xen_load_sp0(struct tss_struct *tss,
961 			 struct thread_struct *thread)
962 {
963 	struct multicall_space mcs;
964 
965 	mcs = xen_mc_entry(0);
966 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
967 	xen_mc_issue(PARAVIRT_LAZY_CPU);
968 	tss->x86_tss.sp0 = thread->sp0;
969 }
970 
971 void xen_set_iopl_mask(unsigned mask)
972 {
973 	struct physdev_set_iopl set_iopl;
974 
975 	/* Force the change at ring 0. */
976 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
977 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
978 }
979 
980 static void xen_io_delay(void)
981 {
982 }
983 
984 static void xen_clts(void)
985 {
986 	struct multicall_space mcs;
987 
988 	mcs = xen_mc_entry(0);
989 
990 	MULTI_fpu_taskswitch(mcs.mc, 0);
991 
992 	xen_mc_issue(PARAVIRT_LAZY_CPU);
993 }
994 
995 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
996 
997 static unsigned long xen_read_cr0(void)
998 {
999 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1000 
1001 	if (unlikely(cr0 == 0)) {
1002 		cr0 = native_read_cr0();
1003 		this_cpu_write(xen_cr0_value, cr0);
1004 	}
1005 
1006 	return cr0;
1007 }
1008 
1009 static void xen_write_cr0(unsigned long cr0)
1010 {
1011 	struct multicall_space mcs;
1012 
1013 	this_cpu_write(xen_cr0_value, cr0);
1014 
1015 	/* Only pay attention to cr0.TS; everything else is
1016 	   ignored. */
1017 	mcs = xen_mc_entry(0);
1018 
1019 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1020 
1021 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1022 }
1023 
1024 static void xen_write_cr4(unsigned long cr4)
1025 {
1026 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1027 
1028 	native_write_cr4(cr4);
1029 }
1030 #ifdef CONFIG_X86_64
1031 static inline unsigned long xen_read_cr8(void)
1032 {
1033 	return 0;
1034 }
1035 static inline void xen_write_cr8(unsigned long val)
1036 {
1037 	BUG_ON(val);
1038 }
1039 #endif
1040 
1041 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1042 {
1043 	u64 val;
1044 
1045 	if (pmu_msr_read(msr, &val, err))
1046 		return val;
1047 
1048 	val = native_read_msr_safe(msr, err);
1049 	switch (msr) {
1050 	case MSR_IA32_APICBASE:
1051 #ifdef CONFIG_X86_X2APIC
1052 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1053 #endif
1054 			val &= ~X2APIC_ENABLE;
1055 		break;
1056 	}
1057 	return val;
1058 }
1059 
1060 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1061 {
1062 	int ret;
1063 
1064 	ret = 0;
1065 
1066 	switch (msr) {
1067 #ifdef CONFIG_X86_64
1068 		unsigned which;
1069 		u64 base;
1070 
1071 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1072 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1073 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1074 
1075 	set:
1076 		base = ((u64)high << 32) | low;
1077 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1078 			ret = -EIO;
1079 		break;
1080 #endif
1081 
1082 	case MSR_STAR:
1083 	case MSR_CSTAR:
1084 	case MSR_LSTAR:
1085 	case MSR_SYSCALL_MASK:
1086 	case MSR_IA32_SYSENTER_CS:
1087 	case MSR_IA32_SYSENTER_ESP:
1088 	case MSR_IA32_SYSENTER_EIP:
1089 		/* Fast syscall setup is all done in hypercalls, so
1090 		   these are all ignored.  Stub them out here to stop
1091 		   Xen console noise. */
1092 		break;
1093 
1094 	default:
1095 		if (!pmu_msr_write(msr, low, high, &ret))
1096 			ret = native_write_msr_safe(msr, low, high);
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 static u64 xen_read_msr(unsigned int msr)
1103 {
1104 	/*
1105 	 * This will silently swallow a #GP from RDMSR.  It may be worth
1106 	 * changing that.
1107 	 */
1108 	int err;
1109 
1110 	return xen_read_msr_safe(msr, &err);
1111 }
1112 
1113 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1114 {
1115 	/*
1116 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1117 	 * changing that.
1118 	 */
1119 	xen_write_msr_safe(msr, low, high);
1120 }
1121 
1122 void xen_setup_shared_info(void)
1123 {
1124 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1125 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1126 			   xen_start_info->shared_info);
1127 
1128 		HYPERVISOR_shared_info =
1129 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1130 	} else
1131 		HYPERVISOR_shared_info =
1132 			(struct shared_info *)__va(xen_start_info->shared_info);
1133 
1134 #ifndef CONFIG_SMP
1135 	/* In UP this is as good a place as any to set up shared info */
1136 	xen_setup_vcpu_info_placement();
1137 #endif
1138 
1139 	xen_setup_mfn_list_list();
1140 }
1141 
1142 /* This is called once we have the cpu_possible_mask */
1143 void xen_setup_vcpu_info_placement(void)
1144 {
1145 	int cpu;
1146 
1147 	for_each_possible_cpu(cpu) {
1148 		/* Set up direct vCPU id mapping for PV guests. */
1149 		per_cpu(xen_vcpu_id, cpu) = cpu;
1150 		xen_vcpu_setup(cpu);
1151 	}
1152 
1153 	/* xen_vcpu_setup managed to place the vcpu_info within the
1154 	 * percpu area for all cpus, so make use of it. Note that for
1155 	 * PVH we want to use native IRQ mechanism. */
1156 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1157 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1158 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1159 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1160 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1161 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1162 	}
1163 }
1164 
1165 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1166 			  unsigned long addr, unsigned len)
1167 {
1168 	char *start, *end, *reloc;
1169 	unsigned ret;
1170 
1171 	start = end = reloc = NULL;
1172 
1173 #define SITE(op, x)							\
1174 	case PARAVIRT_PATCH(op.x):					\
1175 	if (have_vcpu_info_placement) {					\
1176 		start = (char *)xen_##x##_direct;			\
1177 		end = xen_##x##_direct_end;				\
1178 		reloc = xen_##x##_direct_reloc;				\
1179 	}								\
1180 	goto patch_site
1181 
1182 	switch (type) {
1183 		SITE(pv_irq_ops, irq_enable);
1184 		SITE(pv_irq_ops, irq_disable);
1185 		SITE(pv_irq_ops, save_fl);
1186 		SITE(pv_irq_ops, restore_fl);
1187 #undef SITE
1188 
1189 	patch_site:
1190 		if (start == NULL || (end-start) > len)
1191 			goto default_patch;
1192 
1193 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1194 
1195 		/* Note: because reloc is assigned from something that
1196 		   appears to be an array, gcc assumes it's non-null,
1197 		   but doesn't know its relationship with start and
1198 		   end. */
1199 		if (reloc > start && reloc < end) {
1200 			int reloc_off = reloc - start;
1201 			long *relocp = (long *)(insnbuf + reloc_off);
1202 			long delta = start - (char *)addr;
1203 
1204 			*relocp += delta;
1205 		}
1206 		break;
1207 
1208 	default_patch:
1209 	default:
1210 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1211 					     addr, len);
1212 		break;
1213 	}
1214 
1215 	return ret;
1216 }
1217 
1218 static const struct pv_info xen_info __initconst = {
1219 	.shared_kernel_pmd = 0,
1220 
1221 #ifdef CONFIG_X86_64
1222 	.extra_user_64bit_cs = FLAT_USER_CS64,
1223 #endif
1224 	.name = "Xen",
1225 };
1226 
1227 static const struct pv_init_ops xen_init_ops __initconst = {
1228 	.patch = xen_patch,
1229 };
1230 
1231 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1232 	.cpuid = xen_cpuid,
1233 
1234 	.set_debugreg = xen_set_debugreg,
1235 	.get_debugreg = xen_get_debugreg,
1236 
1237 	.clts = xen_clts,
1238 
1239 	.read_cr0 = xen_read_cr0,
1240 	.write_cr0 = xen_write_cr0,
1241 
1242 	.read_cr4 = native_read_cr4,
1243 	.read_cr4_safe = native_read_cr4_safe,
1244 	.write_cr4 = xen_write_cr4,
1245 
1246 #ifdef CONFIG_X86_64
1247 	.read_cr8 = xen_read_cr8,
1248 	.write_cr8 = xen_write_cr8,
1249 #endif
1250 
1251 	.wbinvd = native_wbinvd,
1252 
1253 	.read_msr = xen_read_msr,
1254 	.write_msr = xen_write_msr,
1255 
1256 	.read_msr_safe = xen_read_msr_safe,
1257 	.write_msr_safe = xen_write_msr_safe,
1258 
1259 	.read_pmc = xen_read_pmc,
1260 
1261 	.iret = xen_iret,
1262 #ifdef CONFIG_X86_64
1263 	.usergs_sysret64 = xen_sysret64,
1264 #endif
1265 
1266 	.load_tr_desc = paravirt_nop,
1267 	.set_ldt = xen_set_ldt,
1268 	.load_gdt = xen_load_gdt,
1269 	.load_idt = xen_load_idt,
1270 	.load_tls = xen_load_tls,
1271 #ifdef CONFIG_X86_64
1272 	.load_gs_index = xen_load_gs_index,
1273 #endif
1274 
1275 	.alloc_ldt = xen_alloc_ldt,
1276 	.free_ldt = xen_free_ldt,
1277 
1278 	.store_idt = native_store_idt,
1279 	.store_tr = xen_store_tr,
1280 
1281 	.write_ldt_entry = xen_write_ldt_entry,
1282 	.write_gdt_entry = xen_write_gdt_entry,
1283 	.write_idt_entry = xen_write_idt_entry,
1284 	.load_sp0 = xen_load_sp0,
1285 
1286 	.set_iopl_mask = xen_set_iopl_mask,
1287 	.io_delay = xen_io_delay,
1288 
1289 	/* Xen takes care of %gs when switching to usermode for us */
1290 	.swapgs = paravirt_nop,
1291 
1292 	.start_context_switch = paravirt_start_context_switch,
1293 	.end_context_switch = xen_end_context_switch,
1294 };
1295 
1296 static void xen_reboot(int reason)
1297 {
1298 	struct sched_shutdown r = { .reason = reason };
1299 	int cpu;
1300 
1301 	for_each_online_cpu(cpu)
1302 		xen_pmu_finish(cpu);
1303 
1304 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1305 		BUG();
1306 }
1307 
1308 static void xen_restart(char *msg)
1309 {
1310 	xen_reboot(SHUTDOWN_reboot);
1311 }
1312 
1313 static void xen_emergency_restart(void)
1314 {
1315 	xen_reboot(SHUTDOWN_reboot);
1316 }
1317 
1318 static void xen_machine_halt(void)
1319 {
1320 	xen_reboot(SHUTDOWN_poweroff);
1321 }
1322 
1323 static void xen_machine_power_off(void)
1324 {
1325 	if (pm_power_off)
1326 		pm_power_off();
1327 	xen_reboot(SHUTDOWN_poweroff);
1328 }
1329 
1330 static void xen_crash_shutdown(struct pt_regs *regs)
1331 {
1332 	xen_reboot(SHUTDOWN_crash);
1333 }
1334 
1335 static int
1336 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1337 {
1338 	xen_reboot(SHUTDOWN_crash);
1339 	return NOTIFY_DONE;
1340 }
1341 
1342 static struct notifier_block xen_panic_block = {
1343 	.notifier_call= xen_panic_event,
1344 	.priority = INT_MIN
1345 };
1346 
1347 int xen_panic_handler_init(void)
1348 {
1349 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1350 	return 0;
1351 }
1352 
1353 static const struct machine_ops xen_machine_ops __initconst = {
1354 	.restart = xen_restart,
1355 	.halt = xen_machine_halt,
1356 	.power_off = xen_machine_power_off,
1357 	.shutdown = xen_machine_halt,
1358 	.crash_shutdown = xen_crash_shutdown,
1359 	.emergency_restart = xen_emergency_restart,
1360 };
1361 
1362 static unsigned char xen_get_nmi_reason(void)
1363 {
1364 	unsigned char reason = 0;
1365 
1366 	/* Construct a value which looks like it came from port 0x61. */
1367 	if (test_bit(_XEN_NMIREASON_io_error,
1368 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1369 		reason |= NMI_REASON_IOCHK;
1370 	if (test_bit(_XEN_NMIREASON_pci_serr,
1371 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1372 		reason |= NMI_REASON_SERR;
1373 
1374 	return reason;
1375 }
1376 
1377 static void __init xen_boot_params_init_edd(void)
1378 {
1379 #if IS_ENABLED(CONFIG_EDD)
1380 	struct xen_platform_op op;
1381 	struct edd_info *edd_info;
1382 	u32 *mbr_signature;
1383 	unsigned nr;
1384 	int ret;
1385 
1386 	edd_info = boot_params.eddbuf;
1387 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1388 
1389 	op.cmd = XENPF_firmware_info;
1390 
1391 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1392 	for (nr = 0; nr < EDDMAXNR; nr++) {
1393 		struct edd_info *info = edd_info + nr;
1394 
1395 		op.u.firmware_info.index = nr;
1396 		info->params.length = sizeof(info->params);
1397 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1398 				     &info->params);
1399 		ret = HYPERVISOR_platform_op(&op);
1400 		if (ret)
1401 			break;
1402 
1403 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1404 		C(device);
1405 		C(version);
1406 		C(interface_support);
1407 		C(legacy_max_cylinder);
1408 		C(legacy_max_head);
1409 		C(legacy_sectors_per_track);
1410 #undef C
1411 	}
1412 	boot_params.eddbuf_entries = nr;
1413 
1414 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1415 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1416 		op.u.firmware_info.index = nr;
1417 		ret = HYPERVISOR_platform_op(&op);
1418 		if (ret)
1419 			break;
1420 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1421 	}
1422 	boot_params.edd_mbr_sig_buf_entries = nr;
1423 #endif
1424 }
1425 
1426 /*
1427  * Set up the GDT and segment registers for -fstack-protector.  Until
1428  * we do this, we have to be careful not to call any stack-protected
1429  * function, which is most of the kernel.
1430  *
1431  * Note, that it is __ref because the only caller of this after init
1432  * is PVH which is not going to use xen_load_gdt_boot or other
1433  * __init functions.
1434  */
1435 static void __ref xen_setup_gdt(int cpu)
1436 {
1437 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1438 #ifdef CONFIG_X86_64
1439 		unsigned long dummy;
1440 
1441 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1442 		switch_to_new_gdt(cpu); /* GDT and GS set */
1443 
1444 		/* We are switching of the Xen provided GDT to our HVM mode
1445 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1446 		 * and we are jumping to reload it.
1447 		 */
1448 		asm volatile ("pushq %0\n"
1449 			      "leaq 1f(%%rip),%0\n"
1450 			      "pushq %0\n"
1451 			      "lretq\n"
1452 			      "1:\n"
1453 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1454 
1455 		/*
1456 		 * While not needed, we also set the %es, %ds, and %fs
1457 		 * to zero. We don't care about %ss as it is NULL.
1458 		 * Strictly speaking this is not needed as Xen zeros those
1459 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1460 		 *
1461 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1462 		 * (for BSP).
1463 		 */
1464 		loadsegment(es, 0);
1465 		loadsegment(ds, 0);
1466 		loadsegment(fs, 0);
1467 #else
1468 		/* PVH: TODO Implement. */
1469 		BUG();
1470 #endif
1471 		return; /* PVH does not need any PV GDT ops. */
1472 	}
1473 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1474 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1475 
1476 	setup_stack_canary_segment(0);
1477 	switch_to_new_gdt(0);
1478 
1479 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1480 	pv_cpu_ops.load_gdt = xen_load_gdt;
1481 }
1482 
1483 #ifdef CONFIG_XEN_PVH
1484 /*
1485  * A PV guest starts with default flags that are not set for PVH, set them
1486  * here asap.
1487  */
1488 static void xen_pvh_set_cr_flags(int cpu)
1489 {
1490 
1491 	/* Some of these are setup in 'secondary_startup_64'. The others:
1492 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1493 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1494 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1495 
1496 	if (!cpu)
1497 		return;
1498 	/*
1499 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1500 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1501 	*/
1502 	if (boot_cpu_has(X86_FEATURE_PSE))
1503 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1504 
1505 	if (boot_cpu_has(X86_FEATURE_PGE))
1506 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1507 }
1508 
1509 /*
1510  * Note, that it is ref - because the only caller of this after init
1511  * is PVH which is not going to use xen_load_gdt_boot or other
1512  * __init functions.
1513  */
1514 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1515 {
1516 	xen_setup_gdt(cpu);
1517 	xen_pvh_set_cr_flags(cpu);
1518 }
1519 
1520 static void __init xen_pvh_early_guest_init(void)
1521 {
1522 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1523 		return;
1524 
1525 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1526 		return;
1527 
1528 	xen_have_vector_callback = 1;
1529 
1530 	xen_pvh_early_cpu_init(0, false);
1531 	xen_pvh_set_cr_flags(0);
1532 
1533 #ifdef CONFIG_X86_32
1534 	BUG(); /* PVH: Implement proper support. */
1535 #endif
1536 }
1537 #endif    /* CONFIG_XEN_PVH */
1538 
1539 static void __init xen_dom0_set_legacy_features(void)
1540 {
1541 	x86_platform.legacy.rtc = 1;
1542 }
1543 
1544 /* First C function to be called on Xen boot */
1545 asmlinkage __visible void __init xen_start_kernel(void)
1546 {
1547 	struct physdev_set_iopl set_iopl;
1548 	unsigned long initrd_start = 0;
1549 	int rc;
1550 
1551 	if (!xen_start_info)
1552 		return;
1553 
1554 	xen_domain_type = XEN_PV_DOMAIN;
1555 
1556 	xen_setup_features();
1557 #ifdef CONFIG_XEN_PVH
1558 	xen_pvh_early_guest_init();
1559 #endif
1560 	xen_setup_machphys_mapping();
1561 
1562 	/* Install Xen paravirt ops */
1563 	pv_info = xen_info;
1564 	pv_init_ops = xen_init_ops;
1565 	if (!xen_pvh_domain()) {
1566 		pv_cpu_ops = xen_cpu_ops;
1567 
1568 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1569 	}
1570 
1571 	if (xen_feature(XENFEAT_auto_translated_physmap))
1572 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1573 	else
1574 		x86_init.resources.memory_setup = xen_memory_setup;
1575 	x86_init.oem.arch_setup = xen_arch_setup;
1576 	x86_init.oem.banner = xen_banner;
1577 
1578 	xen_init_time_ops();
1579 
1580 	/*
1581 	 * Set up some pagetable state before starting to set any ptes.
1582 	 */
1583 
1584 	xen_init_mmu_ops();
1585 
1586 	/* Prevent unwanted bits from being set in PTEs. */
1587 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1588 
1589 	/*
1590 	 * Prevent page tables from being allocated in highmem, even
1591 	 * if CONFIG_HIGHPTE is enabled.
1592 	 */
1593 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1594 
1595 	/* Work out if we support NX */
1596 	x86_configure_nx();
1597 
1598 	/* Get mfn list */
1599 	xen_build_dynamic_phys_to_machine();
1600 
1601 	/*
1602 	 * Set up kernel GDT and segment registers, mainly so that
1603 	 * -fstack-protector code can be executed.
1604 	 */
1605 	xen_setup_gdt(0);
1606 
1607 	xen_init_irq_ops();
1608 	xen_init_cpuid_mask();
1609 
1610 #ifdef CONFIG_X86_LOCAL_APIC
1611 	/*
1612 	 * set up the basic apic ops.
1613 	 */
1614 	xen_init_apic();
1615 #endif
1616 
1617 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1618 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1619 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1620 	}
1621 
1622 	machine_ops = xen_machine_ops;
1623 
1624 	/*
1625 	 * The only reliable way to retain the initial address of the
1626 	 * percpu gdt_page is to remember it here, so we can go and
1627 	 * mark it RW later, when the initial percpu area is freed.
1628 	 */
1629 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1630 
1631 	xen_smp_init();
1632 
1633 #ifdef CONFIG_ACPI_NUMA
1634 	/*
1635 	 * The pages we from Xen are not related to machine pages, so
1636 	 * any NUMA information the kernel tries to get from ACPI will
1637 	 * be meaningless.  Prevent it from trying.
1638 	 */
1639 	acpi_numa = -1;
1640 #endif
1641 	/* Don't do the full vcpu_info placement stuff until we have a
1642 	   possible map and a non-dummy shared_info. */
1643 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1644 
1645 	local_irq_disable();
1646 	early_boot_irqs_disabled = true;
1647 
1648 	xen_raw_console_write("mapping kernel into physical memory\n");
1649 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1650 				   xen_start_info->nr_pages);
1651 	xen_reserve_special_pages();
1652 
1653 	/* keep using Xen gdt for now; no urgent need to change it */
1654 
1655 #ifdef CONFIG_X86_32
1656 	pv_info.kernel_rpl = 1;
1657 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1658 		pv_info.kernel_rpl = 0;
1659 #else
1660 	pv_info.kernel_rpl = 0;
1661 #endif
1662 	/* set the limit of our address space */
1663 	xen_reserve_top();
1664 
1665 	/* PVH: runs at default kernel iopl of 0 */
1666 	if (!xen_pvh_domain()) {
1667 		/*
1668 		 * We used to do this in xen_arch_setup, but that is too late
1669 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1670 		 * early_amd_init which pokes 0xcf8 port.
1671 		 */
1672 		set_iopl.iopl = 1;
1673 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1674 		if (rc != 0)
1675 			xen_raw_printk("physdev_op failed %d\n", rc);
1676 	}
1677 
1678 #ifdef CONFIG_X86_32
1679 	/* set up basic CPUID stuff */
1680 	cpu_detect(&new_cpu_data);
1681 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1682 	new_cpu_data.wp_works_ok = 1;
1683 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1684 #endif
1685 
1686 	if (xen_start_info->mod_start) {
1687 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1688 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1689 	    else
1690 		initrd_start = __pa(xen_start_info->mod_start);
1691 	}
1692 
1693 	/* Poke various useful things into boot_params */
1694 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1695 	boot_params.hdr.ramdisk_image = initrd_start;
1696 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1697 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1698 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1699 
1700 	if (!xen_initial_domain()) {
1701 		add_preferred_console("xenboot", 0, NULL);
1702 		add_preferred_console("tty", 0, NULL);
1703 		add_preferred_console("hvc", 0, NULL);
1704 		if (pci_xen)
1705 			x86_init.pci.arch_init = pci_xen_init;
1706 	} else {
1707 		const struct dom0_vga_console_info *info =
1708 			(void *)((char *)xen_start_info +
1709 				 xen_start_info->console.dom0.info_off);
1710 		struct xen_platform_op op = {
1711 			.cmd = XENPF_firmware_info,
1712 			.interface_version = XENPF_INTERFACE_VERSION,
1713 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1714 		};
1715 
1716 		x86_platform.set_legacy_features =
1717 				xen_dom0_set_legacy_features;
1718 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1719 		xen_start_info->console.domU.mfn = 0;
1720 		xen_start_info->console.domU.evtchn = 0;
1721 
1722 		if (HYPERVISOR_platform_op(&op) == 0)
1723 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1724 
1725 		/* Make sure ACS will be enabled */
1726 		pci_request_acs();
1727 
1728 		xen_acpi_sleep_register();
1729 
1730 		/* Avoid searching for BIOS MP tables */
1731 		x86_init.mpparse.find_smp_config = x86_init_noop;
1732 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1733 
1734 		xen_boot_params_init_edd();
1735 	}
1736 #ifdef CONFIG_PCI
1737 	/* PCI BIOS service won't work from a PV guest. */
1738 	pci_probe &= ~PCI_PROBE_BIOS;
1739 #endif
1740 	xen_raw_console_write("about to get started...\n");
1741 
1742 	/* Let's presume PV guests always boot on vCPU with id 0. */
1743 	per_cpu(xen_vcpu_id, 0) = 0;
1744 
1745 	xen_setup_runstate_info(0);
1746 
1747 	xen_efi_init();
1748 
1749 	/* Start the world */
1750 #ifdef CONFIG_X86_32
1751 	i386_start_kernel();
1752 #else
1753 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1754 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1755 #endif
1756 }
1757 
1758 void __ref xen_hvm_init_shared_info(void)
1759 {
1760 	int cpu;
1761 	struct xen_add_to_physmap xatp;
1762 	static struct shared_info *shared_info_page = 0;
1763 
1764 	if (!shared_info_page)
1765 		shared_info_page = (struct shared_info *)
1766 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1767 	xatp.domid = DOMID_SELF;
1768 	xatp.idx = 0;
1769 	xatp.space = XENMAPSPACE_shared_info;
1770 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1771 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1772 		BUG();
1773 
1774 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1775 
1776 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1777 	 * page, we use it in the event channel upcall and in some pvclock
1778 	 * related functions. We don't need the vcpu_info placement
1779 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1780 	 * HVM.
1781 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1782 	 * online but xen_hvm_init_shared_info is run at resume time too and
1783 	 * in that case multiple vcpus might be online. */
1784 	for_each_online_cpu(cpu) {
1785 		/* Leave it to be NULL. */
1786 		if (cpu >= MAX_VIRT_CPUS)
1787 			continue;
1788 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1789 	}
1790 }
1791 
1792 #ifdef CONFIG_XEN_PVHVM
1793 static void __init init_hvm_pv_info(void)
1794 {
1795 	int major, minor;
1796 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1797 	u64 pfn;
1798 
1799 	base = xen_cpuid_base();
1800 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1801 
1802 	major = eax >> 16;
1803 	minor = eax & 0xffff;
1804 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1805 
1806 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1807 
1808 	pfn = __pa(hypercall_page);
1809 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1810 
1811 	xen_setup_features();
1812 
1813 	cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1814 	if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1815 		this_cpu_write(xen_vcpu_id, ebx);
1816 	else
1817 		this_cpu_write(xen_vcpu_id, smp_processor_id());
1818 
1819 	pv_info.name = "Xen HVM";
1820 
1821 	xen_domain_type = XEN_HVM_DOMAIN;
1822 }
1823 
1824 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1825 			      void *hcpu)
1826 {
1827 	int cpu = (long)hcpu;
1828 	switch (action) {
1829 	case CPU_UP_PREPARE:
1830 		if (cpu_acpi_id(cpu) != U32_MAX)
1831 			per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1832 		else
1833 			per_cpu(xen_vcpu_id, cpu) = cpu;
1834 		xen_vcpu_setup(cpu);
1835 		if (xen_have_vector_callback) {
1836 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1837 				xen_setup_timer(cpu);
1838 		}
1839 		break;
1840 	default:
1841 		break;
1842 	}
1843 	return NOTIFY_OK;
1844 }
1845 
1846 static struct notifier_block xen_hvm_cpu_notifier = {
1847 	.notifier_call	= xen_hvm_cpu_notify,
1848 };
1849 
1850 #ifdef CONFIG_KEXEC_CORE
1851 static void xen_hvm_shutdown(void)
1852 {
1853 	native_machine_shutdown();
1854 	if (kexec_in_progress)
1855 		xen_reboot(SHUTDOWN_soft_reset);
1856 }
1857 
1858 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1859 {
1860 	native_machine_crash_shutdown(regs);
1861 	xen_reboot(SHUTDOWN_soft_reset);
1862 }
1863 #endif
1864 
1865 static void __init xen_hvm_guest_init(void)
1866 {
1867 	if (xen_pv_domain())
1868 		return;
1869 
1870 	init_hvm_pv_info();
1871 
1872 	xen_hvm_init_shared_info();
1873 
1874 	xen_panic_handler_init();
1875 
1876 	if (xen_feature(XENFEAT_hvm_callback_vector))
1877 		xen_have_vector_callback = 1;
1878 	xen_hvm_smp_init();
1879 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1880 	xen_unplug_emulated_devices();
1881 	x86_init.irqs.intr_init = xen_init_IRQ;
1882 	xen_hvm_init_time_ops();
1883 	xen_hvm_init_mmu_ops();
1884 #ifdef CONFIG_KEXEC_CORE
1885 	machine_ops.shutdown = xen_hvm_shutdown;
1886 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1887 #endif
1888 }
1889 #endif
1890 
1891 static bool xen_nopv = false;
1892 static __init int xen_parse_nopv(char *arg)
1893 {
1894        xen_nopv = true;
1895        return 0;
1896 }
1897 early_param("xen_nopv", xen_parse_nopv);
1898 
1899 static uint32_t __init xen_platform(void)
1900 {
1901 	if (xen_nopv)
1902 		return 0;
1903 
1904 	return xen_cpuid_base();
1905 }
1906 
1907 bool xen_hvm_need_lapic(void)
1908 {
1909 	if (xen_nopv)
1910 		return false;
1911 	if (xen_pv_domain())
1912 		return false;
1913 	if (!xen_hvm_domain())
1914 		return false;
1915 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1916 		return false;
1917 	return true;
1918 }
1919 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1920 
1921 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1922 {
1923 	if (xen_pv_domain()) {
1924 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1925 		set_cpu_cap(c, X86_FEATURE_XENPV);
1926 	}
1927 }
1928 
1929 const struct hypervisor_x86 x86_hyper_xen = {
1930 	.name			= "Xen",
1931 	.detect			= xen_platform,
1932 #ifdef CONFIG_XEN_PVHVM
1933 	.init_platform		= xen_hvm_guest_init,
1934 #endif
1935 	.x2apic_available	= xen_x2apic_para_available,
1936 	.set_cpu_features       = xen_set_cpu_features,
1937 };
1938 EXPORT_SYMBOL(x86_hyper_xen);
1939 
1940 #ifdef CONFIG_HOTPLUG_CPU
1941 void xen_arch_register_cpu(int num)
1942 {
1943 	arch_register_cpu(num);
1944 }
1945 EXPORT_SYMBOL(xen_arch_register_cpu);
1946 
1947 void xen_arch_unregister_cpu(int num)
1948 {
1949 	arch_unregister_cpu(num);
1950 }
1951 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1952 #endif
1953