1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 35 #include <xen/xen.h> 36 #include <xen/interface/xen.h> 37 #include <xen/interface/version.h> 38 #include <xen/interface/physdev.h> 39 #include <xen/interface/vcpu.h> 40 #include <xen/interface/memory.h> 41 #include <xen/interface/xen-mca.h> 42 #include <xen/features.h> 43 #include <xen/page.h> 44 #include <xen/hvm.h> 45 #include <xen/hvc-console.h> 46 #include <xen/acpi.h> 47 48 #include <asm/paravirt.h> 49 #include <asm/apic.h> 50 #include <asm/page.h> 51 #include <asm/xen/pci.h> 52 #include <asm/xen/hypercall.h> 53 #include <asm/xen/hypervisor.h> 54 #include <asm/fixmap.h> 55 #include <asm/processor.h> 56 #include <asm/proto.h> 57 #include <asm/msr-index.h> 58 #include <asm/traps.h> 59 #include <asm/setup.h> 60 #include <asm/desc.h> 61 #include <asm/pgalloc.h> 62 #include <asm/pgtable.h> 63 #include <asm/tlbflush.h> 64 #include <asm/reboot.h> 65 #include <asm/stackprotector.h> 66 #include <asm/hypervisor.h> 67 #include <asm/mwait.h> 68 #include <asm/pci_x86.h> 69 70 #ifdef CONFIG_ACPI 71 #include <linux/acpi.h> 72 #include <asm/acpi.h> 73 #include <acpi/pdc_intel.h> 74 #include <acpi/processor.h> 75 #include <xen/interface/platform.h> 76 #endif 77 78 #include "xen-ops.h" 79 #include "mmu.h" 80 #include "smp.h" 81 #include "multicalls.h" 82 83 EXPORT_SYMBOL_GPL(hypercall_page); 84 85 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 86 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 87 88 enum xen_domain_type xen_domain_type = XEN_NATIVE; 89 EXPORT_SYMBOL_GPL(xen_domain_type); 90 91 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 92 EXPORT_SYMBOL(machine_to_phys_mapping); 93 unsigned long machine_to_phys_nr; 94 EXPORT_SYMBOL(machine_to_phys_nr); 95 96 struct start_info *xen_start_info; 97 EXPORT_SYMBOL_GPL(xen_start_info); 98 99 struct shared_info xen_dummy_shared_info; 100 101 void *xen_initial_gdt; 102 103 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 104 __read_mostly int xen_have_vector_callback; 105 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 106 107 /* 108 * Point at some empty memory to start with. We map the real shared_info 109 * page as soon as fixmap is up and running. 110 */ 111 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; 112 113 /* 114 * Flag to determine whether vcpu info placement is available on all 115 * VCPUs. We assume it is to start with, and then set it to zero on 116 * the first failure. This is because it can succeed on some VCPUs 117 * and not others, since it can involve hypervisor memory allocation, 118 * or because the guest failed to guarantee all the appropriate 119 * constraints on all VCPUs (ie buffer can't cross a page boundary). 120 * 121 * Note that any particular CPU may be using a placed vcpu structure, 122 * but we can only optimise if the all are. 123 * 124 * 0: not available, 1: available 125 */ 126 static int have_vcpu_info_placement = 1; 127 128 struct tls_descs { 129 struct desc_struct desc[3]; 130 }; 131 132 /* 133 * Updating the 3 TLS descriptors in the GDT on every task switch is 134 * surprisingly expensive so we avoid updating them if they haven't 135 * changed. Since Xen writes different descriptors than the one 136 * passed in the update_descriptor hypercall we keep shadow copies to 137 * compare against. 138 */ 139 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 140 141 static void clamp_max_cpus(void) 142 { 143 #ifdef CONFIG_SMP 144 if (setup_max_cpus > MAX_VIRT_CPUS) 145 setup_max_cpus = MAX_VIRT_CPUS; 146 #endif 147 } 148 149 static void xen_vcpu_setup(int cpu) 150 { 151 struct vcpu_register_vcpu_info info; 152 int err; 153 struct vcpu_info *vcpup; 154 155 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 156 157 if (cpu < MAX_VIRT_CPUS) 158 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 159 160 if (!have_vcpu_info_placement) { 161 if (cpu >= MAX_VIRT_CPUS) 162 clamp_max_cpus(); 163 return; 164 } 165 166 vcpup = &per_cpu(xen_vcpu_info, cpu); 167 info.mfn = arbitrary_virt_to_mfn(vcpup); 168 info.offset = offset_in_page(vcpup); 169 170 /* Check to see if the hypervisor will put the vcpu_info 171 structure where we want it, which allows direct access via 172 a percpu-variable. */ 173 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 174 175 if (err) { 176 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 177 have_vcpu_info_placement = 0; 178 clamp_max_cpus(); 179 } else { 180 /* This cpu is using the registered vcpu info, even if 181 later ones fail to. */ 182 per_cpu(xen_vcpu, cpu) = vcpup; 183 } 184 } 185 186 /* 187 * On restore, set the vcpu placement up again. 188 * If it fails, then we're in a bad state, since 189 * we can't back out from using it... 190 */ 191 void xen_vcpu_restore(void) 192 { 193 int cpu; 194 195 for_each_online_cpu(cpu) { 196 bool other_cpu = (cpu != smp_processor_id()); 197 198 if (other_cpu && 199 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 200 BUG(); 201 202 xen_setup_runstate_info(cpu); 203 204 if (have_vcpu_info_placement) 205 xen_vcpu_setup(cpu); 206 207 if (other_cpu && 208 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 209 BUG(); 210 } 211 } 212 213 static void __init xen_banner(void) 214 { 215 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 216 struct xen_extraversion extra; 217 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 218 219 printk(KERN_INFO "Booting paravirtualized kernel on %s\n", 220 pv_info.name); 221 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 222 version >> 16, version & 0xffff, extra.extraversion, 223 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 224 } 225 226 #define CPUID_THERM_POWER_LEAF 6 227 #define APERFMPERF_PRESENT 0 228 229 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 230 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 231 232 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; 233 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 234 static __read_mostly unsigned int cpuid_leaf5_edx_val; 235 236 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 237 unsigned int *cx, unsigned int *dx) 238 { 239 unsigned maskebx = ~0; 240 unsigned maskecx = ~0; 241 unsigned maskedx = ~0; 242 unsigned setecx = 0; 243 /* 244 * Mask out inconvenient features, to try and disable as many 245 * unsupported kernel subsystems as possible. 246 */ 247 switch (*ax) { 248 case 1: 249 maskecx = cpuid_leaf1_ecx_mask; 250 setecx = cpuid_leaf1_ecx_set_mask; 251 maskedx = cpuid_leaf1_edx_mask; 252 break; 253 254 case CPUID_MWAIT_LEAF: 255 /* Synthesize the values.. */ 256 *ax = 0; 257 *bx = 0; 258 *cx = cpuid_leaf5_ecx_val; 259 *dx = cpuid_leaf5_edx_val; 260 return; 261 262 case CPUID_THERM_POWER_LEAF: 263 /* Disabling APERFMPERF for kernel usage */ 264 maskecx = ~(1 << APERFMPERF_PRESENT); 265 break; 266 267 case 0xb: 268 /* Suppress extended topology stuff */ 269 maskebx = 0; 270 break; 271 } 272 273 asm(XEN_EMULATE_PREFIX "cpuid" 274 : "=a" (*ax), 275 "=b" (*bx), 276 "=c" (*cx), 277 "=d" (*dx) 278 : "0" (*ax), "2" (*cx)); 279 280 *bx &= maskebx; 281 *cx &= maskecx; 282 *cx |= setecx; 283 *dx &= maskedx; 284 285 } 286 287 static bool __init xen_check_mwait(void) 288 { 289 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \ 290 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE) 291 struct xen_platform_op op = { 292 .cmd = XENPF_set_processor_pminfo, 293 .u.set_pminfo.id = -1, 294 .u.set_pminfo.type = XEN_PM_PDC, 295 }; 296 uint32_t buf[3]; 297 unsigned int ax, bx, cx, dx; 298 unsigned int mwait_mask; 299 300 /* We need to determine whether it is OK to expose the MWAIT 301 * capability to the kernel to harvest deeper than C3 states from ACPI 302 * _CST using the processor_harvest_xen.c module. For this to work, we 303 * need to gather the MWAIT_LEAF values (which the cstate.c code 304 * checks against). The hypervisor won't expose the MWAIT flag because 305 * it would break backwards compatibility; so we will find out directly 306 * from the hardware and hypercall. 307 */ 308 if (!xen_initial_domain()) 309 return false; 310 311 ax = 1; 312 cx = 0; 313 314 native_cpuid(&ax, &bx, &cx, &dx); 315 316 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 317 (1 << (X86_FEATURE_MWAIT % 32)); 318 319 if ((cx & mwait_mask) != mwait_mask) 320 return false; 321 322 /* We need to emulate the MWAIT_LEAF and for that we need both 323 * ecx and edx. The hypercall provides only partial information. 324 */ 325 326 ax = CPUID_MWAIT_LEAF; 327 bx = 0; 328 cx = 0; 329 dx = 0; 330 331 native_cpuid(&ax, &bx, &cx, &dx); 332 333 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 334 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 335 */ 336 buf[0] = ACPI_PDC_REVISION_ID; 337 buf[1] = 1; 338 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 339 340 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 341 342 if ((HYPERVISOR_dom0_op(&op) == 0) && 343 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 344 cpuid_leaf5_ecx_val = cx; 345 cpuid_leaf5_edx_val = dx; 346 } 347 return true; 348 #else 349 return false; 350 #endif 351 } 352 static void __init xen_init_cpuid_mask(void) 353 { 354 unsigned int ax, bx, cx, dx; 355 unsigned int xsave_mask; 356 357 cpuid_leaf1_edx_mask = 358 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */ 359 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 360 361 if (!xen_initial_domain()) 362 cpuid_leaf1_edx_mask &= 363 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */ 364 (1 << X86_FEATURE_ACPI)); /* disable ACPI */ 365 ax = 1; 366 cx = 0; 367 xen_cpuid(&ax, &bx, &cx, &dx); 368 369 xsave_mask = 370 (1 << (X86_FEATURE_XSAVE % 32)) | 371 (1 << (X86_FEATURE_OSXSAVE % 32)); 372 373 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 374 if ((cx & xsave_mask) != xsave_mask) 375 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 376 if (xen_check_mwait()) 377 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); 378 } 379 380 static void xen_set_debugreg(int reg, unsigned long val) 381 { 382 HYPERVISOR_set_debugreg(reg, val); 383 } 384 385 static unsigned long xen_get_debugreg(int reg) 386 { 387 return HYPERVISOR_get_debugreg(reg); 388 } 389 390 static void xen_end_context_switch(struct task_struct *next) 391 { 392 xen_mc_flush(); 393 paravirt_end_context_switch(next); 394 } 395 396 static unsigned long xen_store_tr(void) 397 { 398 return 0; 399 } 400 401 /* 402 * Set the page permissions for a particular virtual address. If the 403 * address is a vmalloc mapping (or other non-linear mapping), then 404 * find the linear mapping of the page and also set its protections to 405 * match. 406 */ 407 static void set_aliased_prot(void *v, pgprot_t prot) 408 { 409 int level; 410 pte_t *ptep; 411 pte_t pte; 412 unsigned long pfn; 413 struct page *page; 414 415 ptep = lookup_address((unsigned long)v, &level); 416 BUG_ON(ptep == NULL); 417 418 pfn = pte_pfn(*ptep); 419 page = pfn_to_page(pfn); 420 421 pte = pfn_pte(pfn, prot); 422 423 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 424 BUG(); 425 426 if (!PageHighMem(page)) { 427 void *av = __va(PFN_PHYS(pfn)); 428 429 if (av != v) 430 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 431 BUG(); 432 } else 433 kmap_flush_unused(); 434 } 435 436 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 437 { 438 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 439 int i; 440 441 for(i = 0; i < entries; i += entries_per_page) 442 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 443 } 444 445 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 446 { 447 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 448 int i; 449 450 for(i = 0; i < entries; i += entries_per_page) 451 set_aliased_prot(ldt + i, PAGE_KERNEL); 452 } 453 454 static void xen_set_ldt(const void *addr, unsigned entries) 455 { 456 struct mmuext_op *op; 457 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 458 459 trace_xen_cpu_set_ldt(addr, entries); 460 461 op = mcs.args; 462 op->cmd = MMUEXT_SET_LDT; 463 op->arg1.linear_addr = (unsigned long)addr; 464 op->arg2.nr_ents = entries; 465 466 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 467 468 xen_mc_issue(PARAVIRT_LAZY_CPU); 469 } 470 471 static void xen_load_gdt(const struct desc_ptr *dtr) 472 { 473 unsigned long va = dtr->address; 474 unsigned int size = dtr->size + 1; 475 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 476 unsigned long frames[pages]; 477 int f; 478 479 /* 480 * A GDT can be up to 64k in size, which corresponds to 8192 481 * 8-byte entries, or 16 4k pages.. 482 */ 483 484 BUG_ON(size > 65536); 485 BUG_ON(va & ~PAGE_MASK); 486 487 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 488 int level; 489 pte_t *ptep; 490 unsigned long pfn, mfn; 491 void *virt; 492 493 /* 494 * The GDT is per-cpu and is in the percpu data area. 495 * That can be virtually mapped, so we need to do a 496 * page-walk to get the underlying MFN for the 497 * hypercall. The page can also be in the kernel's 498 * linear range, so we need to RO that mapping too. 499 */ 500 ptep = lookup_address(va, &level); 501 BUG_ON(ptep == NULL); 502 503 pfn = pte_pfn(*ptep); 504 mfn = pfn_to_mfn(pfn); 505 virt = __va(PFN_PHYS(pfn)); 506 507 frames[f] = mfn; 508 509 make_lowmem_page_readonly((void *)va); 510 make_lowmem_page_readonly(virt); 511 } 512 513 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 514 BUG(); 515 } 516 517 /* 518 * load_gdt for early boot, when the gdt is only mapped once 519 */ 520 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 521 { 522 unsigned long va = dtr->address; 523 unsigned int size = dtr->size + 1; 524 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 525 unsigned long frames[pages]; 526 int f; 527 528 /* 529 * A GDT can be up to 64k in size, which corresponds to 8192 530 * 8-byte entries, or 16 4k pages.. 531 */ 532 533 BUG_ON(size > 65536); 534 BUG_ON(va & ~PAGE_MASK); 535 536 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 537 pte_t pte; 538 unsigned long pfn, mfn; 539 540 pfn = virt_to_pfn(va); 541 mfn = pfn_to_mfn(pfn); 542 543 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 544 545 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 546 BUG(); 547 548 frames[f] = mfn; 549 } 550 551 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 552 BUG(); 553 } 554 555 static inline bool desc_equal(const struct desc_struct *d1, 556 const struct desc_struct *d2) 557 { 558 return d1->a == d2->a && d1->b == d2->b; 559 } 560 561 static void load_TLS_descriptor(struct thread_struct *t, 562 unsigned int cpu, unsigned int i) 563 { 564 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 565 struct desc_struct *gdt; 566 xmaddr_t maddr; 567 struct multicall_space mc; 568 569 if (desc_equal(shadow, &t->tls_array[i])) 570 return; 571 572 *shadow = t->tls_array[i]; 573 574 gdt = get_cpu_gdt_table(cpu); 575 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 576 mc = __xen_mc_entry(0); 577 578 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 579 } 580 581 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 582 { 583 /* 584 * XXX sleazy hack: If we're being called in a lazy-cpu zone 585 * and lazy gs handling is enabled, it means we're in a 586 * context switch, and %gs has just been saved. This means we 587 * can zero it out to prevent faults on exit from the 588 * hypervisor if the next process has no %gs. Either way, it 589 * has been saved, and the new value will get loaded properly. 590 * This will go away as soon as Xen has been modified to not 591 * save/restore %gs for normal hypercalls. 592 * 593 * On x86_64, this hack is not used for %gs, because gs points 594 * to KERNEL_GS_BASE (and uses it for PDA references), so we 595 * must not zero %gs on x86_64 596 * 597 * For x86_64, we need to zero %fs, otherwise we may get an 598 * exception between the new %fs descriptor being loaded and 599 * %fs being effectively cleared at __switch_to(). 600 */ 601 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 602 #ifdef CONFIG_X86_32 603 lazy_load_gs(0); 604 #else 605 loadsegment(fs, 0); 606 #endif 607 } 608 609 xen_mc_batch(); 610 611 load_TLS_descriptor(t, cpu, 0); 612 load_TLS_descriptor(t, cpu, 1); 613 load_TLS_descriptor(t, cpu, 2); 614 615 xen_mc_issue(PARAVIRT_LAZY_CPU); 616 } 617 618 #ifdef CONFIG_X86_64 619 static void xen_load_gs_index(unsigned int idx) 620 { 621 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 622 BUG(); 623 } 624 #endif 625 626 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 627 const void *ptr) 628 { 629 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 630 u64 entry = *(u64 *)ptr; 631 632 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 633 634 preempt_disable(); 635 636 xen_mc_flush(); 637 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 638 BUG(); 639 640 preempt_enable(); 641 } 642 643 static int cvt_gate_to_trap(int vector, const gate_desc *val, 644 struct trap_info *info) 645 { 646 unsigned long addr; 647 648 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 649 return 0; 650 651 info->vector = vector; 652 653 addr = gate_offset(*val); 654 #ifdef CONFIG_X86_64 655 /* 656 * Look for known traps using IST, and substitute them 657 * appropriately. The debugger ones are the only ones we care 658 * about. Xen will handle faults like double_fault, 659 * so we should never see them. Warn if 660 * there's an unexpected IST-using fault handler. 661 */ 662 if (addr == (unsigned long)debug) 663 addr = (unsigned long)xen_debug; 664 else if (addr == (unsigned long)int3) 665 addr = (unsigned long)xen_int3; 666 else if (addr == (unsigned long)stack_segment) 667 addr = (unsigned long)xen_stack_segment; 668 else if (addr == (unsigned long)double_fault || 669 addr == (unsigned long)nmi) { 670 /* Don't need to handle these */ 671 return 0; 672 #ifdef CONFIG_X86_MCE 673 } else if (addr == (unsigned long)machine_check) { 674 /* 675 * when xen hypervisor inject vMCE to guest, 676 * use native mce handler to handle it 677 */ 678 ; 679 #endif 680 } else { 681 /* Some other trap using IST? */ 682 if (WARN_ON(val->ist != 0)) 683 return 0; 684 } 685 #endif /* CONFIG_X86_64 */ 686 info->address = addr; 687 688 info->cs = gate_segment(*val); 689 info->flags = val->dpl; 690 /* interrupt gates clear IF */ 691 if (val->type == GATE_INTERRUPT) 692 info->flags |= 1 << 2; 693 694 return 1; 695 } 696 697 /* Locations of each CPU's IDT */ 698 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 699 700 /* Set an IDT entry. If the entry is part of the current IDT, then 701 also update Xen. */ 702 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 703 { 704 unsigned long p = (unsigned long)&dt[entrynum]; 705 unsigned long start, end; 706 707 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 708 709 preempt_disable(); 710 711 start = __this_cpu_read(idt_desc.address); 712 end = start + __this_cpu_read(idt_desc.size) + 1; 713 714 xen_mc_flush(); 715 716 native_write_idt_entry(dt, entrynum, g); 717 718 if (p >= start && (p + 8) <= end) { 719 struct trap_info info[2]; 720 721 info[1].address = 0; 722 723 if (cvt_gate_to_trap(entrynum, g, &info[0])) 724 if (HYPERVISOR_set_trap_table(info)) 725 BUG(); 726 } 727 728 preempt_enable(); 729 } 730 731 static void xen_convert_trap_info(const struct desc_ptr *desc, 732 struct trap_info *traps) 733 { 734 unsigned in, out, count; 735 736 count = (desc->size+1) / sizeof(gate_desc); 737 BUG_ON(count > 256); 738 739 for (in = out = 0; in < count; in++) { 740 gate_desc *entry = (gate_desc*)(desc->address) + in; 741 742 if (cvt_gate_to_trap(in, entry, &traps[out])) 743 out++; 744 } 745 traps[out].address = 0; 746 } 747 748 void xen_copy_trap_info(struct trap_info *traps) 749 { 750 const struct desc_ptr *desc = &__get_cpu_var(idt_desc); 751 752 xen_convert_trap_info(desc, traps); 753 } 754 755 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 756 hold a spinlock to protect the static traps[] array (static because 757 it avoids allocation, and saves stack space). */ 758 static void xen_load_idt(const struct desc_ptr *desc) 759 { 760 static DEFINE_SPINLOCK(lock); 761 static struct trap_info traps[257]; 762 763 trace_xen_cpu_load_idt(desc); 764 765 spin_lock(&lock); 766 767 __get_cpu_var(idt_desc) = *desc; 768 769 xen_convert_trap_info(desc, traps); 770 771 xen_mc_flush(); 772 if (HYPERVISOR_set_trap_table(traps)) 773 BUG(); 774 775 spin_unlock(&lock); 776 } 777 778 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 779 they're handled differently. */ 780 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 781 const void *desc, int type) 782 { 783 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 784 785 preempt_disable(); 786 787 switch (type) { 788 case DESC_LDT: 789 case DESC_TSS: 790 /* ignore */ 791 break; 792 793 default: { 794 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 795 796 xen_mc_flush(); 797 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 798 BUG(); 799 } 800 801 } 802 803 preempt_enable(); 804 } 805 806 /* 807 * Version of write_gdt_entry for use at early boot-time needed to 808 * update an entry as simply as possible. 809 */ 810 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 811 const void *desc, int type) 812 { 813 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 814 815 switch (type) { 816 case DESC_LDT: 817 case DESC_TSS: 818 /* ignore */ 819 break; 820 821 default: { 822 xmaddr_t maddr = virt_to_machine(&dt[entry]); 823 824 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 825 dt[entry] = *(struct desc_struct *)desc; 826 } 827 828 } 829 } 830 831 static void xen_load_sp0(struct tss_struct *tss, 832 struct thread_struct *thread) 833 { 834 struct multicall_space mcs; 835 836 mcs = xen_mc_entry(0); 837 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 838 xen_mc_issue(PARAVIRT_LAZY_CPU); 839 } 840 841 static void xen_set_iopl_mask(unsigned mask) 842 { 843 struct physdev_set_iopl set_iopl; 844 845 /* Force the change at ring 0. */ 846 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 847 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 848 } 849 850 static void xen_io_delay(void) 851 { 852 } 853 854 #ifdef CONFIG_X86_LOCAL_APIC 855 static unsigned long xen_set_apic_id(unsigned int x) 856 { 857 WARN_ON(1); 858 return x; 859 } 860 static unsigned int xen_get_apic_id(unsigned long x) 861 { 862 return ((x)>>24) & 0xFFu; 863 } 864 static u32 xen_apic_read(u32 reg) 865 { 866 struct xen_platform_op op = { 867 .cmd = XENPF_get_cpuinfo, 868 .interface_version = XENPF_INTERFACE_VERSION, 869 .u.pcpu_info.xen_cpuid = 0, 870 }; 871 int ret = 0; 872 873 /* Shouldn't need this as APIC is turned off for PV, and we only 874 * get called on the bootup processor. But just in case. */ 875 if (!xen_initial_domain() || smp_processor_id()) 876 return 0; 877 878 if (reg == APIC_LVR) 879 return 0x10; 880 881 if (reg != APIC_ID) 882 return 0; 883 884 ret = HYPERVISOR_dom0_op(&op); 885 if (ret) 886 return 0; 887 888 return op.u.pcpu_info.apic_id << 24; 889 } 890 891 static void xen_apic_write(u32 reg, u32 val) 892 { 893 /* Warn to see if there's any stray references */ 894 WARN_ON(1); 895 } 896 897 static u64 xen_apic_icr_read(void) 898 { 899 return 0; 900 } 901 902 static void xen_apic_icr_write(u32 low, u32 id) 903 { 904 /* Warn to see if there's any stray references */ 905 WARN_ON(1); 906 } 907 908 static void xen_apic_wait_icr_idle(void) 909 { 910 return; 911 } 912 913 static u32 xen_safe_apic_wait_icr_idle(void) 914 { 915 return 0; 916 } 917 918 static void set_xen_basic_apic_ops(void) 919 { 920 apic->read = xen_apic_read; 921 apic->write = xen_apic_write; 922 apic->icr_read = xen_apic_icr_read; 923 apic->icr_write = xen_apic_icr_write; 924 apic->wait_icr_idle = xen_apic_wait_icr_idle; 925 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; 926 apic->set_apic_id = xen_set_apic_id; 927 apic->get_apic_id = xen_get_apic_id; 928 929 #ifdef CONFIG_SMP 930 apic->send_IPI_allbutself = xen_send_IPI_allbutself; 931 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself; 932 apic->send_IPI_mask = xen_send_IPI_mask; 933 apic->send_IPI_all = xen_send_IPI_all; 934 apic->send_IPI_self = xen_send_IPI_self; 935 #endif 936 } 937 938 #endif 939 940 static void xen_clts(void) 941 { 942 struct multicall_space mcs; 943 944 mcs = xen_mc_entry(0); 945 946 MULTI_fpu_taskswitch(mcs.mc, 0); 947 948 xen_mc_issue(PARAVIRT_LAZY_CPU); 949 } 950 951 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 952 953 static unsigned long xen_read_cr0(void) 954 { 955 unsigned long cr0 = this_cpu_read(xen_cr0_value); 956 957 if (unlikely(cr0 == 0)) { 958 cr0 = native_read_cr0(); 959 this_cpu_write(xen_cr0_value, cr0); 960 } 961 962 return cr0; 963 } 964 965 static void xen_write_cr0(unsigned long cr0) 966 { 967 struct multicall_space mcs; 968 969 this_cpu_write(xen_cr0_value, cr0); 970 971 /* Only pay attention to cr0.TS; everything else is 972 ignored. */ 973 mcs = xen_mc_entry(0); 974 975 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 976 977 xen_mc_issue(PARAVIRT_LAZY_CPU); 978 } 979 980 static void xen_write_cr4(unsigned long cr4) 981 { 982 cr4 &= ~X86_CR4_PGE; 983 cr4 &= ~X86_CR4_PSE; 984 985 native_write_cr4(cr4); 986 } 987 988 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 989 { 990 int ret; 991 992 ret = 0; 993 994 switch (msr) { 995 #ifdef CONFIG_X86_64 996 unsigned which; 997 u64 base; 998 999 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 1000 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 1001 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 1002 1003 set: 1004 base = ((u64)high << 32) | low; 1005 if (HYPERVISOR_set_segment_base(which, base) != 0) 1006 ret = -EIO; 1007 break; 1008 #endif 1009 1010 case MSR_STAR: 1011 case MSR_CSTAR: 1012 case MSR_LSTAR: 1013 case MSR_SYSCALL_MASK: 1014 case MSR_IA32_SYSENTER_CS: 1015 case MSR_IA32_SYSENTER_ESP: 1016 case MSR_IA32_SYSENTER_EIP: 1017 /* Fast syscall setup is all done in hypercalls, so 1018 these are all ignored. Stub them out here to stop 1019 Xen console noise. */ 1020 break; 1021 1022 case MSR_IA32_CR_PAT: 1023 if (smp_processor_id() == 0) 1024 xen_set_pat(((u64)high << 32) | low); 1025 break; 1026 1027 default: 1028 ret = native_write_msr_safe(msr, low, high); 1029 } 1030 1031 return ret; 1032 } 1033 1034 void xen_setup_shared_info(void) 1035 { 1036 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1037 set_fixmap(FIX_PARAVIRT_BOOTMAP, 1038 xen_start_info->shared_info); 1039 1040 HYPERVISOR_shared_info = 1041 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 1042 } else 1043 HYPERVISOR_shared_info = 1044 (struct shared_info *)__va(xen_start_info->shared_info); 1045 1046 #ifndef CONFIG_SMP 1047 /* In UP this is as good a place as any to set up shared info */ 1048 xen_setup_vcpu_info_placement(); 1049 #endif 1050 1051 xen_setup_mfn_list_list(); 1052 } 1053 1054 /* This is called once we have the cpu_possible_mask */ 1055 void xen_setup_vcpu_info_placement(void) 1056 { 1057 int cpu; 1058 1059 for_each_possible_cpu(cpu) 1060 xen_vcpu_setup(cpu); 1061 1062 /* xen_vcpu_setup managed to place the vcpu_info within the 1063 percpu area for all cpus, so make use of it */ 1064 if (have_vcpu_info_placement) { 1065 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1066 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1067 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1068 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1069 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 1070 } 1071 } 1072 1073 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 1074 unsigned long addr, unsigned len) 1075 { 1076 char *start, *end, *reloc; 1077 unsigned ret; 1078 1079 start = end = reloc = NULL; 1080 1081 #define SITE(op, x) \ 1082 case PARAVIRT_PATCH(op.x): \ 1083 if (have_vcpu_info_placement) { \ 1084 start = (char *)xen_##x##_direct; \ 1085 end = xen_##x##_direct_end; \ 1086 reloc = xen_##x##_direct_reloc; \ 1087 } \ 1088 goto patch_site 1089 1090 switch (type) { 1091 SITE(pv_irq_ops, irq_enable); 1092 SITE(pv_irq_ops, irq_disable); 1093 SITE(pv_irq_ops, save_fl); 1094 SITE(pv_irq_ops, restore_fl); 1095 #undef SITE 1096 1097 patch_site: 1098 if (start == NULL || (end-start) > len) 1099 goto default_patch; 1100 1101 ret = paravirt_patch_insns(insnbuf, len, start, end); 1102 1103 /* Note: because reloc is assigned from something that 1104 appears to be an array, gcc assumes it's non-null, 1105 but doesn't know its relationship with start and 1106 end. */ 1107 if (reloc > start && reloc < end) { 1108 int reloc_off = reloc - start; 1109 long *relocp = (long *)(insnbuf + reloc_off); 1110 long delta = start - (char *)addr; 1111 1112 *relocp += delta; 1113 } 1114 break; 1115 1116 default_patch: 1117 default: 1118 ret = paravirt_patch_default(type, clobbers, insnbuf, 1119 addr, len); 1120 break; 1121 } 1122 1123 return ret; 1124 } 1125 1126 static const struct pv_info xen_info __initconst = { 1127 .paravirt_enabled = 1, 1128 .shared_kernel_pmd = 0, 1129 1130 #ifdef CONFIG_X86_64 1131 .extra_user_64bit_cs = FLAT_USER_CS64, 1132 #endif 1133 1134 .name = "Xen", 1135 }; 1136 1137 static const struct pv_init_ops xen_init_ops __initconst = { 1138 .patch = xen_patch, 1139 }; 1140 1141 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1142 .cpuid = xen_cpuid, 1143 1144 .set_debugreg = xen_set_debugreg, 1145 .get_debugreg = xen_get_debugreg, 1146 1147 .clts = xen_clts, 1148 1149 .read_cr0 = xen_read_cr0, 1150 .write_cr0 = xen_write_cr0, 1151 1152 .read_cr4 = native_read_cr4, 1153 .read_cr4_safe = native_read_cr4_safe, 1154 .write_cr4 = xen_write_cr4, 1155 1156 .wbinvd = native_wbinvd, 1157 1158 .read_msr = native_read_msr_safe, 1159 .write_msr = xen_write_msr_safe, 1160 1161 .read_tsc = native_read_tsc, 1162 .read_pmc = native_read_pmc, 1163 1164 .iret = xen_iret, 1165 .irq_enable_sysexit = xen_sysexit, 1166 #ifdef CONFIG_X86_64 1167 .usergs_sysret32 = xen_sysret32, 1168 .usergs_sysret64 = xen_sysret64, 1169 #endif 1170 1171 .load_tr_desc = paravirt_nop, 1172 .set_ldt = xen_set_ldt, 1173 .load_gdt = xen_load_gdt, 1174 .load_idt = xen_load_idt, 1175 .load_tls = xen_load_tls, 1176 #ifdef CONFIG_X86_64 1177 .load_gs_index = xen_load_gs_index, 1178 #endif 1179 1180 .alloc_ldt = xen_alloc_ldt, 1181 .free_ldt = xen_free_ldt, 1182 1183 .store_gdt = native_store_gdt, 1184 .store_idt = native_store_idt, 1185 .store_tr = xen_store_tr, 1186 1187 .write_ldt_entry = xen_write_ldt_entry, 1188 .write_gdt_entry = xen_write_gdt_entry, 1189 .write_idt_entry = xen_write_idt_entry, 1190 .load_sp0 = xen_load_sp0, 1191 1192 .set_iopl_mask = xen_set_iopl_mask, 1193 .io_delay = xen_io_delay, 1194 1195 /* Xen takes care of %gs when switching to usermode for us */ 1196 .swapgs = paravirt_nop, 1197 1198 .start_context_switch = paravirt_start_context_switch, 1199 .end_context_switch = xen_end_context_switch, 1200 }; 1201 1202 static const struct pv_apic_ops xen_apic_ops __initconst = { 1203 #ifdef CONFIG_X86_LOCAL_APIC 1204 .startup_ipi_hook = paravirt_nop, 1205 #endif 1206 }; 1207 1208 static void xen_reboot(int reason) 1209 { 1210 struct sched_shutdown r = { .reason = reason }; 1211 1212 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1213 BUG(); 1214 } 1215 1216 static void xen_restart(char *msg) 1217 { 1218 xen_reboot(SHUTDOWN_reboot); 1219 } 1220 1221 static void xen_emergency_restart(void) 1222 { 1223 xen_reboot(SHUTDOWN_reboot); 1224 } 1225 1226 static void xen_machine_halt(void) 1227 { 1228 xen_reboot(SHUTDOWN_poweroff); 1229 } 1230 1231 static void xen_machine_power_off(void) 1232 { 1233 if (pm_power_off) 1234 pm_power_off(); 1235 xen_reboot(SHUTDOWN_poweroff); 1236 } 1237 1238 static void xen_crash_shutdown(struct pt_regs *regs) 1239 { 1240 xen_reboot(SHUTDOWN_crash); 1241 } 1242 1243 static int 1244 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1245 { 1246 xen_reboot(SHUTDOWN_crash); 1247 return NOTIFY_DONE; 1248 } 1249 1250 static struct notifier_block xen_panic_block = { 1251 .notifier_call= xen_panic_event, 1252 }; 1253 1254 int xen_panic_handler_init(void) 1255 { 1256 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1257 return 0; 1258 } 1259 1260 static const struct machine_ops xen_machine_ops __initconst = { 1261 .restart = xen_restart, 1262 .halt = xen_machine_halt, 1263 .power_off = xen_machine_power_off, 1264 .shutdown = xen_machine_halt, 1265 .crash_shutdown = xen_crash_shutdown, 1266 .emergency_restart = xen_emergency_restart, 1267 }; 1268 1269 /* 1270 * Set up the GDT and segment registers for -fstack-protector. Until 1271 * we do this, we have to be careful not to call any stack-protected 1272 * function, which is most of the kernel. 1273 */ 1274 static void __init xen_setup_stackprotector(void) 1275 { 1276 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1277 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1278 1279 setup_stack_canary_segment(0); 1280 switch_to_new_gdt(0); 1281 1282 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1283 pv_cpu_ops.load_gdt = xen_load_gdt; 1284 } 1285 1286 /* First C function to be called on Xen boot */ 1287 asmlinkage void __init xen_start_kernel(void) 1288 { 1289 struct physdev_set_iopl set_iopl; 1290 int rc; 1291 pgd_t *pgd; 1292 1293 if (!xen_start_info) 1294 return; 1295 1296 xen_domain_type = XEN_PV_DOMAIN; 1297 1298 xen_setup_machphys_mapping(); 1299 1300 /* Install Xen paravirt ops */ 1301 pv_info = xen_info; 1302 pv_init_ops = xen_init_ops; 1303 pv_cpu_ops = xen_cpu_ops; 1304 pv_apic_ops = xen_apic_ops; 1305 1306 x86_init.resources.memory_setup = xen_memory_setup; 1307 x86_init.oem.arch_setup = xen_arch_setup; 1308 x86_init.oem.banner = xen_banner; 1309 1310 xen_init_time_ops(); 1311 1312 /* 1313 * Set up some pagetable state before starting to set any ptes. 1314 */ 1315 1316 xen_init_mmu_ops(); 1317 1318 /* Prevent unwanted bits from being set in PTEs. */ 1319 __supported_pte_mask &= ~_PAGE_GLOBAL; 1320 #if 0 1321 if (!xen_initial_domain()) 1322 #endif 1323 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1324 1325 __supported_pte_mask |= _PAGE_IOMAP; 1326 1327 /* 1328 * Prevent page tables from being allocated in highmem, even 1329 * if CONFIG_HIGHPTE is enabled. 1330 */ 1331 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1332 1333 /* Work out if we support NX */ 1334 x86_configure_nx(); 1335 1336 xen_setup_features(); 1337 1338 /* Get mfn list */ 1339 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1340 xen_build_dynamic_phys_to_machine(); 1341 1342 /* 1343 * Set up kernel GDT and segment registers, mainly so that 1344 * -fstack-protector code can be executed. 1345 */ 1346 xen_setup_stackprotector(); 1347 1348 xen_init_irq_ops(); 1349 xen_init_cpuid_mask(); 1350 1351 #ifdef CONFIG_X86_LOCAL_APIC 1352 /* 1353 * set up the basic apic ops. 1354 */ 1355 set_xen_basic_apic_ops(); 1356 #endif 1357 1358 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1359 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1360 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1361 } 1362 1363 machine_ops = xen_machine_ops; 1364 1365 /* 1366 * The only reliable way to retain the initial address of the 1367 * percpu gdt_page is to remember it here, so we can go and 1368 * mark it RW later, when the initial percpu area is freed. 1369 */ 1370 xen_initial_gdt = &per_cpu(gdt_page, 0); 1371 1372 xen_smp_init(); 1373 1374 #ifdef CONFIG_ACPI_NUMA 1375 /* 1376 * The pages we from Xen are not related to machine pages, so 1377 * any NUMA information the kernel tries to get from ACPI will 1378 * be meaningless. Prevent it from trying. 1379 */ 1380 acpi_numa = -1; 1381 #endif 1382 1383 pgd = (pgd_t *)xen_start_info->pt_base; 1384 1385 /* Don't do the full vcpu_info placement stuff until we have a 1386 possible map and a non-dummy shared_info. */ 1387 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1388 1389 local_irq_disable(); 1390 early_boot_irqs_disabled = true; 1391 1392 xen_raw_console_write("mapping kernel into physical memory\n"); 1393 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages); 1394 1395 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1396 xen_build_mfn_list_list(); 1397 1398 /* keep using Xen gdt for now; no urgent need to change it */ 1399 1400 #ifdef CONFIG_X86_32 1401 pv_info.kernel_rpl = 1; 1402 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1403 pv_info.kernel_rpl = 0; 1404 #else 1405 pv_info.kernel_rpl = 0; 1406 #endif 1407 /* set the limit of our address space */ 1408 xen_reserve_top(); 1409 1410 /* We used to do this in xen_arch_setup, but that is too late on AMD 1411 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init 1412 * which pokes 0xcf8 port. 1413 */ 1414 set_iopl.iopl = 1; 1415 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1416 if (rc != 0) 1417 xen_raw_printk("physdev_op failed %d\n", rc); 1418 1419 #ifdef CONFIG_X86_32 1420 /* set up basic CPUID stuff */ 1421 cpu_detect(&new_cpu_data); 1422 new_cpu_data.hard_math = 1; 1423 new_cpu_data.wp_works_ok = 1; 1424 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1425 #endif 1426 1427 /* Poke various useful things into boot_params */ 1428 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1429 boot_params.hdr.ramdisk_image = xen_start_info->mod_start 1430 ? __pa(xen_start_info->mod_start) : 0; 1431 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1432 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1433 1434 if (!xen_initial_domain()) { 1435 add_preferred_console("xenboot", 0, NULL); 1436 add_preferred_console("tty", 0, NULL); 1437 add_preferred_console("hvc", 0, NULL); 1438 if (pci_xen) 1439 x86_init.pci.arch_init = pci_xen_init; 1440 } else { 1441 const struct dom0_vga_console_info *info = 1442 (void *)((char *)xen_start_info + 1443 xen_start_info->console.dom0.info_off); 1444 1445 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1446 xen_start_info->console.domU.mfn = 0; 1447 xen_start_info->console.domU.evtchn = 0; 1448 1449 xen_init_apic(); 1450 1451 /* Make sure ACS will be enabled */ 1452 pci_request_acs(); 1453 1454 xen_acpi_sleep_register(); 1455 } 1456 #ifdef CONFIG_PCI 1457 /* PCI BIOS service won't work from a PV guest. */ 1458 pci_probe &= ~PCI_PROBE_BIOS; 1459 #endif 1460 xen_raw_console_write("about to get started...\n"); 1461 1462 xen_setup_runstate_info(0); 1463 1464 /* Start the world */ 1465 #ifdef CONFIG_X86_32 1466 i386_start_kernel(); 1467 #else 1468 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1469 #endif 1470 } 1471 1472 void __ref xen_hvm_init_shared_info(void) 1473 { 1474 int cpu; 1475 struct xen_add_to_physmap xatp; 1476 static struct shared_info *shared_info_page = 0; 1477 1478 if (!shared_info_page) 1479 shared_info_page = (struct shared_info *) 1480 extend_brk(PAGE_SIZE, PAGE_SIZE); 1481 xatp.domid = DOMID_SELF; 1482 xatp.idx = 0; 1483 xatp.space = XENMAPSPACE_shared_info; 1484 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1485 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1486 BUG(); 1487 1488 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1489 1490 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1491 * page, we use it in the event channel upcall and in some pvclock 1492 * related functions. We don't need the vcpu_info placement 1493 * optimizations because we don't use any pv_mmu or pv_irq op on 1494 * HVM. 1495 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1496 * online but xen_hvm_init_shared_info is run at resume time too and 1497 * in that case multiple vcpus might be online. */ 1498 for_each_online_cpu(cpu) { 1499 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1500 } 1501 } 1502 1503 #ifdef CONFIG_XEN_PVHVM 1504 static void __init init_hvm_pv_info(void) 1505 { 1506 int major, minor; 1507 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1508 u64 pfn; 1509 1510 base = xen_cpuid_base(); 1511 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1512 1513 major = eax >> 16; 1514 minor = eax & 0xffff; 1515 printk(KERN_INFO "Xen version %d.%d.\n", major, minor); 1516 1517 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1518 1519 pfn = __pa(hypercall_page); 1520 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1521 1522 xen_setup_features(); 1523 1524 pv_info.name = "Xen HVM"; 1525 1526 xen_domain_type = XEN_HVM_DOMAIN; 1527 } 1528 1529 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self, 1530 unsigned long action, void *hcpu) 1531 { 1532 int cpu = (long)hcpu; 1533 switch (action) { 1534 case CPU_UP_PREPARE: 1535 xen_vcpu_setup(cpu); 1536 if (xen_have_vector_callback) 1537 xen_init_lock_cpu(cpu); 1538 break; 1539 default: 1540 break; 1541 } 1542 return NOTIFY_OK; 1543 } 1544 1545 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = { 1546 .notifier_call = xen_hvm_cpu_notify, 1547 }; 1548 1549 static void __init xen_hvm_guest_init(void) 1550 { 1551 init_hvm_pv_info(); 1552 1553 xen_hvm_init_shared_info(); 1554 1555 if (xen_feature(XENFEAT_hvm_callback_vector)) 1556 xen_have_vector_callback = 1; 1557 xen_hvm_smp_init(); 1558 register_cpu_notifier(&xen_hvm_cpu_notifier); 1559 xen_unplug_emulated_devices(); 1560 x86_init.irqs.intr_init = xen_init_IRQ; 1561 xen_hvm_init_time_ops(); 1562 xen_hvm_init_mmu_ops(); 1563 } 1564 1565 static bool __init xen_hvm_platform(void) 1566 { 1567 if (xen_pv_domain()) 1568 return false; 1569 1570 if (!xen_cpuid_base()) 1571 return false; 1572 1573 return true; 1574 } 1575 1576 bool xen_hvm_need_lapic(void) 1577 { 1578 if (xen_pv_domain()) 1579 return false; 1580 if (!xen_hvm_domain()) 1581 return false; 1582 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) 1583 return false; 1584 return true; 1585 } 1586 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1587 1588 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = { 1589 .name = "Xen HVM", 1590 .detect = xen_hvm_platform, 1591 .init_platform = xen_hvm_guest_init, 1592 }; 1593 EXPORT_SYMBOL(x86_hyper_xen_hvm); 1594 #endif 1595