xref: /linux/arch/x86/xen/enlighten.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/interface/xen-mca.h>
42 #include <xen/features.h>
43 #include <xen/page.h>
44 #include <xen/hvm.h>
45 #include <xen/hvc-console.h>
46 #include <xen/acpi.h>
47 
48 #include <asm/paravirt.h>
49 #include <asm/apic.h>
50 #include <asm/page.h>
51 #include <asm/xen/pci.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/fixmap.h>
55 #include <asm/processor.h>
56 #include <asm/proto.h>
57 #include <asm/msr-index.h>
58 #include <asm/traps.h>
59 #include <asm/setup.h>
60 #include <asm/desc.h>
61 #include <asm/pgalloc.h>
62 #include <asm/pgtable.h>
63 #include <asm/tlbflush.h>
64 #include <asm/reboot.h>
65 #include <asm/stackprotector.h>
66 #include <asm/hypervisor.h>
67 #include <asm/mwait.h>
68 #include <asm/pci_x86.h>
69 
70 #ifdef CONFIG_ACPI
71 #include <linux/acpi.h>
72 #include <asm/acpi.h>
73 #include <acpi/pdc_intel.h>
74 #include <acpi/processor.h>
75 #include <xen/interface/platform.h>
76 #endif
77 
78 #include "xen-ops.h"
79 #include "mmu.h"
80 #include "smp.h"
81 #include "multicalls.h"
82 
83 EXPORT_SYMBOL_GPL(hypercall_page);
84 
85 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
86 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
87 
88 enum xen_domain_type xen_domain_type = XEN_NATIVE;
89 EXPORT_SYMBOL_GPL(xen_domain_type);
90 
91 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
92 EXPORT_SYMBOL(machine_to_phys_mapping);
93 unsigned long  machine_to_phys_nr;
94 EXPORT_SYMBOL(machine_to_phys_nr);
95 
96 struct start_info *xen_start_info;
97 EXPORT_SYMBOL_GPL(xen_start_info);
98 
99 struct shared_info xen_dummy_shared_info;
100 
101 void *xen_initial_gdt;
102 
103 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
104 __read_mostly int xen_have_vector_callback;
105 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
106 
107 /*
108  * Point at some empty memory to start with. We map the real shared_info
109  * page as soon as fixmap is up and running.
110  */
111 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
112 
113 /*
114  * Flag to determine whether vcpu info placement is available on all
115  * VCPUs.  We assume it is to start with, and then set it to zero on
116  * the first failure.  This is because it can succeed on some VCPUs
117  * and not others, since it can involve hypervisor memory allocation,
118  * or because the guest failed to guarantee all the appropriate
119  * constraints on all VCPUs (ie buffer can't cross a page boundary).
120  *
121  * Note that any particular CPU may be using a placed vcpu structure,
122  * but we can only optimise if the all are.
123  *
124  * 0: not available, 1: available
125  */
126 static int have_vcpu_info_placement = 1;
127 
128 struct tls_descs {
129 	struct desc_struct desc[3];
130 };
131 
132 /*
133  * Updating the 3 TLS descriptors in the GDT on every task switch is
134  * surprisingly expensive so we avoid updating them if they haven't
135  * changed.  Since Xen writes different descriptors than the one
136  * passed in the update_descriptor hypercall we keep shadow copies to
137  * compare against.
138  */
139 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
140 
141 static void clamp_max_cpus(void)
142 {
143 #ifdef CONFIG_SMP
144 	if (setup_max_cpus > MAX_VIRT_CPUS)
145 		setup_max_cpus = MAX_VIRT_CPUS;
146 #endif
147 }
148 
149 static void xen_vcpu_setup(int cpu)
150 {
151 	struct vcpu_register_vcpu_info info;
152 	int err;
153 	struct vcpu_info *vcpup;
154 
155 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
156 
157 	if (cpu < MAX_VIRT_CPUS)
158 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
159 
160 	if (!have_vcpu_info_placement) {
161 		if (cpu >= MAX_VIRT_CPUS)
162 			clamp_max_cpus();
163 		return;
164 	}
165 
166 	vcpup = &per_cpu(xen_vcpu_info, cpu);
167 	info.mfn = arbitrary_virt_to_mfn(vcpup);
168 	info.offset = offset_in_page(vcpup);
169 
170 	/* Check to see if the hypervisor will put the vcpu_info
171 	   structure where we want it, which allows direct access via
172 	   a percpu-variable. */
173 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
174 
175 	if (err) {
176 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
177 		have_vcpu_info_placement = 0;
178 		clamp_max_cpus();
179 	} else {
180 		/* This cpu is using the registered vcpu info, even if
181 		   later ones fail to. */
182 		per_cpu(xen_vcpu, cpu) = vcpup;
183 	}
184 }
185 
186 /*
187  * On restore, set the vcpu placement up again.
188  * If it fails, then we're in a bad state, since
189  * we can't back out from using it...
190  */
191 void xen_vcpu_restore(void)
192 {
193 	int cpu;
194 
195 	for_each_online_cpu(cpu) {
196 		bool other_cpu = (cpu != smp_processor_id());
197 
198 		if (other_cpu &&
199 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
200 			BUG();
201 
202 		xen_setup_runstate_info(cpu);
203 
204 		if (have_vcpu_info_placement)
205 			xen_vcpu_setup(cpu);
206 
207 		if (other_cpu &&
208 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
209 			BUG();
210 	}
211 }
212 
213 static void __init xen_banner(void)
214 {
215 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
216 	struct xen_extraversion extra;
217 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
218 
219 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
220 	       pv_info.name);
221 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
222 	       version >> 16, version & 0xffff, extra.extraversion,
223 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
224 }
225 
226 #define CPUID_THERM_POWER_LEAF 6
227 #define APERFMPERF_PRESENT 0
228 
229 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
230 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
231 
232 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
233 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
234 static __read_mostly unsigned int cpuid_leaf5_edx_val;
235 
236 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
237 		      unsigned int *cx, unsigned int *dx)
238 {
239 	unsigned maskebx = ~0;
240 	unsigned maskecx = ~0;
241 	unsigned maskedx = ~0;
242 	unsigned setecx = 0;
243 	/*
244 	 * Mask out inconvenient features, to try and disable as many
245 	 * unsupported kernel subsystems as possible.
246 	 */
247 	switch (*ax) {
248 	case 1:
249 		maskecx = cpuid_leaf1_ecx_mask;
250 		setecx = cpuid_leaf1_ecx_set_mask;
251 		maskedx = cpuid_leaf1_edx_mask;
252 		break;
253 
254 	case CPUID_MWAIT_LEAF:
255 		/* Synthesize the values.. */
256 		*ax = 0;
257 		*bx = 0;
258 		*cx = cpuid_leaf5_ecx_val;
259 		*dx = cpuid_leaf5_edx_val;
260 		return;
261 
262 	case CPUID_THERM_POWER_LEAF:
263 		/* Disabling APERFMPERF for kernel usage */
264 		maskecx = ~(1 << APERFMPERF_PRESENT);
265 		break;
266 
267 	case 0xb:
268 		/* Suppress extended topology stuff */
269 		maskebx = 0;
270 		break;
271 	}
272 
273 	asm(XEN_EMULATE_PREFIX "cpuid"
274 		: "=a" (*ax),
275 		  "=b" (*bx),
276 		  "=c" (*cx),
277 		  "=d" (*dx)
278 		: "0" (*ax), "2" (*cx));
279 
280 	*bx &= maskebx;
281 	*cx &= maskecx;
282 	*cx |= setecx;
283 	*dx &= maskedx;
284 
285 }
286 
287 static bool __init xen_check_mwait(void)
288 {
289 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
290 	!defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
291 	struct xen_platform_op op = {
292 		.cmd			= XENPF_set_processor_pminfo,
293 		.u.set_pminfo.id	= -1,
294 		.u.set_pminfo.type	= XEN_PM_PDC,
295 	};
296 	uint32_t buf[3];
297 	unsigned int ax, bx, cx, dx;
298 	unsigned int mwait_mask;
299 
300 	/* We need to determine whether it is OK to expose the MWAIT
301 	 * capability to the kernel to harvest deeper than C3 states from ACPI
302 	 * _CST using the processor_harvest_xen.c module. For this to work, we
303 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
304 	 * checks against). The hypervisor won't expose the MWAIT flag because
305 	 * it would break backwards compatibility; so we will find out directly
306 	 * from the hardware and hypercall.
307 	 */
308 	if (!xen_initial_domain())
309 		return false;
310 
311 	ax = 1;
312 	cx = 0;
313 
314 	native_cpuid(&ax, &bx, &cx, &dx);
315 
316 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
317 		     (1 << (X86_FEATURE_MWAIT % 32));
318 
319 	if ((cx & mwait_mask) != mwait_mask)
320 		return false;
321 
322 	/* We need to emulate the MWAIT_LEAF and for that we need both
323 	 * ecx and edx. The hypercall provides only partial information.
324 	 */
325 
326 	ax = CPUID_MWAIT_LEAF;
327 	bx = 0;
328 	cx = 0;
329 	dx = 0;
330 
331 	native_cpuid(&ax, &bx, &cx, &dx);
332 
333 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
334 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
335 	 */
336 	buf[0] = ACPI_PDC_REVISION_ID;
337 	buf[1] = 1;
338 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
339 
340 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
341 
342 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
343 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
344 		cpuid_leaf5_ecx_val = cx;
345 		cpuid_leaf5_edx_val = dx;
346 	}
347 	return true;
348 #else
349 	return false;
350 #endif
351 }
352 static void __init xen_init_cpuid_mask(void)
353 {
354 	unsigned int ax, bx, cx, dx;
355 	unsigned int xsave_mask;
356 
357 	cpuid_leaf1_edx_mask =
358 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
359 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
360 
361 	if (!xen_initial_domain())
362 		cpuid_leaf1_edx_mask &=
363 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
364 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
365 	ax = 1;
366 	cx = 0;
367 	xen_cpuid(&ax, &bx, &cx, &dx);
368 
369 	xsave_mask =
370 		(1 << (X86_FEATURE_XSAVE % 32)) |
371 		(1 << (X86_FEATURE_OSXSAVE % 32));
372 
373 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
374 	if ((cx & xsave_mask) != xsave_mask)
375 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
376 	if (xen_check_mwait())
377 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
378 }
379 
380 static void xen_set_debugreg(int reg, unsigned long val)
381 {
382 	HYPERVISOR_set_debugreg(reg, val);
383 }
384 
385 static unsigned long xen_get_debugreg(int reg)
386 {
387 	return HYPERVISOR_get_debugreg(reg);
388 }
389 
390 static void xen_end_context_switch(struct task_struct *next)
391 {
392 	xen_mc_flush();
393 	paravirt_end_context_switch(next);
394 }
395 
396 static unsigned long xen_store_tr(void)
397 {
398 	return 0;
399 }
400 
401 /*
402  * Set the page permissions for a particular virtual address.  If the
403  * address is a vmalloc mapping (or other non-linear mapping), then
404  * find the linear mapping of the page and also set its protections to
405  * match.
406  */
407 static void set_aliased_prot(void *v, pgprot_t prot)
408 {
409 	int level;
410 	pte_t *ptep;
411 	pte_t pte;
412 	unsigned long pfn;
413 	struct page *page;
414 
415 	ptep = lookup_address((unsigned long)v, &level);
416 	BUG_ON(ptep == NULL);
417 
418 	pfn = pte_pfn(*ptep);
419 	page = pfn_to_page(pfn);
420 
421 	pte = pfn_pte(pfn, prot);
422 
423 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
424 		BUG();
425 
426 	if (!PageHighMem(page)) {
427 		void *av = __va(PFN_PHYS(pfn));
428 
429 		if (av != v)
430 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
431 				BUG();
432 	} else
433 		kmap_flush_unused();
434 }
435 
436 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
437 {
438 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
439 	int i;
440 
441 	for(i = 0; i < entries; i += entries_per_page)
442 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
443 }
444 
445 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
446 {
447 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
448 	int i;
449 
450 	for(i = 0; i < entries; i += entries_per_page)
451 		set_aliased_prot(ldt + i, PAGE_KERNEL);
452 }
453 
454 static void xen_set_ldt(const void *addr, unsigned entries)
455 {
456 	struct mmuext_op *op;
457 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
458 
459 	trace_xen_cpu_set_ldt(addr, entries);
460 
461 	op = mcs.args;
462 	op->cmd = MMUEXT_SET_LDT;
463 	op->arg1.linear_addr = (unsigned long)addr;
464 	op->arg2.nr_ents = entries;
465 
466 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
467 
468 	xen_mc_issue(PARAVIRT_LAZY_CPU);
469 }
470 
471 static void xen_load_gdt(const struct desc_ptr *dtr)
472 {
473 	unsigned long va = dtr->address;
474 	unsigned int size = dtr->size + 1;
475 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
476 	unsigned long frames[pages];
477 	int f;
478 
479 	/*
480 	 * A GDT can be up to 64k in size, which corresponds to 8192
481 	 * 8-byte entries, or 16 4k pages..
482 	 */
483 
484 	BUG_ON(size > 65536);
485 	BUG_ON(va & ~PAGE_MASK);
486 
487 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
488 		int level;
489 		pte_t *ptep;
490 		unsigned long pfn, mfn;
491 		void *virt;
492 
493 		/*
494 		 * The GDT is per-cpu and is in the percpu data area.
495 		 * That can be virtually mapped, so we need to do a
496 		 * page-walk to get the underlying MFN for the
497 		 * hypercall.  The page can also be in the kernel's
498 		 * linear range, so we need to RO that mapping too.
499 		 */
500 		ptep = lookup_address(va, &level);
501 		BUG_ON(ptep == NULL);
502 
503 		pfn = pte_pfn(*ptep);
504 		mfn = pfn_to_mfn(pfn);
505 		virt = __va(PFN_PHYS(pfn));
506 
507 		frames[f] = mfn;
508 
509 		make_lowmem_page_readonly((void *)va);
510 		make_lowmem_page_readonly(virt);
511 	}
512 
513 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
514 		BUG();
515 }
516 
517 /*
518  * load_gdt for early boot, when the gdt is only mapped once
519  */
520 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
521 {
522 	unsigned long va = dtr->address;
523 	unsigned int size = dtr->size + 1;
524 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
525 	unsigned long frames[pages];
526 	int f;
527 
528 	/*
529 	 * A GDT can be up to 64k in size, which corresponds to 8192
530 	 * 8-byte entries, or 16 4k pages..
531 	 */
532 
533 	BUG_ON(size > 65536);
534 	BUG_ON(va & ~PAGE_MASK);
535 
536 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
537 		pte_t pte;
538 		unsigned long pfn, mfn;
539 
540 		pfn = virt_to_pfn(va);
541 		mfn = pfn_to_mfn(pfn);
542 
543 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
544 
545 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
546 			BUG();
547 
548 		frames[f] = mfn;
549 	}
550 
551 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
552 		BUG();
553 }
554 
555 static inline bool desc_equal(const struct desc_struct *d1,
556 			      const struct desc_struct *d2)
557 {
558 	return d1->a == d2->a && d1->b == d2->b;
559 }
560 
561 static void load_TLS_descriptor(struct thread_struct *t,
562 				unsigned int cpu, unsigned int i)
563 {
564 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
565 	struct desc_struct *gdt;
566 	xmaddr_t maddr;
567 	struct multicall_space mc;
568 
569 	if (desc_equal(shadow, &t->tls_array[i]))
570 		return;
571 
572 	*shadow = t->tls_array[i];
573 
574 	gdt = get_cpu_gdt_table(cpu);
575 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
576 	mc = __xen_mc_entry(0);
577 
578 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
579 }
580 
581 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
582 {
583 	/*
584 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
585 	 * and lazy gs handling is enabled, it means we're in a
586 	 * context switch, and %gs has just been saved.  This means we
587 	 * can zero it out to prevent faults on exit from the
588 	 * hypervisor if the next process has no %gs.  Either way, it
589 	 * has been saved, and the new value will get loaded properly.
590 	 * This will go away as soon as Xen has been modified to not
591 	 * save/restore %gs for normal hypercalls.
592 	 *
593 	 * On x86_64, this hack is not used for %gs, because gs points
594 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
595 	 * must not zero %gs on x86_64
596 	 *
597 	 * For x86_64, we need to zero %fs, otherwise we may get an
598 	 * exception between the new %fs descriptor being loaded and
599 	 * %fs being effectively cleared at __switch_to().
600 	 */
601 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
602 #ifdef CONFIG_X86_32
603 		lazy_load_gs(0);
604 #else
605 		loadsegment(fs, 0);
606 #endif
607 	}
608 
609 	xen_mc_batch();
610 
611 	load_TLS_descriptor(t, cpu, 0);
612 	load_TLS_descriptor(t, cpu, 1);
613 	load_TLS_descriptor(t, cpu, 2);
614 
615 	xen_mc_issue(PARAVIRT_LAZY_CPU);
616 }
617 
618 #ifdef CONFIG_X86_64
619 static void xen_load_gs_index(unsigned int idx)
620 {
621 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
622 		BUG();
623 }
624 #endif
625 
626 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
627 				const void *ptr)
628 {
629 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
630 	u64 entry = *(u64 *)ptr;
631 
632 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
633 
634 	preempt_disable();
635 
636 	xen_mc_flush();
637 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
638 		BUG();
639 
640 	preempt_enable();
641 }
642 
643 static int cvt_gate_to_trap(int vector, const gate_desc *val,
644 			    struct trap_info *info)
645 {
646 	unsigned long addr;
647 
648 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
649 		return 0;
650 
651 	info->vector = vector;
652 
653 	addr = gate_offset(*val);
654 #ifdef CONFIG_X86_64
655 	/*
656 	 * Look for known traps using IST, and substitute them
657 	 * appropriately.  The debugger ones are the only ones we care
658 	 * about.  Xen will handle faults like double_fault,
659 	 * so we should never see them.  Warn if
660 	 * there's an unexpected IST-using fault handler.
661 	 */
662 	if (addr == (unsigned long)debug)
663 		addr = (unsigned long)xen_debug;
664 	else if (addr == (unsigned long)int3)
665 		addr = (unsigned long)xen_int3;
666 	else if (addr == (unsigned long)stack_segment)
667 		addr = (unsigned long)xen_stack_segment;
668 	else if (addr == (unsigned long)double_fault ||
669 		 addr == (unsigned long)nmi) {
670 		/* Don't need to handle these */
671 		return 0;
672 #ifdef CONFIG_X86_MCE
673 	} else if (addr == (unsigned long)machine_check) {
674 		/*
675 		 * when xen hypervisor inject vMCE to guest,
676 		 * use native mce handler to handle it
677 		 */
678 		;
679 #endif
680 	} else {
681 		/* Some other trap using IST? */
682 		if (WARN_ON(val->ist != 0))
683 			return 0;
684 	}
685 #endif	/* CONFIG_X86_64 */
686 	info->address = addr;
687 
688 	info->cs = gate_segment(*val);
689 	info->flags = val->dpl;
690 	/* interrupt gates clear IF */
691 	if (val->type == GATE_INTERRUPT)
692 		info->flags |= 1 << 2;
693 
694 	return 1;
695 }
696 
697 /* Locations of each CPU's IDT */
698 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
699 
700 /* Set an IDT entry.  If the entry is part of the current IDT, then
701    also update Xen. */
702 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
703 {
704 	unsigned long p = (unsigned long)&dt[entrynum];
705 	unsigned long start, end;
706 
707 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
708 
709 	preempt_disable();
710 
711 	start = __this_cpu_read(idt_desc.address);
712 	end = start + __this_cpu_read(idt_desc.size) + 1;
713 
714 	xen_mc_flush();
715 
716 	native_write_idt_entry(dt, entrynum, g);
717 
718 	if (p >= start && (p + 8) <= end) {
719 		struct trap_info info[2];
720 
721 		info[1].address = 0;
722 
723 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
724 			if (HYPERVISOR_set_trap_table(info))
725 				BUG();
726 	}
727 
728 	preempt_enable();
729 }
730 
731 static void xen_convert_trap_info(const struct desc_ptr *desc,
732 				  struct trap_info *traps)
733 {
734 	unsigned in, out, count;
735 
736 	count = (desc->size+1) / sizeof(gate_desc);
737 	BUG_ON(count > 256);
738 
739 	for (in = out = 0; in < count; in++) {
740 		gate_desc *entry = (gate_desc*)(desc->address) + in;
741 
742 		if (cvt_gate_to_trap(in, entry, &traps[out]))
743 			out++;
744 	}
745 	traps[out].address = 0;
746 }
747 
748 void xen_copy_trap_info(struct trap_info *traps)
749 {
750 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
751 
752 	xen_convert_trap_info(desc, traps);
753 }
754 
755 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
756    hold a spinlock to protect the static traps[] array (static because
757    it avoids allocation, and saves stack space). */
758 static void xen_load_idt(const struct desc_ptr *desc)
759 {
760 	static DEFINE_SPINLOCK(lock);
761 	static struct trap_info traps[257];
762 
763 	trace_xen_cpu_load_idt(desc);
764 
765 	spin_lock(&lock);
766 
767 	__get_cpu_var(idt_desc) = *desc;
768 
769 	xen_convert_trap_info(desc, traps);
770 
771 	xen_mc_flush();
772 	if (HYPERVISOR_set_trap_table(traps))
773 		BUG();
774 
775 	spin_unlock(&lock);
776 }
777 
778 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
779    they're handled differently. */
780 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
781 				const void *desc, int type)
782 {
783 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
784 
785 	preempt_disable();
786 
787 	switch (type) {
788 	case DESC_LDT:
789 	case DESC_TSS:
790 		/* ignore */
791 		break;
792 
793 	default: {
794 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
795 
796 		xen_mc_flush();
797 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
798 			BUG();
799 	}
800 
801 	}
802 
803 	preempt_enable();
804 }
805 
806 /*
807  * Version of write_gdt_entry for use at early boot-time needed to
808  * update an entry as simply as possible.
809  */
810 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
811 					    const void *desc, int type)
812 {
813 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
814 
815 	switch (type) {
816 	case DESC_LDT:
817 	case DESC_TSS:
818 		/* ignore */
819 		break;
820 
821 	default: {
822 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
823 
824 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
825 			dt[entry] = *(struct desc_struct *)desc;
826 	}
827 
828 	}
829 }
830 
831 static void xen_load_sp0(struct tss_struct *tss,
832 			 struct thread_struct *thread)
833 {
834 	struct multicall_space mcs;
835 
836 	mcs = xen_mc_entry(0);
837 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
838 	xen_mc_issue(PARAVIRT_LAZY_CPU);
839 }
840 
841 static void xen_set_iopl_mask(unsigned mask)
842 {
843 	struct physdev_set_iopl set_iopl;
844 
845 	/* Force the change at ring 0. */
846 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
847 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
848 }
849 
850 static void xen_io_delay(void)
851 {
852 }
853 
854 #ifdef CONFIG_X86_LOCAL_APIC
855 static unsigned long xen_set_apic_id(unsigned int x)
856 {
857 	WARN_ON(1);
858 	return x;
859 }
860 static unsigned int xen_get_apic_id(unsigned long x)
861 {
862 	return ((x)>>24) & 0xFFu;
863 }
864 static u32 xen_apic_read(u32 reg)
865 {
866 	struct xen_platform_op op = {
867 		.cmd = XENPF_get_cpuinfo,
868 		.interface_version = XENPF_INTERFACE_VERSION,
869 		.u.pcpu_info.xen_cpuid = 0,
870 	};
871 	int ret = 0;
872 
873 	/* Shouldn't need this as APIC is turned off for PV, and we only
874 	 * get called on the bootup processor. But just in case. */
875 	if (!xen_initial_domain() || smp_processor_id())
876 		return 0;
877 
878 	if (reg == APIC_LVR)
879 		return 0x10;
880 
881 	if (reg != APIC_ID)
882 		return 0;
883 
884 	ret = HYPERVISOR_dom0_op(&op);
885 	if (ret)
886 		return 0;
887 
888 	return op.u.pcpu_info.apic_id << 24;
889 }
890 
891 static void xen_apic_write(u32 reg, u32 val)
892 {
893 	/* Warn to see if there's any stray references */
894 	WARN_ON(1);
895 }
896 
897 static u64 xen_apic_icr_read(void)
898 {
899 	return 0;
900 }
901 
902 static void xen_apic_icr_write(u32 low, u32 id)
903 {
904 	/* Warn to see if there's any stray references */
905 	WARN_ON(1);
906 }
907 
908 static void xen_apic_wait_icr_idle(void)
909 {
910         return;
911 }
912 
913 static u32 xen_safe_apic_wait_icr_idle(void)
914 {
915         return 0;
916 }
917 
918 static void set_xen_basic_apic_ops(void)
919 {
920 	apic->read = xen_apic_read;
921 	apic->write = xen_apic_write;
922 	apic->icr_read = xen_apic_icr_read;
923 	apic->icr_write = xen_apic_icr_write;
924 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
925 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
926 	apic->set_apic_id = xen_set_apic_id;
927 	apic->get_apic_id = xen_get_apic_id;
928 
929 #ifdef CONFIG_SMP
930 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
931 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
932 	apic->send_IPI_mask = xen_send_IPI_mask;
933 	apic->send_IPI_all = xen_send_IPI_all;
934 	apic->send_IPI_self = xen_send_IPI_self;
935 #endif
936 }
937 
938 #endif
939 
940 static void xen_clts(void)
941 {
942 	struct multicall_space mcs;
943 
944 	mcs = xen_mc_entry(0);
945 
946 	MULTI_fpu_taskswitch(mcs.mc, 0);
947 
948 	xen_mc_issue(PARAVIRT_LAZY_CPU);
949 }
950 
951 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
952 
953 static unsigned long xen_read_cr0(void)
954 {
955 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
956 
957 	if (unlikely(cr0 == 0)) {
958 		cr0 = native_read_cr0();
959 		this_cpu_write(xen_cr0_value, cr0);
960 	}
961 
962 	return cr0;
963 }
964 
965 static void xen_write_cr0(unsigned long cr0)
966 {
967 	struct multicall_space mcs;
968 
969 	this_cpu_write(xen_cr0_value, cr0);
970 
971 	/* Only pay attention to cr0.TS; everything else is
972 	   ignored. */
973 	mcs = xen_mc_entry(0);
974 
975 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
976 
977 	xen_mc_issue(PARAVIRT_LAZY_CPU);
978 }
979 
980 static void xen_write_cr4(unsigned long cr4)
981 {
982 	cr4 &= ~X86_CR4_PGE;
983 	cr4 &= ~X86_CR4_PSE;
984 
985 	native_write_cr4(cr4);
986 }
987 
988 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
989 {
990 	int ret;
991 
992 	ret = 0;
993 
994 	switch (msr) {
995 #ifdef CONFIG_X86_64
996 		unsigned which;
997 		u64 base;
998 
999 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1000 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1001 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1002 
1003 	set:
1004 		base = ((u64)high << 32) | low;
1005 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1006 			ret = -EIO;
1007 		break;
1008 #endif
1009 
1010 	case MSR_STAR:
1011 	case MSR_CSTAR:
1012 	case MSR_LSTAR:
1013 	case MSR_SYSCALL_MASK:
1014 	case MSR_IA32_SYSENTER_CS:
1015 	case MSR_IA32_SYSENTER_ESP:
1016 	case MSR_IA32_SYSENTER_EIP:
1017 		/* Fast syscall setup is all done in hypercalls, so
1018 		   these are all ignored.  Stub them out here to stop
1019 		   Xen console noise. */
1020 		break;
1021 
1022 	case MSR_IA32_CR_PAT:
1023 		if (smp_processor_id() == 0)
1024 			xen_set_pat(((u64)high << 32) | low);
1025 		break;
1026 
1027 	default:
1028 		ret = native_write_msr_safe(msr, low, high);
1029 	}
1030 
1031 	return ret;
1032 }
1033 
1034 void xen_setup_shared_info(void)
1035 {
1036 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1037 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1038 			   xen_start_info->shared_info);
1039 
1040 		HYPERVISOR_shared_info =
1041 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1042 	} else
1043 		HYPERVISOR_shared_info =
1044 			(struct shared_info *)__va(xen_start_info->shared_info);
1045 
1046 #ifndef CONFIG_SMP
1047 	/* In UP this is as good a place as any to set up shared info */
1048 	xen_setup_vcpu_info_placement();
1049 #endif
1050 
1051 	xen_setup_mfn_list_list();
1052 }
1053 
1054 /* This is called once we have the cpu_possible_mask */
1055 void xen_setup_vcpu_info_placement(void)
1056 {
1057 	int cpu;
1058 
1059 	for_each_possible_cpu(cpu)
1060 		xen_vcpu_setup(cpu);
1061 
1062 	/* xen_vcpu_setup managed to place the vcpu_info within the
1063 	   percpu area for all cpus, so make use of it */
1064 	if (have_vcpu_info_placement) {
1065 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1066 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1067 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1068 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1069 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1070 	}
1071 }
1072 
1073 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1074 			  unsigned long addr, unsigned len)
1075 {
1076 	char *start, *end, *reloc;
1077 	unsigned ret;
1078 
1079 	start = end = reloc = NULL;
1080 
1081 #define SITE(op, x)							\
1082 	case PARAVIRT_PATCH(op.x):					\
1083 	if (have_vcpu_info_placement) {					\
1084 		start = (char *)xen_##x##_direct;			\
1085 		end = xen_##x##_direct_end;				\
1086 		reloc = xen_##x##_direct_reloc;				\
1087 	}								\
1088 	goto patch_site
1089 
1090 	switch (type) {
1091 		SITE(pv_irq_ops, irq_enable);
1092 		SITE(pv_irq_ops, irq_disable);
1093 		SITE(pv_irq_ops, save_fl);
1094 		SITE(pv_irq_ops, restore_fl);
1095 #undef SITE
1096 
1097 	patch_site:
1098 		if (start == NULL || (end-start) > len)
1099 			goto default_patch;
1100 
1101 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1102 
1103 		/* Note: because reloc is assigned from something that
1104 		   appears to be an array, gcc assumes it's non-null,
1105 		   but doesn't know its relationship with start and
1106 		   end. */
1107 		if (reloc > start && reloc < end) {
1108 			int reloc_off = reloc - start;
1109 			long *relocp = (long *)(insnbuf + reloc_off);
1110 			long delta = start - (char *)addr;
1111 
1112 			*relocp += delta;
1113 		}
1114 		break;
1115 
1116 	default_patch:
1117 	default:
1118 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1119 					     addr, len);
1120 		break;
1121 	}
1122 
1123 	return ret;
1124 }
1125 
1126 static const struct pv_info xen_info __initconst = {
1127 	.paravirt_enabled = 1,
1128 	.shared_kernel_pmd = 0,
1129 
1130 #ifdef CONFIG_X86_64
1131 	.extra_user_64bit_cs = FLAT_USER_CS64,
1132 #endif
1133 
1134 	.name = "Xen",
1135 };
1136 
1137 static const struct pv_init_ops xen_init_ops __initconst = {
1138 	.patch = xen_patch,
1139 };
1140 
1141 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1142 	.cpuid = xen_cpuid,
1143 
1144 	.set_debugreg = xen_set_debugreg,
1145 	.get_debugreg = xen_get_debugreg,
1146 
1147 	.clts = xen_clts,
1148 
1149 	.read_cr0 = xen_read_cr0,
1150 	.write_cr0 = xen_write_cr0,
1151 
1152 	.read_cr4 = native_read_cr4,
1153 	.read_cr4_safe = native_read_cr4_safe,
1154 	.write_cr4 = xen_write_cr4,
1155 
1156 	.wbinvd = native_wbinvd,
1157 
1158 	.read_msr = native_read_msr_safe,
1159 	.write_msr = xen_write_msr_safe,
1160 
1161 	.read_tsc = native_read_tsc,
1162 	.read_pmc = native_read_pmc,
1163 
1164 	.iret = xen_iret,
1165 	.irq_enable_sysexit = xen_sysexit,
1166 #ifdef CONFIG_X86_64
1167 	.usergs_sysret32 = xen_sysret32,
1168 	.usergs_sysret64 = xen_sysret64,
1169 #endif
1170 
1171 	.load_tr_desc = paravirt_nop,
1172 	.set_ldt = xen_set_ldt,
1173 	.load_gdt = xen_load_gdt,
1174 	.load_idt = xen_load_idt,
1175 	.load_tls = xen_load_tls,
1176 #ifdef CONFIG_X86_64
1177 	.load_gs_index = xen_load_gs_index,
1178 #endif
1179 
1180 	.alloc_ldt = xen_alloc_ldt,
1181 	.free_ldt = xen_free_ldt,
1182 
1183 	.store_gdt = native_store_gdt,
1184 	.store_idt = native_store_idt,
1185 	.store_tr = xen_store_tr,
1186 
1187 	.write_ldt_entry = xen_write_ldt_entry,
1188 	.write_gdt_entry = xen_write_gdt_entry,
1189 	.write_idt_entry = xen_write_idt_entry,
1190 	.load_sp0 = xen_load_sp0,
1191 
1192 	.set_iopl_mask = xen_set_iopl_mask,
1193 	.io_delay = xen_io_delay,
1194 
1195 	/* Xen takes care of %gs when switching to usermode for us */
1196 	.swapgs = paravirt_nop,
1197 
1198 	.start_context_switch = paravirt_start_context_switch,
1199 	.end_context_switch = xen_end_context_switch,
1200 };
1201 
1202 static const struct pv_apic_ops xen_apic_ops __initconst = {
1203 #ifdef CONFIG_X86_LOCAL_APIC
1204 	.startup_ipi_hook = paravirt_nop,
1205 #endif
1206 };
1207 
1208 static void xen_reboot(int reason)
1209 {
1210 	struct sched_shutdown r = { .reason = reason };
1211 
1212 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1213 		BUG();
1214 }
1215 
1216 static void xen_restart(char *msg)
1217 {
1218 	xen_reboot(SHUTDOWN_reboot);
1219 }
1220 
1221 static void xen_emergency_restart(void)
1222 {
1223 	xen_reboot(SHUTDOWN_reboot);
1224 }
1225 
1226 static void xen_machine_halt(void)
1227 {
1228 	xen_reboot(SHUTDOWN_poweroff);
1229 }
1230 
1231 static void xen_machine_power_off(void)
1232 {
1233 	if (pm_power_off)
1234 		pm_power_off();
1235 	xen_reboot(SHUTDOWN_poweroff);
1236 }
1237 
1238 static void xen_crash_shutdown(struct pt_regs *regs)
1239 {
1240 	xen_reboot(SHUTDOWN_crash);
1241 }
1242 
1243 static int
1244 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1245 {
1246 	xen_reboot(SHUTDOWN_crash);
1247 	return NOTIFY_DONE;
1248 }
1249 
1250 static struct notifier_block xen_panic_block = {
1251 	.notifier_call= xen_panic_event,
1252 };
1253 
1254 int xen_panic_handler_init(void)
1255 {
1256 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1257 	return 0;
1258 }
1259 
1260 static const struct machine_ops xen_machine_ops __initconst = {
1261 	.restart = xen_restart,
1262 	.halt = xen_machine_halt,
1263 	.power_off = xen_machine_power_off,
1264 	.shutdown = xen_machine_halt,
1265 	.crash_shutdown = xen_crash_shutdown,
1266 	.emergency_restart = xen_emergency_restart,
1267 };
1268 
1269 /*
1270  * Set up the GDT and segment registers for -fstack-protector.  Until
1271  * we do this, we have to be careful not to call any stack-protected
1272  * function, which is most of the kernel.
1273  */
1274 static void __init xen_setup_stackprotector(void)
1275 {
1276 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1277 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1278 
1279 	setup_stack_canary_segment(0);
1280 	switch_to_new_gdt(0);
1281 
1282 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1283 	pv_cpu_ops.load_gdt = xen_load_gdt;
1284 }
1285 
1286 /* First C function to be called on Xen boot */
1287 asmlinkage void __init xen_start_kernel(void)
1288 {
1289 	struct physdev_set_iopl set_iopl;
1290 	int rc;
1291 	pgd_t *pgd;
1292 
1293 	if (!xen_start_info)
1294 		return;
1295 
1296 	xen_domain_type = XEN_PV_DOMAIN;
1297 
1298 	xen_setup_machphys_mapping();
1299 
1300 	/* Install Xen paravirt ops */
1301 	pv_info = xen_info;
1302 	pv_init_ops = xen_init_ops;
1303 	pv_cpu_ops = xen_cpu_ops;
1304 	pv_apic_ops = xen_apic_ops;
1305 
1306 	x86_init.resources.memory_setup = xen_memory_setup;
1307 	x86_init.oem.arch_setup = xen_arch_setup;
1308 	x86_init.oem.banner = xen_banner;
1309 
1310 	xen_init_time_ops();
1311 
1312 	/*
1313 	 * Set up some pagetable state before starting to set any ptes.
1314 	 */
1315 
1316 	xen_init_mmu_ops();
1317 
1318 	/* Prevent unwanted bits from being set in PTEs. */
1319 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1320 #if 0
1321 	if (!xen_initial_domain())
1322 #endif
1323 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1324 
1325 	__supported_pte_mask |= _PAGE_IOMAP;
1326 
1327 	/*
1328 	 * Prevent page tables from being allocated in highmem, even
1329 	 * if CONFIG_HIGHPTE is enabled.
1330 	 */
1331 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1332 
1333 	/* Work out if we support NX */
1334 	x86_configure_nx();
1335 
1336 	xen_setup_features();
1337 
1338 	/* Get mfn list */
1339 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1340 		xen_build_dynamic_phys_to_machine();
1341 
1342 	/*
1343 	 * Set up kernel GDT and segment registers, mainly so that
1344 	 * -fstack-protector code can be executed.
1345 	 */
1346 	xen_setup_stackprotector();
1347 
1348 	xen_init_irq_ops();
1349 	xen_init_cpuid_mask();
1350 
1351 #ifdef CONFIG_X86_LOCAL_APIC
1352 	/*
1353 	 * set up the basic apic ops.
1354 	 */
1355 	set_xen_basic_apic_ops();
1356 #endif
1357 
1358 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1359 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1360 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1361 	}
1362 
1363 	machine_ops = xen_machine_ops;
1364 
1365 	/*
1366 	 * The only reliable way to retain the initial address of the
1367 	 * percpu gdt_page is to remember it here, so we can go and
1368 	 * mark it RW later, when the initial percpu area is freed.
1369 	 */
1370 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1371 
1372 	xen_smp_init();
1373 
1374 #ifdef CONFIG_ACPI_NUMA
1375 	/*
1376 	 * The pages we from Xen are not related to machine pages, so
1377 	 * any NUMA information the kernel tries to get from ACPI will
1378 	 * be meaningless.  Prevent it from trying.
1379 	 */
1380 	acpi_numa = -1;
1381 #endif
1382 
1383 	pgd = (pgd_t *)xen_start_info->pt_base;
1384 
1385 	/* Don't do the full vcpu_info placement stuff until we have a
1386 	   possible map and a non-dummy shared_info. */
1387 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1388 
1389 	local_irq_disable();
1390 	early_boot_irqs_disabled = true;
1391 
1392 	xen_raw_console_write("mapping kernel into physical memory\n");
1393 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1394 
1395 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1396 	xen_build_mfn_list_list();
1397 
1398 	/* keep using Xen gdt for now; no urgent need to change it */
1399 
1400 #ifdef CONFIG_X86_32
1401 	pv_info.kernel_rpl = 1;
1402 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1403 		pv_info.kernel_rpl = 0;
1404 #else
1405 	pv_info.kernel_rpl = 0;
1406 #endif
1407 	/* set the limit of our address space */
1408 	xen_reserve_top();
1409 
1410 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1411 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1412 	 * which pokes 0xcf8 port.
1413 	 */
1414 	set_iopl.iopl = 1;
1415 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1416 	if (rc != 0)
1417 		xen_raw_printk("physdev_op failed %d\n", rc);
1418 
1419 #ifdef CONFIG_X86_32
1420 	/* set up basic CPUID stuff */
1421 	cpu_detect(&new_cpu_data);
1422 	new_cpu_data.hard_math = 1;
1423 	new_cpu_data.wp_works_ok = 1;
1424 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1425 #endif
1426 
1427 	/* Poke various useful things into boot_params */
1428 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1429 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1430 		? __pa(xen_start_info->mod_start) : 0;
1431 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1432 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1433 
1434 	if (!xen_initial_domain()) {
1435 		add_preferred_console("xenboot", 0, NULL);
1436 		add_preferred_console("tty", 0, NULL);
1437 		add_preferred_console("hvc", 0, NULL);
1438 		if (pci_xen)
1439 			x86_init.pci.arch_init = pci_xen_init;
1440 	} else {
1441 		const struct dom0_vga_console_info *info =
1442 			(void *)((char *)xen_start_info +
1443 				 xen_start_info->console.dom0.info_off);
1444 
1445 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1446 		xen_start_info->console.domU.mfn = 0;
1447 		xen_start_info->console.domU.evtchn = 0;
1448 
1449 		xen_init_apic();
1450 
1451 		/* Make sure ACS will be enabled */
1452 		pci_request_acs();
1453 
1454 		xen_acpi_sleep_register();
1455 	}
1456 #ifdef CONFIG_PCI
1457 	/* PCI BIOS service won't work from a PV guest. */
1458 	pci_probe &= ~PCI_PROBE_BIOS;
1459 #endif
1460 	xen_raw_console_write("about to get started...\n");
1461 
1462 	xen_setup_runstate_info(0);
1463 
1464 	/* Start the world */
1465 #ifdef CONFIG_X86_32
1466 	i386_start_kernel();
1467 #else
1468 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1469 #endif
1470 }
1471 
1472 void __ref xen_hvm_init_shared_info(void)
1473 {
1474 	int cpu;
1475 	struct xen_add_to_physmap xatp;
1476 	static struct shared_info *shared_info_page = 0;
1477 
1478 	if (!shared_info_page)
1479 		shared_info_page = (struct shared_info *)
1480 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1481 	xatp.domid = DOMID_SELF;
1482 	xatp.idx = 0;
1483 	xatp.space = XENMAPSPACE_shared_info;
1484 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1485 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1486 		BUG();
1487 
1488 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1489 
1490 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1491 	 * page, we use it in the event channel upcall and in some pvclock
1492 	 * related functions. We don't need the vcpu_info placement
1493 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1494 	 * HVM.
1495 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1496 	 * online but xen_hvm_init_shared_info is run at resume time too and
1497 	 * in that case multiple vcpus might be online. */
1498 	for_each_online_cpu(cpu) {
1499 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1500 	}
1501 }
1502 
1503 #ifdef CONFIG_XEN_PVHVM
1504 static void __init init_hvm_pv_info(void)
1505 {
1506 	int major, minor;
1507 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1508 	u64 pfn;
1509 
1510 	base = xen_cpuid_base();
1511 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1512 
1513 	major = eax >> 16;
1514 	minor = eax & 0xffff;
1515 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1516 
1517 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1518 
1519 	pfn = __pa(hypercall_page);
1520 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1521 
1522 	xen_setup_features();
1523 
1524 	pv_info.name = "Xen HVM";
1525 
1526 	xen_domain_type = XEN_HVM_DOMAIN;
1527 }
1528 
1529 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1530 				    unsigned long action, void *hcpu)
1531 {
1532 	int cpu = (long)hcpu;
1533 	switch (action) {
1534 	case CPU_UP_PREPARE:
1535 		xen_vcpu_setup(cpu);
1536 		if (xen_have_vector_callback)
1537 			xen_init_lock_cpu(cpu);
1538 		break;
1539 	default:
1540 		break;
1541 	}
1542 	return NOTIFY_OK;
1543 }
1544 
1545 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1546 	.notifier_call	= xen_hvm_cpu_notify,
1547 };
1548 
1549 static void __init xen_hvm_guest_init(void)
1550 {
1551 	init_hvm_pv_info();
1552 
1553 	xen_hvm_init_shared_info();
1554 
1555 	if (xen_feature(XENFEAT_hvm_callback_vector))
1556 		xen_have_vector_callback = 1;
1557 	xen_hvm_smp_init();
1558 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1559 	xen_unplug_emulated_devices();
1560 	x86_init.irqs.intr_init = xen_init_IRQ;
1561 	xen_hvm_init_time_ops();
1562 	xen_hvm_init_mmu_ops();
1563 }
1564 
1565 static bool __init xen_hvm_platform(void)
1566 {
1567 	if (xen_pv_domain())
1568 		return false;
1569 
1570 	if (!xen_cpuid_base())
1571 		return false;
1572 
1573 	return true;
1574 }
1575 
1576 bool xen_hvm_need_lapic(void)
1577 {
1578 	if (xen_pv_domain())
1579 		return false;
1580 	if (!xen_hvm_domain())
1581 		return false;
1582 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1583 		return false;
1584 	return true;
1585 }
1586 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1587 
1588 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1589 	.name			= "Xen HVM",
1590 	.detect			= xen_hvm_platform,
1591 	.init_platform		= xen_hvm_guest_init,
1592 };
1593 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1594 #endif
1595