xref: /linux/arch/x86/xen/enlighten.c (revision 88e957d6e47f1232ad15b21e54a44f1147ea8c1b)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #ifdef CONFIG_KEXEC_CORE
38 #include <linux/kexec.h>
39 #endif
40 
41 #include <xen/xen.h>
42 #include <xen/events.h>
43 #include <xen/interface/xen.h>
44 #include <xen/interface/version.h>
45 #include <xen/interface/physdev.h>
46 #include <xen/interface/vcpu.h>
47 #include <xen/interface/memory.h>
48 #include <xen/interface/nmi.h>
49 #include <xen/interface/xen-mca.h>
50 #include <xen/features.h>
51 #include <xen/page.h>
52 #include <xen/hvm.h>
53 #include <xen/hvc-console.h>
54 #include <xen/acpi.h>
55 
56 #include <asm/paravirt.h>
57 #include <asm/apic.h>
58 #include <asm/page.h>
59 #include <asm/xen/pci.h>
60 #include <asm/xen/hypercall.h>
61 #include <asm/xen/hypervisor.h>
62 #include <asm/xen/cpuid.h>
63 #include <asm/fixmap.h>
64 #include <asm/processor.h>
65 #include <asm/proto.h>
66 #include <asm/msr-index.h>
67 #include <asm/traps.h>
68 #include <asm/setup.h>
69 #include <asm/desc.h>
70 #include <asm/pgalloc.h>
71 #include <asm/pgtable.h>
72 #include <asm/tlbflush.h>
73 #include <asm/reboot.h>
74 #include <asm/stackprotector.h>
75 #include <asm/hypervisor.h>
76 #include <asm/mach_traps.h>
77 #include <asm/mwait.h>
78 #include <asm/pci_x86.h>
79 #include <asm/cpu.h>
80 
81 #ifdef CONFIG_ACPI
82 #include <linux/acpi.h>
83 #include <asm/acpi.h>
84 #include <acpi/pdc_intel.h>
85 #include <acpi/processor.h>
86 #include <xen/interface/platform.h>
87 #endif
88 
89 #include "xen-ops.h"
90 #include "mmu.h"
91 #include "smp.h"
92 #include "multicalls.h"
93 #include "pmu.h"
94 
95 EXPORT_SYMBOL_GPL(hypercall_page);
96 
97 /*
98  * Pointer to the xen_vcpu_info structure or
99  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
100  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
101  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
102  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
103  * acknowledge pending events.
104  * Also more subtly it is used by the patched version of irq enable/disable
105  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
106  *
107  * The desire to be able to do those mask/unmask operations as a single
108  * instruction by using the per-cpu offset held in %gs is the real reason
109  * vcpu info is in a per-cpu pointer and the original reason for this
110  * hypercall.
111  *
112  */
113 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
114 
115 /*
116  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
117  * hypercall. This can be used both in PV and PVHVM mode. The structure
118  * overrides the default per_cpu(xen_vcpu, cpu) value.
119  */
120 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
121 
122 /* Linux <-> Xen vCPU id mapping */
123 DEFINE_PER_CPU(int, xen_vcpu_id) = -1;
124 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
125 
126 enum xen_domain_type xen_domain_type = XEN_NATIVE;
127 EXPORT_SYMBOL_GPL(xen_domain_type);
128 
129 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
130 EXPORT_SYMBOL(machine_to_phys_mapping);
131 unsigned long  machine_to_phys_nr;
132 EXPORT_SYMBOL(machine_to_phys_nr);
133 
134 struct start_info *xen_start_info;
135 EXPORT_SYMBOL_GPL(xen_start_info);
136 
137 struct shared_info xen_dummy_shared_info;
138 
139 void *xen_initial_gdt;
140 
141 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
142 __read_mostly int xen_have_vector_callback;
143 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
144 
145 /*
146  * Point at some empty memory to start with. We map the real shared_info
147  * page as soon as fixmap is up and running.
148  */
149 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
150 
151 /*
152  * Flag to determine whether vcpu info placement is available on all
153  * VCPUs.  We assume it is to start with, and then set it to zero on
154  * the first failure.  This is because it can succeed on some VCPUs
155  * and not others, since it can involve hypervisor memory allocation,
156  * or because the guest failed to guarantee all the appropriate
157  * constraints on all VCPUs (ie buffer can't cross a page boundary).
158  *
159  * Note that any particular CPU may be using a placed vcpu structure,
160  * but we can only optimise if the all are.
161  *
162  * 0: not available, 1: available
163  */
164 static int have_vcpu_info_placement = 1;
165 
166 struct tls_descs {
167 	struct desc_struct desc[3];
168 };
169 
170 /*
171  * Updating the 3 TLS descriptors in the GDT on every task switch is
172  * surprisingly expensive so we avoid updating them if they haven't
173  * changed.  Since Xen writes different descriptors than the one
174  * passed in the update_descriptor hypercall we keep shadow copies to
175  * compare against.
176  */
177 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
178 
179 static void clamp_max_cpus(void)
180 {
181 #ifdef CONFIG_SMP
182 	if (setup_max_cpus > MAX_VIRT_CPUS)
183 		setup_max_cpus = MAX_VIRT_CPUS;
184 #endif
185 }
186 
187 static void xen_vcpu_setup(int cpu)
188 {
189 	struct vcpu_register_vcpu_info info;
190 	int err;
191 	struct vcpu_info *vcpup;
192 
193 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
194 
195 	/*
196 	 * This path is called twice on PVHVM - first during bootup via
197 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
198 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
199 	 * As we can only do the VCPUOP_register_vcpu_info once lets
200 	 * not over-write its result.
201 	 *
202 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
203 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
204 	 * use this function.
205 	 */
206 	if (xen_hvm_domain()) {
207 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
208 			return;
209 	}
210 	if (cpu < MAX_VIRT_CPUS)
211 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
212 
213 	if (!have_vcpu_info_placement) {
214 		if (cpu >= MAX_VIRT_CPUS)
215 			clamp_max_cpus();
216 		return;
217 	}
218 
219 	vcpup = &per_cpu(xen_vcpu_info, cpu);
220 	info.mfn = arbitrary_virt_to_mfn(vcpup);
221 	info.offset = offset_in_page(vcpup);
222 
223 	/* Check to see if the hypervisor will put the vcpu_info
224 	   structure where we want it, which allows direct access via
225 	   a percpu-variable.
226 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
227 	   calls will error out with -EINVAL. This is due to the fact that
228 	   hypervisor has no unregister variant and this hypercall does not
229 	   allow to over-write info.mfn and info.offset.
230 	 */
231 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
232 
233 	if (err) {
234 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
235 		have_vcpu_info_placement = 0;
236 		clamp_max_cpus();
237 	} else {
238 		/* This cpu is using the registered vcpu info, even if
239 		   later ones fail to. */
240 		per_cpu(xen_vcpu, cpu) = vcpup;
241 	}
242 }
243 
244 /*
245  * On restore, set the vcpu placement up again.
246  * If it fails, then we're in a bad state, since
247  * we can't back out from using it...
248  */
249 void xen_vcpu_restore(void)
250 {
251 	int cpu;
252 
253 	for_each_possible_cpu(cpu) {
254 		bool other_cpu = (cpu != smp_processor_id());
255 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
256 
257 		if (other_cpu && is_up &&
258 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
259 			BUG();
260 
261 		xen_setup_runstate_info(cpu);
262 
263 		if (have_vcpu_info_placement)
264 			xen_vcpu_setup(cpu);
265 
266 		if (other_cpu && is_up &&
267 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
268 			BUG();
269 	}
270 }
271 
272 static void __init xen_banner(void)
273 {
274 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
275 	struct xen_extraversion extra;
276 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
277 
278 	pr_info("Booting paravirtualized kernel %son %s\n",
279 		xen_feature(XENFEAT_auto_translated_physmap) ?
280 			"with PVH extensions " : "", pv_info.name);
281 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
282 	       version >> 16, version & 0xffff, extra.extraversion,
283 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
284 }
285 /* Check if running on Xen version (major, minor) or later */
286 bool
287 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
288 {
289 	unsigned int version;
290 
291 	if (!xen_domain())
292 		return false;
293 
294 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
295 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
296 		((version >> 16) > major))
297 		return true;
298 	return false;
299 }
300 
301 #define CPUID_THERM_POWER_LEAF 6
302 #define APERFMPERF_PRESENT 0
303 
304 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
305 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
306 
307 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
308 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
309 static __read_mostly unsigned int cpuid_leaf5_edx_val;
310 
311 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
312 		      unsigned int *cx, unsigned int *dx)
313 {
314 	unsigned maskebx = ~0;
315 	unsigned maskecx = ~0;
316 	unsigned maskedx = ~0;
317 	unsigned setecx = 0;
318 	/*
319 	 * Mask out inconvenient features, to try and disable as many
320 	 * unsupported kernel subsystems as possible.
321 	 */
322 	switch (*ax) {
323 	case 1:
324 		maskecx = cpuid_leaf1_ecx_mask;
325 		setecx = cpuid_leaf1_ecx_set_mask;
326 		maskedx = cpuid_leaf1_edx_mask;
327 		break;
328 
329 	case CPUID_MWAIT_LEAF:
330 		/* Synthesize the values.. */
331 		*ax = 0;
332 		*bx = 0;
333 		*cx = cpuid_leaf5_ecx_val;
334 		*dx = cpuid_leaf5_edx_val;
335 		return;
336 
337 	case CPUID_THERM_POWER_LEAF:
338 		/* Disabling APERFMPERF for kernel usage */
339 		maskecx = ~(1 << APERFMPERF_PRESENT);
340 		break;
341 
342 	case 0xb:
343 		/* Suppress extended topology stuff */
344 		maskebx = 0;
345 		break;
346 	}
347 
348 	asm(XEN_EMULATE_PREFIX "cpuid"
349 		: "=a" (*ax),
350 		  "=b" (*bx),
351 		  "=c" (*cx),
352 		  "=d" (*dx)
353 		: "0" (*ax), "2" (*cx));
354 
355 	*bx &= maskebx;
356 	*cx &= maskecx;
357 	*cx |= setecx;
358 	*dx &= maskedx;
359 }
360 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
361 
362 static bool __init xen_check_mwait(void)
363 {
364 #ifdef CONFIG_ACPI
365 	struct xen_platform_op op = {
366 		.cmd			= XENPF_set_processor_pminfo,
367 		.u.set_pminfo.id	= -1,
368 		.u.set_pminfo.type	= XEN_PM_PDC,
369 	};
370 	uint32_t buf[3];
371 	unsigned int ax, bx, cx, dx;
372 	unsigned int mwait_mask;
373 
374 	/* We need to determine whether it is OK to expose the MWAIT
375 	 * capability to the kernel to harvest deeper than C3 states from ACPI
376 	 * _CST using the processor_harvest_xen.c module. For this to work, we
377 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
378 	 * checks against). The hypervisor won't expose the MWAIT flag because
379 	 * it would break backwards compatibility; so we will find out directly
380 	 * from the hardware and hypercall.
381 	 */
382 	if (!xen_initial_domain())
383 		return false;
384 
385 	/*
386 	 * When running under platform earlier than Xen4.2, do not expose
387 	 * mwait, to avoid the risk of loading native acpi pad driver
388 	 */
389 	if (!xen_running_on_version_or_later(4, 2))
390 		return false;
391 
392 	ax = 1;
393 	cx = 0;
394 
395 	native_cpuid(&ax, &bx, &cx, &dx);
396 
397 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
398 		     (1 << (X86_FEATURE_MWAIT % 32));
399 
400 	if ((cx & mwait_mask) != mwait_mask)
401 		return false;
402 
403 	/* We need to emulate the MWAIT_LEAF and for that we need both
404 	 * ecx and edx. The hypercall provides only partial information.
405 	 */
406 
407 	ax = CPUID_MWAIT_LEAF;
408 	bx = 0;
409 	cx = 0;
410 	dx = 0;
411 
412 	native_cpuid(&ax, &bx, &cx, &dx);
413 
414 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
415 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
416 	 */
417 	buf[0] = ACPI_PDC_REVISION_ID;
418 	buf[1] = 1;
419 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
420 
421 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
422 
423 	if ((HYPERVISOR_platform_op(&op) == 0) &&
424 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
425 		cpuid_leaf5_ecx_val = cx;
426 		cpuid_leaf5_edx_val = dx;
427 	}
428 	return true;
429 #else
430 	return false;
431 #endif
432 }
433 static void __init xen_init_cpuid_mask(void)
434 {
435 	unsigned int ax, bx, cx, dx;
436 	unsigned int xsave_mask;
437 
438 	cpuid_leaf1_edx_mask =
439 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
440 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
441 
442 	if (!xen_initial_domain())
443 		cpuid_leaf1_edx_mask &=
444 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
445 
446 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
447 
448 	ax = 1;
449 	cx = 0;
450 	cpuid(1, &ax, &bx, &cx, &dx);
451 
452 	xsave_mask =
453 		(1 << (X86_FEATURE_XSAVE % 32)) |
454 		(1 << (X86_FEATURE_OSXSAVE % 32));
455 
456 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
457 	if ((cx & xsave_mask) != xsave_mask)
458 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
459 	if (xen_check_mwait())
460 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
461 }
462 
463 static void xen_set_debugreg(int reg, unsigned long val)
464 {
465 	HYPERVISOR_set_debugreg(reg, val);
466 }
467 
468 static unsigned long xen_get_debugreg(int reg)
469 {
470 	return HYPERVISOR_get_debugreg(reg);
471 }
472 
473 static void xen_end_context_switch(struct task_struct *next)
474 {
475 	xen_mc_flush();
476 	paravirt_end_context_switch(next);
477 }
478 
479 static unsigned long xen_store_tr(void)
480 {
481 	return 0;
482 }
483 
484 /*
485  * Set the page permissions for a particular virtual address.  If the
486  * address is a vmalloc mapping (or other non-linear mapping), then
487  * find the linear mapping of the page and also set its protections to
488  * match.
489  */
490 static void set_aliased_prot(void *v, pgprot_t prot)
491 {
492 	int level;
493 	pte_t *ptep;
494 	pte_t pte;
495 	unsigned long pfn;
496 	struct page *page;
497 	unsigned char dummy;
498 
499 	ptep = lookup_address((unsigned long)v, &level);
500 	BUG_ON(ptep == NULL);
501 
502 	pfn = pte_pfn(*ptep);
503 	page = pfn_to_page(pfn);
504 
505 	pte = pfn_pte(pfn, prot);
506 
507 	/*
508 	 * Careful: update_va_mapping() will fail if the virtual address
509 	 * we're poking isn't populated in the page tables.  We don't
510 	 * need to worry about the direct map (that's always in the page
511 	 * tables), but we need to be careful about vmap space.  In
512 	 * particular, the top level page table can lazily propagate
513 	 * entries between processes, so if we've switched mms since we
514 	 * vmapped the target in the first place, we might not have the
515 	 * top-level page table entry populated.
516 	 *
517 	 * We disable preemption because we want the same mm active when
518 	 * we probe the target and when we issue the hypercall.  We'll
519 	 * have the same nominal mm, but if we're a kernel thread, lazy
520 	 * mm dropping could change our pgd.
521 	 *
522 	 * Out of an abundance of caution, this uses __get_user() to fault
523 	 * in the target address just in case there's some obscure case
524 	 * in which the target address isn't readable.
525 	 */
526 
527 	preempt_disable();
528 
529 	pagefault_disable();	/* Avoid warnings due to being atomic. */
530 	__get_user(dummy, (unsigned char __user __force *)v);
531 	pagefault_enable();
532 
533 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
534 		BUG();
535 
536 	if (!PageHighMem(page)) {
537 		void *av = __va(PFN_PHYS(pfn));
538 
539 		if (av != v)
540 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
541 				BUG();
542 	} else
543 		kmap_flush_unused();
544 
545 	preempt_enable();
546 }
547 
548 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
549 {
550 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
551 	int i;
552 
553 	/*
554 	 * We need to mark the all aliases of the LDT pages RO.  We
555 	 * don't need to call vm_flush_aliases(), though, since that's
556 	 * only responsible for flushing aliases out the TLBs, not the
557 	 * page tables, and Xen will flush the TLB for us if needed.
558 	 *
559 	 * To avoid confusing future readers: none of this is necessary
560 	 * to load the LDT.  The hypervisor only checks this when the
561 	 * LDT is faulted in due to subsequent descriptor access.
562 	 */
563 
564 	for(i = 0; i < entries; i += entries_per_page)
565 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
566 }
567 
568 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
569 {
570 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
571 	int i;
572 
573 	for(i = 0; i < entries; i += entries_per_page)
574 		set_aliased_prot(ldt + i, PAGE_KERNEL);
575 }
576 
577 static void xen_set_ldt(const void *addr, unsigned entries)
578 {
579 	struct mmuext_op *op;
580 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
581 
582 	trace_xen_cpu_set_ldt(addr, entries);
583 
584 	op = mcs.args;
585 	op->cmd = MMUEXT_SET_LDT;
586 	op->arg1.linear_addr = (unsigned long)addr;
587 	op->arg2.nr_ents = entries;
588 
589 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
590 
591 	xen_mc_issue(PARAVIRT_LAZY_CPU);
592 }
593 
594 static void xen_load_gdt(const struct desc_ptr *dtr)
595 {
596 	unsigned long va = dtr->address;
597 	unsigned int size = dtr->size + 1;
598 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
599 	unsigned long frames[pages];
600 	int f;
601 
602 	/*
603 	 * A GDT can be up to 64k in size, which corresponds to 8192
604 	 * 8-byte entries, or 16 4k pages..
605 	 */
606 
607 	BUG_ON(size > 65536);
608 	BUG_ON(va & ~PAGE_MASK);
609 
610 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
611 		int level;
612 		pte_t *ptep;
613 		unsigned long pfn, mfn;
614 		void *virt;
615 
616 		/*
617 		 * The GDT is per-cpu and is in the percpu data area.
618 		 * That can be virtually mapped, so we need to do a
619 		 * page-walk to get the underlying MFN for the
620 		 * hypercall.  The page can also be in the kernel's
621 		 * linear range, so we need to RO that mapping too.
622 		 */
623 		ptep = lookup_address(va, &level);
624 		BUG_ON(ptep == NULL);
625 
626 		pfn = pte_pfn(*ptep);
627 		mfn = pfn_to_mfn(pfn);
628 		virt = __va(PFN_PHYS(pfn));
629 
630 		frames[f] = mfn;
631 
632 		make_lowmem_page_readonly((void *)va);
633 		make_lowmem_page_readonly(virt);
634 	}
635 
636 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
637 		BUG();
638 }
639 
640 /*
641  * load_gdt for early boot, when the gdt is only mapped once
642  */
643 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
644 {
645 	unsigned long va = dtr->address;
646 	unsigned int size = dtr->size + 1;
647 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
648 	unsigned long frames[pages];
649 	int f;
650 
651 	/*
652 	 * A GDT can be up to 64k in size, which corresponds to 8192
653 	 * 8-byte entries, or 16 4k pages..
654 	 */
655 
656 	BUG_ON(size > 65536);
657 	BUG_ON(va & ~PAGE_MASK);
658 
659 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
660 		pte_t pte;
661 		unsigned long pfn, mfn;
662 
663 		pfn = virt_to_pfn(va);
664 		mfn = pfn_to_mfn(pfn);
665 
666 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
667 
668 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
669 			BUG();
670 
671 		frames[f] = mfn;
672 	}
673 
674 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
675 		BUG();
676 }
677 
678 static inline bool desc_equal(const struct desc_struct *d1,
679 			      const struct desc_struct *d2)
680 {
681 	return d1->a == d2->a && d1->b == d2->b;
682 }
683 
684 static void load_TLS_descriptor(struct thread_struct *t,
685 				unsigned int cpu, unsigned int i)
686 {
687 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
688 	struct desc_struct *gdt;
689 	xmaddr_t maddr;
690 	struct multicall_space mc;
691 
692 	if (desc_equal(shadow, &t->tls_array[i]))
693 		return;
694 
695 	*shadow = t->tls_array[i];
696 
697 	gdt = get_cpu_gdt_table(cpu);
698 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
699 	mc = __xen_mc_entry(0);
700 
701 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
702 }
703 
704 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
705 {
706 	/*
707 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
708 	 * and lazy gs handling is enabled, it means we're in a
709 	 * context switch, and %gs has just been saved.  This means we
710 	 * can zero it out to prevent faults on exit from the
711 	 * hypervisor if the next process has no %gs.  Either way, it
712 	 * has been saved, and the new value will get loaded properly.
713 	 * This will go away as soon as Xen has been modified to not
714 	 * save/restore %gs for normal hypercalls.
715 	 *
716 	 * On x86_64, this hack is not used for %gs, because gs points
717 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
718 	 * must not zero %gs on x86_64
719 	 *
720 	 * For x86_64, we need to zero %fs, otherwise we may get an
721 	 * exception between the new %fs descriptor being loaded and
722 	 * %fs being effectively cleared at __switch_to().
723 	 */
724 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
725 #ifdef CONFIG_X86_32
726 		lazy_load_gs(0);
727 #else
728 		loadsegment(fs, 0);
729 #endif
730 	}
731 
732 	xen_mc_batch();
733 
734 	load_TLS_descriptor(t, cpu, 0);
735 	load_TLS_descriptor(t, cpu, 1);
736 	load_TLS_descriptor(t, cpu, 2);
737 
738 	xen_mc_issue(PARAVIRT_LAZY_CPU);
739 }
740 
741 #ifdef CONFIG_X86_64
742 static void xen_load_gs_index(unsigned int idx)
743 {
744 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
745 		BUG();
746 }
747 #endif
748 
749 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
750 				const void *ptr)
751 {
752 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
753 	u64 entry = *(u64 *)ptr;
754 
755 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
756 
757 	preempt_disable();
758 
759 	xen_mc_flush();
760 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
761 		BUG();
762 
763 	preempt_enable();
764 }
765 
766 static int cvt_gate_to_trap(int vector, const gate_desc *val,
767 			    struct trap_info *info)
768 {
769 	unsigned long addr;
770 
771 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
772 		return 0;
773 
774 	info->vector = vector;
775 
776 	addr = gate_offset(*val);
777 #ifdef CONFIG_X86_64
778 	/*
779 	 * Look for known traps using IST, and substitute them
780 	 * appropriately.  The debugger ones are the only ones we care
781 	 * about.  Xen will handle faults like double_fault,
782 	 * so we should never see them.  Warn if
783 	 * there's an unexpected IST-using fault handler.
784 	 */
785 	if (addr == (unsigned long)debug)
786 		addr = (unsigned long)xen_debug;
787 	else if (addr == (unsigned long)int3)
788 		addr = (unsigned long)xen_int3;
789 	else if (addr == (unsigned long)stack_segment)
790 		addr = (unsigned long)xen_stack_segment;
791 	else if (addr == (unsigned long)double_fault) {
792 		/* Don't need to handle these */
793 		return 0;
794 #ifdef CONFIG_X86_MCE
795 	} else if (addr == (unsigned long)machine_check) {
796 		/*
797 		 * when xen hypervisor inject vMCE to guest,
798 		 * use native mce handler to handle it
799 		 */
800 		;
801 #endif
802 	} else if (addr == (unsigned long)nmi)
803 		/*
804 		 * Use the native version as well.
805 		 */
806 		;
807 	else {
808 		/* Some other trap using IST? */
809 		if (WARN_ON(val->ist != 0))
810 			return 0;
811 	}
812 #endif	/* CONFIG_X86_64 */
813 	info->address = addr;
814 
815 	info->cs = gate_segment(*val);
816 	info->flags = val->dpl;
817 	/* interrupt gates clear IF */
818 	if (val->type == GATE_INTERRUPT)
819 		info->flags |= 1 << 2;
820 
821 	return 1;
822 }
823 
824 /* Locations of each CPU's IDT */
825 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
826 
827 /* Set an IDT entry.  If the entry is part of the current IDT, then
828    also update Xen. */
829 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
830 {
831 	unsigned long p = (unsigned long)&dt[entrynum];
832 	unsigned long start, end;
833 
834 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
835 
836 	preempt_disable();
837 
838 	start = __this_cpu_read(idt_desc.address);
839 	end = start + __this_cpu_read(idt_desc.size) + 1;
840 
841 	xen_mc_flush();
842 
843 	native_write_idt_entry(dt, entrynum, g);
844 
845 	if (p >= start && (p + 8) <= end) {
846 		struct trap_info info[2];
847 
848 		info[1].address = 0;
849 
850 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
851 			if (HYPERVISOR_set_trap_table(info))
852 				BUG();
853 	}
854 
855 	preempt_enable();
856 }
857 
858 static void xen_convert_trap_info(const struct desc_ptr *desc,
859 				  struct trap_info *traps)
860 {
861 	unsigned in, out, count;
862 
863 	count = (desc->size+1) / sizeof(gate_desc);
864 	BUG_ON(count > 256);
865 
866 	for (in = out = 0; in < count; in++) {
867 		gate_desc *entry = (gate_desc*)(desc->address) + in;
868 
869 		if (cvt_gate_to_trap(in, entry, &traps[out]))
870 			out++;
871 	}
872 	traps[out].address = 0;
873 }
874 
875 void xen_copy_trap_info(struct trap_info *traps)
876 {
877 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
878 
879 	xen_convert_trap_info(desc, traps);
880 }
881 
882 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
883    hold a spinlock to protect the static traps[] array (static because
884    it avoids allocation, and saves stack space). */
885 static void xen_load_idt(const struct desc_ptr *desc)
886 {
887 	static DEFINE_SPINLOCK(lock);
888 	static struct trap_info traps[257];
889 
890 	trace_xen_cpu_load_idt(desc);
891 
892 	spin_lock(&lock);
893 
894 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
895 
896 	xen_convert_trap_info(desc, traps);
897 
898 	xen_mc_flush();
899 	if (HYPERVISOR_set_trap_table(traps))
900 		BUG();
901 
902 	spin_unlock(&lock);
903 }
904 
905 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
906    they're handled differently. */
907 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
908 				const void *desc, int type)
909 {
910 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
911 
912 	preempt_disable();
913 
914 	switch (type) {
915 	case DESC_LDT:
916 	case DESC_TSS:
917 		/* ignore */
918 		break;
919 
920 	default: {
921 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
922 
923 		xen_mc_flush();
924 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
925 			BUG();
926 	}
927 
928 	}
929 
930 	preempt_enable();
931 }
932 
933 /*
934  * Version of write_gdt_entry for use at early boot-time needed to
935  * update an entry as simply as possible.
936  */
937 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
938 					    const void *desc, int type)
939 {
940 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
941 
942 	switch (type) {
943 	case DESC_LDT:
944 	case DESC_TSS:
945 		/* ignore */
946 		break;
947 
948 	default: {
949 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
950 
951 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
952 			dt[entry] = *(struct desc_struct *)desc;
953 	}
954 
955 	}
956 }
957 
958 static void xen_load_sp0(struct tss_struct *tss,
959 			 struct thread_struct *thread)
960 {
961 	struct multicall_space mcs;
962 
963 	mcs = xen_mc_entry(0);
964 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
965 	xen_mc_issue(PARAVIRT_LAZY_CPU);
966 	tss->x86_tss.sp0 = thread->sp0;
967 }
968 
969 void xen_set_iopl_mask(unsigned mask)
970 {
971 	struct physdev_set_iopl set_iopl;
972 
973 	/* Force the change at ring 0. */
974 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
975 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
976 }
977 
978 static void xen_io_delay(void)
979 {
980 }
981 
982 static void xen_clts(void)
983 {
984 	struct multicall_space mcs;
985 
986 	mcs = xen_mc_entry(0);
987 
988 	MULTI_fpu_taskswitch(mcs.mc, 0);
989 
990 	xen_mc_issue(PARAVIRT_LAZY_CPU);
991 }
992 
993 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
994 
995 static unsigned long xen_read_cr0(void)
996 {
997 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
998 
999 	if (unlikely(cr0 == 0)) {
1000 		cr0 = native_read_cr0();
1001 		this_cpu_write(xen_cr0_value, cr0);
1002 	}
1003 
1004 	return cr0;
1005 }
1006 
1007 static void xen_write_cr0(unsigned long cr0)
1008 {
1009 	struct multicall_space mcs;
1010 
1011 	this_cpu_write(xen_cr0_value, cr0);
1012 
1013 	/* Only pay attention to cr0.TS; everything else is
1014 	   ignored. */
1015 	mcs = xen_mc_entry(0);
1016 
1017 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1018 
1019 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1020 }
1021 
1022 static void xen_write_cr4(unsigned long cr4)
1023 {
1024 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1025 
1026 	native_write_cr4(cr4);
1027 }
1028 #ifdef CONFIG_X86_64
1029 static inline unsigned long xen_read_cr8(void)
1030 {
1031 	return 0;
1032 }
1033 static inline void xen_write_cr8(unsigned long val)
1034 {
1035 	BUG_ON(val);
1036 }
1037 #endif
1038 
1039 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1040 {
1041 	u64 val;
1042 
1043 	if (pmu_msr_read(msr, &val, err))
1044 		return val;
1045 
1046 	val = native_read_msr_safe(msr, err);
1047 	switch (msr) {
1048 	case MSR_IA32_APICBASE:
1049 #ifdef CONFIG_X86_X2APIC
1050 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1051 #endif
1052 			val &= ~X2APIC_ENABLE;
1053 		break;
1054 	}
1055 	return val;
1056 }
1057 
1058 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1059 {
1060 	int ret;
1061 
1062 	ret = 0;
1063 
1064 	switch (msr) {
1065 #ifdef CONFIG_X86_64
1066 		unsigned which;
1067 		u64 base;
1068 
1069 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1070 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1071 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1072 
1073 	set:
1074 		base = ((u64)high << 32) | low;
1075 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1076 			ret = -EIO;
1077 		break;
1078 #endif
1079 
1080 	case MSR_STAR:
1081 	case MSR_CSTAR:
1082 	case MSR_LSTAR:
1083 	case MSR_SYSCALL_MASK:
1084 	case MSR_IA32_SYSENTER_CS:
1085 	case MSR_IA32_SYSENTER_ESP:
1086 	case MSR_IA32_SYSENTER_EIP:
1087 		/* Fast syscall setup is all done in hypercalls, so
1088 		   these are all ignored.  Stub them out here to stop
1089 		   Xen console noise. */
1090 		break;
1091 
1092 	default:
1093 		if (!pmu_msr_write(msr, low, high, &ret))
1094 			ret = native_write_msr_safe(msr, low, high);
1095 	}
1096 
1097 	return ret;
1098 }
1099 
1100 static u64 xen_read_msr(unsigned int msr)
1101 {
1102 	/*
1103 	 * This will silently swallow a #GP from RDMSR.  It may be worth
1104 	 * changing that.
1105 	 */
1106 	int err;
1107 
1108 	return xen_read_msr_safe(msr, &err);
1109 }
1110 
1111 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1112 {
1113 	/*
1114 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1115 	 * changing that.
1116 	 */
1117 	xen_write_msr_safe(msr, low, high);
1118 }
1119 
1120 void xen_setup_shared_info(void)
1121 {
1122 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1123 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1124 			   xen_start_info->shared_info);
1125 
1126 		HYPERVISOR_shared_info =
1127 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1128 	} else
1129 		HYPERVISOR_shared_info =
1130 			(struct shared_info *)__va(xen_start_info->shared_info);
1131 
1132 #ifndef CONFIG_SMP
1133 	/* In UP this is as good a place as any to set up shared info */
1134 	xen_setup_vcpu_info_placement();
1135 #endif
1136 
1137 	xen_setup_mfn_list_list();
1138 }
1139 
1140 /* This is called once we have the cpu_possible_mask */
1141 void xen_setup_vcpu_info_placement(void)
1142 {
1143 	int cpu;
1144 
1145 	for_each_possible_cpu(cpu) {
1146 		/* Set up direct vCPU id mapping for PV guests. */
1147 		per_cpu(xen_vcpu_id, cpu) = cpu;
1148 		xen_vcpu_setup(cpu);
1149 	}
1150 
1151 	/* xen_vcpu_setup managed to place the vcpu_info within the
1152 	 * percpu area for all cpus, so make use of it. Note that for
1153 	 * PVH we want to use native IRQ mechanism. */
1154 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1155 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1156 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1157 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1158 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1159 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1160 	}
1161 }
1162 
1163 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1164 			  unsigned long addr, unsigned len)
1165 {
1166 	char *start, *end, *reloc;
1167 	unsigned ret;
1168 
1169 	start = end = reloc = NULL;
1170 
1171 #define SITE(op, x)							\
1172 	case PARAVIRT_PATCH(op.x):					\
1173 	if (have_vcpu_info_placement) {					\
1174 		start = (char *)xen_##x##_direct;			\
1175 		end = xen_##x##_direct_end;				\
1176 		reloc = xen_##x##_direct_reloc;				\
1177 	}								\
1178 	goto patch_site
1179 
1180 	switch (type) {
1181 		SITE(pv_irq_ops, irq_enable);
1182 		SITE(pv_irq_ops, irq_disable);
1183 		SITE(pv_irq_ops, save_fl);
1184 		SITE(pv_irq_ops, restore_fl);
1185 #undef SITE
1186 
1187 	patch_site:
1188 		if (start == NULL || (end-start) > len)
1189 			goto default_patch;
1190 
1191 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1192 
1193 		/* Note: because reloc is assigned from something that
1194 		   appears to be an array, gcc assumes it's non-null,
1195 		   but doesn't know its relationship with start and
1196 		   end. */
1197 		if (reloc > start && reloc < end) {
1198 			int reloc_off = reloc - start;
1199 			long *relocp = (long *)(insnbuf + reloc_off);
1200 			long delta = start - (char *)addr;
1201 
1202 			*relocp += delta;
1203 		}
1204 		break;
1205 
1206 	default_patch:
1207 	default:
1208 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1209 					     addr, len);
1210 		break;
1211 	}
1212 
1213 	return ret;
1214 }
1215 
1216 static const struct pv_info xen_info __initconst = {
1217 	.shared_kernel_pmd = 0,
1218 
1219 #ifdef CONFIG_X86_64
1220 	.extra_user_64bit_cs = FLAT_USER_CS64,
1221 #endif
1222 	.name = "Xen",
1223 };
1224 
1225 static const struct pv_init_ops xen_init_ops __initconst = {
1226 	.patch = xen_patch,
1227 };
1228 
1229 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1230 	.cpuid = xen_cpuid,
1231 
1232 	.set_debugreg = xen_set_debugreg,
1233 	.get_debugreg = xen_get_debugreg,
1234 
1235 	.clts = xen_clts,
1236 
1237 	.read_cr0 = xen_read_cr0,
1238 	.write_cr0 = xen_write_cr0,
1239 
1240 	.read_cr4 = native_read_cr4,
1241 	.read_cr4_safe = native_read_cr4_safe,
1242 	.write_cr4 = xen_write_cr4,
1243 
1244 #ifdef CONFIG_X86_64
1245 	.read_cr8 = xen_read_cr8,
1246 	.write_cr8 = xen_write_cr8,
1247 #endif
1248 
1249 	.wbinvd = native_wbinvd,
1250 
1251 	.read_msr = xen_read_msr,
1252 	.write_msr = xen_write_msr,
1253 
1254 	.read_msr_safe = xen_read_msr_safe,
1255 	.write_msr_safe = xen_write_msr_safe,
1256 
1257 	.read_pmc = xen_read_pmc,
1258 
1259 	.iret = xen_iret,
1260 #ifdef CONFIG_X86_64
1261 	.usergs_sysret64 = xen_sysret64,
1262 #endif
1263 
1264 	.load_tr_desc = paravirt_nop,
1265 	.set_ldt = xen_set_ldt,
1266 	.load_gdt = xen_load_gdt,
1267 	.load_idt = xen_load_idt,
1268 	.load_tls = xen_load_tls,
1269 #ifdef CONFIG_X86_64
1270 	.load_gs_index = xen_load_gs_index,
1271 #endif
1272 
1273 	.alloc_ldt = xen_alloc_ldt,
1274 	.free_ldt = xen_free_ldt,
1275 
1276 	.store_idt = native_store_idt,
1277 	.store_tr = xen_store_tr,
1278 
1279 	.write_ldt_entry = xen_write_ldt_entry,
1280 	.write_gdt_entry = xen_write_gdt_entry,
1281 	.write_idt_entry = xen_write_idt_entry,
1282 	.load_sp0 = xen_load_sp0,
1283 
1284 	.set_iopl_mask = xen_set_iopl_mask,
1285 	.io_delay = xen_io_delay,
1286 
1287 	/* Xen takes care of %gs when switching to usermode for us */
1288 	.swapgs = paravirt_nop,
1289 
1290 	.start_context_switch = paravirt_start_context_switch,
1291 	.end_context_switch = xen_end_context_switch,
1292 };
1293 
1294 static void xen_reboot(int reason)
1295 {
1296 	struct sched_shutdown r = { .reason = reason };
1297 	int cpu;
1298 
1299 	for_each_online_cpu(cpu)
1300 		xen_pmu_finish(cpu);
1301 
1302 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1303 		BUG();
1304 }
1305 
1306 static void xen_restart(char *msg)
1307 {
1308 	xen_reboot(SHUTDOWN_reboot);
1309 }
1310 
1311 static void xen_emergency_restart(void)
1312 {
1313 	xen_reboot(SHUTDOWN_reboot);
1314 }
1315 
1316 static void xen_machine_halt(void)
1317 {
1318 	xen_reboot(SHUTDOWN_poweroff);
1319 }
1320 
1321 static void xen_machine_power_off(void)
1322 {
1323 	if (pm_power_off)
1324 		pm_power_off();
1325 	xen_reboot(SHUTDOWN_poweroff);
1326 }
1327 
1328 static void xen_crash_shutdown(struct pt_regs *regs)
1329 {
1330 	xen_reboot(SHUTDOWN_crash);
1331 }
1332 
1333 static int
1334 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1335 {
1336 	xen_reboot(SHUTDOWN_crash);
1337 	return NOTIFY_DONE;
1338 }
1339 
1340 static struct notifier_block xen_panic_block = {
1341 	.notifier_call= xen_panic_event,
1342 	.priority = INT_MIN
1343 };
1344 
1345 int xen_panic_handler_init(void)
1346 {
1347 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1348 	return 0;
1349 }
1350 
1351 static const struct machine_ops xen_machine_ops __initconst = {
1352 	.restart = xen_restart,
1353 	.halt = xen_machine_halt,
1354 	.power_off = xen_machine_power_off,
1355 	.shutdown = xen_machine_halt,
1356 	.crash_shutdown = xen_crash_shutdown,
1357 	.emergency_restart = xen_emergency_restart,
1358 };
1359 
1360 static unsigned char xen_get_nmi_reason(void)
1361 {
1362 	unsigned char reason = 0;
1363 
1364 	/* Construct a value which looks like it came from port 0x61. */
1365 	if (test_bit(_XEN_NMIREASON_io_error,
1366 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1367 		reason |= NMI_REASON_IOCHK;
1368 	if (test_bit(_XEN_NMIREASON_pci_serr,
1369 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1370 		reason |= NMI_REASON_SERR;
1371 
1372 	return reason;
1373 }
1374 
1375 static void __init xen_boot_params_init_edd(void)
1376 {
1377 #if IS_ENABLED(CONFIG_EDD)
1378 	struct xen_platform_op op;
1379 	struct edd_info *edd_info;
1380 	u32 *mbr_signature;
1381 	unsigned nr;
1382 	int ret;
1383 
1384 	edd_info = boot_params.eddbuf;
1385 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1386 
1387 	op.cmd = XENPF_firmware_info;
1388 
1389 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1390 	for (nr = 0; nr < EDDMAXNR; nr++) {
1391 		struct edd_info *info = edd_info + nr;
1392 
1393 		op.u.firmware_info.index = nr;
1394 		info->params.length = sizeof(info->params);
1395 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1396 				     &info->params);
1397 		ret = HYPERVISOR_platform_op(&op);
1398 		if (ret)
1399 			break;
1400 
1401 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1402 		C(device);
1403 		C(version);
1404 		C(interface_support);
1405 		C(legacy_max_cylinder);
1406 		C(legacy_max_head);
1407 		C(legacy_sectors_per_track);
1408 #undef C
1409 	}
1410 	boot_params.eddbuf_entries = nr;
1411 
1412 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1413 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1414 		op.u.firmware_info.index = nr;
1415 		ret = HYPERVISOR_platform_op(&op);
1416 		if (ret)
1417 			break;
1418 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1419 	}
1420 	boot_params.edd_mbr_sig_buf_entries = nr;
1421 #endif
1422 }
1423 
1424 /*
1425  * Set up the GDT and segment registers for -fstack-protector.  Until
1426  * we do this, we have to be careful not to call any stack-protected
1427  * function, which is most of the kernel.
1428  *
1429  * Note, that it is __ref because the only caller of this after init
1430  * is PVH which is not going to use xen_load_gdt_boot or other
1431  * __init functions.
1432  */
1433 static void __ref xen_setup_gdt(int cpu)
1434 {
1435 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1436 #ifdef CONFIG_X86_64
1437 		unsigned long dummy;
1438 
1439 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1440 		switch_to_new_gdt(cpu); /* GDT and GS set */
1441 
1442 		/* We are switching of the Xen provided GDT to our HVM mode
1443 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1444 		 * and we are jumping to reload it.
1445 		 */
1446 		asm volatile ("pushq %0\n"
1447 			      "leaq 1f(%%rip),%0\n"
1448 			      "pushq %0\n"
1449 			      "lretq\n"
1450 			      "1:\n"
1451 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1452 
1453 		/*
1454 		 * While not needed, we also set the %es, %ds, and %fs
1455 		 * to zero. We don't care about %ss as it is NULL.
1456 		 * Strictly speaking this is not needed as Xen zeros those
1457 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1458 		 *
1459 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1460 		 * (for BSP).
1461 		 */
1462 		loadsegment(es, 0);
1463 		loadsegment(ds, 0);
1464 		loadsegment(fs, 0);
1465 #else
1466 		/* PVH: TODO Implement. */
1467 		BUG();
1468 #endif
1469 		return; /* PVH does not need any PV GDT ops. */
1470 	}
1471 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1472 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1473 
1474 	setup_stack_canary_segment(0);
1475 	switch_to_new_gdt(0);
1476 
1477 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1478 	pv_cpu_ops.load_gdt = xen_load_gdt;
1479 }
1480 
1481 #ifdef CONFIG_XEN_PVH
1482 /*
1483  * A PV guest starts with default flags that are not set for PVH, set them
1484  * here asap.
1485  */
1486 static void xen_pvh_set_cr_flags(int cpu)
1487 {
1488 
1489 	/* Some of these are setup in 'secondary_startup_64'. The others:
1490 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1491 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1492 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1493 
1494 	if (!cpu)
1495 		return;
1496 	/*
1497 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1498 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1499 	*/
1500 	if (boot_cpu_has(X86_FEATURE_PSE))
1501 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1502 
1503 	if (boot_cpu_has(X86_FEATURE_PGE))
1504 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1505 }
1506 
1507 /*
1508  * Note, that it is ref - because the only caller of this after init
1509  * is PVH which is not going to use xen_load_gdt_boot or other
1510  * __init functions.
1511  */
1512 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1513 {
1514 	xen_setup_gdt(cpu);
1515 	xen_pvh_set_cr_flags(cpu);
1516 }
1517 
1518 static void __init xen_pvh_early_guest_init(void)
1519 {
1520 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1521 		return;
1522 
1523 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1524 		return;
1525 
1526 	xen_have_vector_callback = 1;
1527 
1528 	xen_pvh_early_cpu_init(0, false);
1529 	xen_pvh_set_cr_flags(0);
1530 
1531 #ifdef CONFIG_X86_32
1532 	BUG(); /* PVH: Implement proper support. */
1533 #endif
1534 }
1535 #endif    /* CONFIG_XEN_PVH */
1536 
1537 static void __init xen_dom0_set_legacy_features(void)
1538 {
1539 	x86_platform.legacy.rtc = 1;
1540 }
1541 
1542 /* First C function to be called on Xen boot */
1543 asmlinkage __visible void __init xen_start_kernel(void)
1544 {
1545 	struct physdev_set_iopl set_iopl;
1546 	unsigned long initrd_start = 0;
1547 	int rc;
1548 
1549 	if (!xen_start_info)
1550 		return;
1551 
1552 	xen_domain_type = XEN_PV_DOMAIN;
1553 
1554 	xen_setup_features();
1555 #ifdef CONFIG_XEN_PVH
1556 	xen_pvh_early_guest_init();
1557 #endif
1558 	xen_setup_machphys_mapping();
1559 
1560 	/* Install Xen paravirt ops */
1561 	pv_info = xen_info;
1562 	pv_init_ops = xen_init_ops;
1563 	if (!xen_pvh_domain()) {
1564 		pv_cpu_ops = xen_cpu_ops;
1565 
1566 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1567 	}
1568 
1569 	if (xen_feature(XENFEAT_auto_translated_physmap))
1570 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1571 	else
1572 		x86_init.resources.memory_setup = xen_memory_setup;
1573 	x86_init.oem.arch_setup = xen_arch_setup;
1574 	x86_init.oem.banner = xen_banner;
1575 
1576 	xen_init_time_ops();
1577 
1578 	/*
1579 	 * Set up some pagetable state before starting to set any ptes.
1580 	 */
1581 
1582 	xen_init_mmu_ops();
1583 
1584 	/* Prevent unwanted bits from being set in PTEs. */
1585 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1586 
1587 	/*
1588 	 * Prevent page tables from being allocated in highmem, even
1589 	 * if CONFIG_HIGHPTE is enabled.
1590 	 */
1591 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1592 
1593 	/* Work out if we support NX */
1594 	x86_configure_nx();
1595 
1596 	/* Get mfn list */
1597 	xen_build_dynamic_phys_to_machine();
1598 
1599 	/*
1600 	 * Set up kernel GDT and segment registers, mainly so that
1601 	 * -fstack-protector code can be executed.
1602 	 */
1603 	xen_setup_gdt(0);
1604 
1605 	xen_init_irq_ops();
1606 	xen_init_cpuid_mask();
1607 
1608 #ifdef CONFIG_X86_LOCAL_APIC
1609 	/*
1610 	 * set up the basic apic ops.
1611 	 */
1612 	xen_init_apic();
1613 #endif
1614 
1615 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1616 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1617 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1618 	}
1619 
1620 	machine_ops = xen_machine_ops;
1621 
1622 	/*
1623 	 * The only reliable way to retain the initial address of the
1624 	 * percpu gdt_page is to remember it here, so we can go and
1625 	 * mark it RW later, when the initial percpu area is freed.
1626 	 */
1627 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1628 
1629 	xen_smp_init();
1630 
1631 #ifdef CONFIG_ACPI_NUMA
1632 	/*
1633 	 * The pages we from Xen are not related to machine pages, so
1634 	 * any NUMA information the kernel tries to get from ACPI will
1635 	 * be meaningless.  Prevent it from trying.
1636 	 */
1637 	acpi_numa = -1;
1638 #endif
1639 	/* Don't do the full vcpu_info placement stuff until we have a
1640 	   possible map and a non-dummy shared_info. */
1641 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1642 
1643 	local_irq_disable();
1644 	early_boot_irqs_disabled = true;
1645 
1646 	xen_raw_console_write("mapping kernel into physical memory\n");
1647 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1648 				   xen_start_info->nr_pages);
1649 	xen_reserve_special_pages();
1650 
1651 	/* keep using Xen gdt for now; no urgent need to change it */
1652 
1653 #ifdef CONFIG_X86_32
1654 	pv_info.kernel_rpl = 1;
1655 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1656 		pv_info.kernel_rpl = 0;
1657 #else
1658 	pv_info.kernel_rpl = 0;
1659 #endif
1660 	/* set the limit of our address space */
1661 	xen_reserve_top();
1662 
1663 	/* PVH: runs at default kernel iopl of 0 */
1664 	if (!xen_pvh_domain()) {
1665 		/*
1666 		 * We used to do this in xen_arch_setup, but that is too late
1667 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1668 		 * early_amd_init which pokes 0xcf8 port.
1669 		 */
1670 		set_iopl.iopl = 1;
1671 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1672 		if (rc != 0)
1673 			xen_raw_printk("physdev_op failed %d\n", rc);
1674 	}
1675 
1676 #ifdef CONFIG_X86_32
1677 	/* set up basic CPUID stuff */
1678 	cpu_detect(&new_cpu_data);
1679 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1680 	new_cpu_data.wp_works_ok = 1;
1681 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1682 #endif
1683 
1684 	if (xen_start_info->mod_start) {
1685 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1686 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1687 	    else
1688 		initrd_start = __pa(xen_start_info->mod_start);
1689 	}
1690 
1691 	/* Poke various useful things into boot_params */
1692 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1693 	boot_params.hdr.ramdisk_image = initrd_start;
1694 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1695 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1696 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1697 
1698 	if (!xen_initial_domain()) {
1699 		add_preferred_console("xenboot", 0, NULL);
1700 		add_preferred_console("tty", 0, NULL);
1701 		add_preferred_console("hvc", 0, NULL);
1702 		if (pci_xen)
1703 			x86_init.pci.arch_init = pci_xen_init;
1704 	} else {
1705 		const struct dom0_vga_console_info *info =
1706 			(void *)((char *)xen_start_info +
1707 				 xen_start_info->console.dom0.info_off);
1708 		struct xen_platform_op op = {
1709 			.cmd = XENPF_firmware_info,
1710 			.interface_version = XENPF_INTERFACE_VERSION,
1711 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1712 		};
1713 
1714 		x86_platform.set_legacy_features =
1715 				xen_dom0_set_legacy_features;
1716 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1717 		xen_start_info->console.domU.mfn = 0;
1718 		xen_start_info->console.domU.evtchn = 0;
1719 
1720 		if (HYPERVISOR_platform_op(&op) == 0)
1721 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1722 
1723 		/* Make sure ACS will be enabled */
1724 		pci_request_acs();
1725 
1726 		xen_acpi_sleep_register();
1727 
1728 		/* Avoid searching for BIOS MP tables */
1729 		x86_init.mpparse.find_smp_config = x86_init_noop;
1730 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1731 
1732 		xen_boot_params_init_edd();
1733 	}
1734 #ifdef CONFIG_PCI
1735 	/* PCI BIOS service won't work from a PV guest. */
1736 	pci_probe &= ~PCI_PROBE_BIOS;
1737 #endif
1738 	xen_raw_console_write("about to get started...\n");
1739 
1740 	/* Let's presume PV guests always boot on vCPU with id 0. */
1741 	per_cpu(xen_vcpu_id, 0) = 0;
1742 
1743 	xen_setup_runstate_info(0);
1744 
1745 	xen_efi_init();
1746 
1747 	/* Start the world */
1748 #ifdef CONFIG_X86_32
1749 	i386_start_kernel();
1750 #else
1751 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1752 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1753 #endif
1754 }
1755 
1756 void __ref xen_hvm_init_shared_info(void)
1757 {
1758 	int cpu;
1759 	struct xen_add_to_physmap xatp;
1760 	static struct shared_info *shared_info_page = 0;
1761 
1762 	if (!shared_info_page)
1763 		shared_info_page = (struct shared_info *)
1764 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1765 	xatp.domid = DOMID_SELF;
1766 	xatp.idx = 0;
1767 	xatp.space = XENMAPSPACE_shared_info;
1768 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1769 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1770 		BUG();
1771 
1772 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1773 
1774 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1775 	 * page, we use it in the event channel upcall and in some pvclock
1776 	 * related functions. We don't need the vcpu_info placement
1777 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1778 	 * HVM.
1779 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1780 	 * online but xen_hvm_init_shared_info is run at resume time too and
1781 	 * in that case multiple vcpus might be online. */
1782 	for_each_online_cpu(cpu) {
1783 		/* Leave it to be NULL. */
1784 		if (cpu >= MAX_VIRT_CPUS)
1785 			continue;
1786 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1787 	}
1788 }
1789 
1790 #ifdef CONFIG_XEN_PVHVM
1791 static void __init init_hvm_pv_info(void)
1792 {
1793 	int major, minor;
1794 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1795 	u64 pfn;
1796 
1797 	base = xen_cpuid_base();
1798 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1799 
1800 	major = eax >> 16;
1801 	minor = eax & 0xffff;
1802 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1803 
1804 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1805 
1806 	pfn = __pa(hypercall_page);
1807 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1808 
1809 	xen_setup_features();
1810 
1811 	cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1812 	if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1813 		this_cpu_write(xen_vcpu_id, ebx);
1814 	else
1815 		this_cpu_write(xen_vcpu_id, smp_processor_id());
1816 
1817 	pv_info.name = "Xen HVM";
1818 
1819 	xen_domain_type = XEN_HVM_DOMAIN;
1820 }
1821 
1822 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1823 			      void *hcpu)
1824 {
1825 	int cpu = (long)hcpu;
1826 	switch (action) {
1827 	case CPU_UP_PREPARE:
1828 		if (cpu_acpi_id(cpu) != U32_MAX)
1829 			per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1830 		else
1831 			per_cpu(xen_vcpu_id, cpu) = cpu;
1832 		xen_vcpu_setup(cpu);
1833 		if (xen_have_vector_callback) {
1834 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1835 				xen_setup_timer(cpu);
1836 		}
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 	return NOTIFY_OK;
1842 }
1843 
1844 static struct notifier_block xen_hvm_cpu_notifier = {
1845 	.notifier_call	= xen_hvm_cpu_notify,
1846 };
1847 
1848 #ifdef CONFIG_KEXEC_CORE
1849 static void xen_hvm_shutdown(void)
1850 {
1851 	native_machine_shutdown();
1852 	if (kexec_in_progress)
1853 		xen_reboot(SHUTDOWN_soft_reset);
1854 }
1855 
1856 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1857 {
1858 	native_machine_crash_shutdown(regs);
1859 	xen_reboot(SHUTDOWN_soft_reset);
1860 }
1861 #endif
1862 
1863 static void __init xen_hvm_guest_init(void)
1864 {
1865 	if (xen_pv_domain())
1866 		return;
1867 
1868 	init_hvm_pv_info();
1869 
1870 	xen_hvm_init_shared_info();
1871 
1872 	xen_panic_handler_init();
1873 
1874 	if (xen_feature(XENFEAT_hvm_callback_vector))
1875 		xen_have_vector_callback = 1;
1876 	xen_hvm_smp_init();
1877 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1878 	xen_unplug_emulated_devices();
1879 	x86_init.irqs.intr_init = xen_init_IRQ;
1880 	xen_hvm_init_time_ops();
1881 	xen_hvm_init_mmu_ops();
1882 #ifdef CONFIG_KEXEC_CORE
1883 	machine_ops.shutdown = xen_hvm_shutdown;
1884 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1885 #endif
1886 }
1887 #endif
1888 
1889 static bool xen_nopv = false;
1890 static __init int xen_parse_nopv(char *arg)
1891 {
1892        xen_nopv = true;
1893        return 0;
1894 }
1895 early_param("xen_nopv", xen_parse_nopv);
1896 
1897 static uint32_t __init xen_platform(void)
1898 {
1899 	if (xen_nopv)
1900 		return 0;
1901 
1902 	return xen_cpuid_base();
1903 }
1904 
1905 bool xen_hvm_need_lapic(void)
1906 {
1907 	if (xen_nopv)
1908 		return false;
1909 	if (xen_pv_domain())
1910 		return false;
1911 	if (!xen_hvm_domain())
1912 		return false;
1913 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1914 		return false;
1915 	return true;
1916 }
1917 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1918 
1919 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1920 {
1921 	if (xen_pv_domain()) {
1922 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1923 		set_cpu_cap(c, X86_FEATURE_XENPV);
1924 	}
1925 }
1926 
1927 const struct hypervisor_x86 x86_hyper_xen = {
1928 	.name			= "Xen",
1929 	.detect			= xen_platform,
1930 #ifdef CONFIG_XEN_PVHVM
1931 	.init_platform		= xen_hvm_guest_init,
1932 #endif
1933 	.x2apic_available	= xen_x2apic_para_available,
1934 	.set_cpu_features       = xen_set_cpu_features,
1935 };
1936 EXPORT_SYMBOL(x86_hyper_xen);
1937 
1938 #ifdef CONFIG_HOTPLUG_CPU
1939 void xen_arch_register_cpu(int num)
1940 {
1941 	arch_register_cpu(num);
1942 }
1943 EXPORT_SYMBOL(xen_arch_register_cpu);
1944 
1945 void xen_arch_unregister_cpu(int num)
1946 {
1947 	arch_unregister_cpu(num);
1948 }
1949 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1950 #endif
1951