1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 35 #include <xen/xen.h> 36 #include <xen/interface/xen.h> 37 #include <xen/interface/version.h> 38 #include <xen/interface/physdev.h> 39 #include <xen/interface/vcpu.h> 40 #include <xen/interface/memory.h> 41 #include <xen/features.h> 42 #include <xen/page.h> 43 #include <xen/hvm.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/paravirt.h> 47 #include <asm/apic.h> 48 #include <asm/page.h> 49 #include <asm/xen/pci.h> 50 #include <asm/xen/hypercall.h> 51 #include <asm/xen/hypervisor.h> 52 #include <asm/fixmap.h> 53 #include <asm/processor.h> 54 #include <asm/proto.h> 55 #include <asm/msr-index.h> 56 #include <asm/traps.h> 57 #include <asm/setup.h> 58 #include <asm/desc.h> 59 #include <asm/pgalloc.h> 60 #include <asm/pgtable.h> 61 #include <asm/tlbflush.h> 62 #include <asm/reboot.h> 63 #include <asm/stackprotector.h> 64 #include <asm/hypervisor.h> 65 66 #include "xen-ops.h" 67 #include "mmu.h" 68 #include "multicalls.h" 69 70 EXPORT_SYMBOL_GPL(hypercall_page); 71 72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 74 75 enum xen_domain_type xen_domain_type = XEN_NATIVE; 76 EXPORT_SYMBOL_GPL(xen_domain_type); 77 78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 79 EXPORT_SYMBOL(machine_to_phys_mapping); 80 unsigned long machine_to_phys_nr; 81 EXPORT_SYMBOL(machine_to_phys_nr); 82 83 struct start_info *xen_start_info; 84 EXPORT_SYMBOL_GPL(xen_start_info); 85 86 struct shared_info xen_dummy_shared_info; 87 88 void *xen_initial_gdt; 89 90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 91 __read_mostly int xen_have_vector_callback; 92 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 93 94 /* 95 * Point at some empty memory to start with. We map the real shared_info 96 * page as soon as fixmap is up and running. 97 */ 98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; 99 100 /* 101 * Flag to determine whether vcpu info placement is available on all 102 * VCPUs. We assume it is to start with, and then set it to zero on 103 * the first failure. This is because it can succeed on some VCPUs 104 * and not others, since it can involve hypervisor memory allocation, 105 * or because the guest failed to guarantee all the appropriate 106 * constraints on all VCPUs (ie buffer can't cross a page boundary). 107 * 108 * Note that any particular CPU may be using a placed vcpu structure, 109 * but we can only optimise if the all are. 110 * 111 * 0: not available, 1: available 112 */ 113 static int have_vcpu_info_placement = 1; 114 115 static void clamp_max_cpus(void) 116 { 117 #ifdef CONFIG_SMP 118 if (setup_max_cpus > MAX_VIRT_CPUS) 119 setup_max_cpus = MAX_VIRT_CPUS; 120 #endif 121 } 122 123 static void xen_vcpu_setup(int cpu) 124 { 125 struct vcpu_register_vcpu_info info; 126 int err; 127 struct vcpu_info *vcpup; 128 129 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 130 131 if (cpu < MAX_VIRT_CPUS) 132 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 133 134 if (!have_vcpu_info_placement) { 135 if (cpu >= MAX_VIRT_CPUS) 136 clamp_max_cpus(); 137 return; 138 } 139 140 vcpup = &per_cpu(xen_vcpu_info, cpu); 141 info.mfn = arbitrary_virt_to_mfn(vcpup); 142 info.offset = offset_in_page(vcpup); 143 144 /* Check to see if the hypervisor will put the vcpu_info 145 structure where we want it, which allows direct access via 146 a percpu-variable. */ 147 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 148 149 if (err) { 150 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 151 have_vcpu_info_placement = 0; 152 clamp_max_cpus(); 153 } else { 154 /* This cpu is using the registered vcpu info, even if 155 later ones fail to. */ 156 per_cpu(xen_vcpu, cpu) = vcpup; 157 } 158 } 159 160 /* 161 * On restore, set the vcpu placement up again. 162 * If it fails, then we're in a bad state, since 163 * we can't back out from using it... 164 */ 165 void xen_vcpu_restore(void) 166 { 167 int cpu; 168 169 for_each_online_cpu(cpu) { 170 bool other_cpu = (cpu != smp_processor_id()); 171 172 if (other_cpu && 173 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 174 BUG(); 175 176 xen_setup_runstate_info(cpu); 177 178 if (have_vcpu_info_placement) 179 xen_vcpu_setup(cpu); 180 181 if (other_cpu && 182 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 183 BUG(); 184 } 185 } 186 187 static void __init xen_banner(void) 188 { 189 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 190 struct xen_extraversion extra; 191 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 192 193 printk(KERN_INFO "Booting paravirtualized kernel on %s\n", 194 pv_info.name); 195 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 196 version >> 16, version & 0xffff, extra.extraversion, 197 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 198 } 199 200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 202 203 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 204 unsigned int *cx, unsigned int *dx) 205 { 206 unsigned maskebx = ~0; 207 unsigned maskecx = ~0; 208 unsigned maskedx = ~0; 209 210 /* 211 * Mask out inconvenient features, to try and disable as many 212 * unsupported kernel subsystems as possible. 213 */ 214 switch (*ax) { 215 case 1: 216 maskecx = cpuid_leaf1_ecx_mask; 217 maskedx = cpuid_leaf1_edx_mask; 218 break; 219 220 case 0xb: 221 /* Suppress extended topology stuff */ 222 maskebx = 0; 223 break; 224 } 225 226 asm(XEN_EMULATE_PREFIX "cpuid" 227 : "=a" (*ax), 228 "=b" (*bx), 229 "=c" (*cx), 230 "=d" (*dx) 231 : "0" (*ax), "2" (*cx)); 232 233 *bx &= maskebx; 234 *cx &= maskecx; 235 *dx &= maskedx; 236 } 237 238 static void __init xen_init_cpuid_mask(void) 239 { 240 unsigned int ax, bx, cx, dx; 241 unsigned int xsave_mask; 242 243 cpuid_leaf1_edx_mask = 244 ~((1 << X86_FEATURE_MCE) | /* disable MCE */ 245 (1 << X86_FEATURE_MCA) | /* disable MCA */ 246 (1 << X86_FEATURE_MTRR) | /* disable MTRR */ 247 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 248 249 if (!xen_initial_domain()) 250 cpuid_leaf1_edx_mask &= 251 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */ 252 (1 << X86_FEATURE_ACPI)); /* disable ACPI */ 253 ax = 1; 254 xen_cpuid(&ax, &bx, &cx, &dx); 255 256 xsave_mask = 257 (1 << (X86_FEATURE_XSAVE % 32)) | 258 (1 << (X86_FEATURE_OSXSAVE % 32)); 259 260 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 261 if ((cx & xsave_mask) != xsave_mask) 262 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 263 } 264 265 static void xen_set_debugreg(int reg, unsigned long val) 266 { 267 HYPERVISOR_set_debugreg(reg, val); 268 } 269 270 static unsigned long xen_get_debugreg(int reg) 271 { 272 return HYPERVISOR_get_debugreg(reg); 273 } 274 275 static void xen_end_context_switch(struct task_struct *next) 276 { 277 xen_mc_flush(); 278 paravirt_end_context_switch(next); 279 } 280 281 static unsigned long xen_store_tr(void) 282 { 283 return 0; 284 } 285 286 /* 287 * Set the page permissions for a particular virtual address. If the 288 * address is a vmalloc mapping (or other non-linear mapping), then 289 * find the linear mapping of the page and also set its protections to 290 * match. 291 */ 292 static void set_aliased_prot(void *v, pgprot_t prot) 293 { 294 int level; 295 pte_t *ptep; 296 pte_t pte; 297 unsigned long pfn; 298 struct page *page; 299 300 ptep = lookup_address((unsigned long)v, &level); 301 BUG_ON(ptep == NULL); 302 303 pfn = pte_pfn(*ptep); 304 page = pfn_to_page(pfn); 305 306 pte = pfn_pte(pfn, prot); 307 308 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 309 BUG(); 310 311 if (!PageHighMem(page)) { 312 void *av = __va(PFN_PHYS(pfn)); 313 314 if (av != v) 315 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 316 BUG(); 317 } else 318 kmap_flush_unused(); 319 } 320 321 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 322 { 323 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 324 int i; 325 326 for(i = 0; i < entries; i += entries_per_page) 327 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 328 } 329 330 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 331 { 332 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 333 int i; 334 335 for(i = 0; i < entries; i += entries_per_page) 336 set_aliased_prot(ldt + i, PAGE_KERNEL); 337 } 338 339 static void xen_set_ldt(const void *addr, unsigned entries) 340 { 341 struct mmuext_op *op; 342 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 343 344 trace_xen_cpu_set_ldt(addr, entries); 345 346 op = mcs.args; 347 op->cmd = MMUEXT_SET_LDT; 348 op->arg1.linear_addr = (unsigned long)addr; 349 op->arg2.nr_ents = entries; 350 351 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 352 353 xen_mc_issue(PARAVIRT_LAZY_CPU); 354 } 355 356 static void xen_load_gdt(const struct desc_ptr *dtr) 357 { 358 unsigned long va = dtr->address; 359 unsigned int size = dtr->size + 1; 360 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 361 unsigned long frames[pages]; 362 int f; 363 364 /* 365 * A GDT can be up to 64k in size, which corresponds to 8192 366 * 8-byte entries, or 16 4k pages.. 367 */ 368 369 BUG_ON(size > 65536); 370 BUG_ON(va & ~PAGE_MASK); 371 372 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 373 int level; 374 pte_t *ptep; 375 unsigned long pfn, mfn; 376 void *virt; 377 378 /* 379 * The GDT is per-cpu and is in the percpu data area. 380 * That can be virtually mapped, so we need to do a 381 * page-walk to get the underlying MFN for the 382 * hypercall. The page can also be in the kernel's 383 * linear range, so we need to RO that mapping too. 384 */ 385 ptep = lookup_address(va, &level); 386 BUG_ON(ptep == NULL); 387 388 pfn = pte_pfn(*ptep); 389 mfn = pfn_to_mfn(pfn); 390 virt = __va(PFN_PHYS(pfn)); 391 392 frames[f] = mfn; 393 394 make_lowmem_page_readonly((void *)va); 395 make_lowmem_page_readonly(virt); 396 } 397 398 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 399 BUG(); 400 } 401 402 /* 403 * load_gdt for early boot, when the gdt is only mapped once 404 */ 405 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 406 { 407 unsigned long va = dtr->address; 408 unsigned int size = dtr->size + 1; 409 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 410 unsigned long frames[pages]; 411 int f; 412 413 /* 414 * A GDT can be up to 64k in size, which corresponds to 8192 415 * 8-byte entries, or 16 4k pages.. 416 */ 417 418 BUG_ON(size > 65536); 419 BUG_ON(va & ~PAGE_MASK); 420 421 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 422 pte_t pte; 423 unsigned long pfn, mfn; 424 425 pfn = virt_to_pfn(va); 426 mfn = pfn_to_mfn(pfn); 427 428 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 429 430 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 431 BUG(); 432 433 frames[f] = mfn; 434 } 435 436 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 437 BUG(); 438 } 439 440 static void load_TLS_descriptor(struct thread_struct *t, 441 unsigned int cpu, unsigned int i) 442 { 443 struct desc_struct *gdt = get_cpu_gdt_table(cpu); 444 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 445 struct multicall_space mc = __xen_mc_entry(0); 446 447 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 448 } 449 450 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 451 { 452 /* 453 * XXX sleazy hack: If we're being called in a lazy-cpu zone 454 * and lazy gs handling is enabled, it means we're in a 455 * context switch, and %gs has just been saved. This means we 456 * can zero it out to prevent faults on exit from the 457 * hypervisor if the next process has no %gs. Either way, it 458 * has been saved, and the new value will get loaded properly. 459 * This will go away as soon as Xen has been modified to not 460 * save/restore %gs for normal hypercalls. 461 * 462 * On x86_64, this hack is not used for %gs, because gs points 463 * to KERNEL_GS_BASE (and uses it for PDA references), so we 464 * must not zero %gs on x86_64 465 * 466 * For x86_64, we need to zero %fs, otherwise we may get an 467 * exception between the new %fs descriptor being loaded and 468 * %fs being effectively cleared at __switch_to(). 469 */ 470 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 471 #ifdef CONFIG_X86_32 472 lazy_load_gs(0); 473 #else 474 loadsegment(fs, 0); 475 #endif 476 } 477 478 xen_mc_batch(); 479 480 load_TLS_descriptor(t, cpu, 0); 481 load_TLS_descriptor(t, cpu, 1); 482 load_TLS_descriptor(t, cpu, 2); 483 484 xen_mc_issue(PARAVIRT_LAZY_CPU); 485 } 486 487 #ifdef CONFIG_X86_64 488 static void xen_load_gs_index(unsigned int idx) 489 { 490 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 491 BUG(); 492 } 493 #endif 494 495 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 496 const void *ptr) 497 { 498 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 499 u64 entry = *(u64 *)ptr; 500 501 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 502 503 preempt_disable(); 504 505 xen_mc_flush(); 506 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 507 BUG(); 508 509 preempt_enable(); 510 } 511 512 static int cvt_gate_to_trap(int vector, const gate_desc *val, 513 struct trap_info *info) 514 { 515 unsigned long addr; 516 517 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 518 return 0; 519 520 info->vector = vector; 521 522 addr = gate_offset(*val); 523 #ifdef CONFIG_X86_64 524 /* 525 * Look for known traps using IST, and substitute them 526 * appropriately. The debugger ones are the only ones we care 527 * about. Xen will handle faults like double_fault and 528 * machine_check, so we should never see them. Warn if 529 * there's an unexpected IST-using fault handler. 530 */ 531 if (addr == (unsigned long)debug) 532 addr = (unsigned long)xen_debug; 533 else if (addr == (unsigned long)int3) 534 addr = (unsigned long)xen_int3; 535 else if (addr == (unsigned long)stack_segment) 536 addr = (unsigned long)xen_stack_segment; 537 else if (addr == (unsigned long)double_fault || 538 addr == (unsigned long)nmi) { 539 /* Don't need to handle these */ 540 return 0; 541 #ifdef CONFIG_X86_MCE 542 } else if (addr == (unsigned long)machine_check) { 543 return 0; 544 #endif 545 } else { 546 /* Some other trap using IST? */ 547 if (WARN_ON(val->ist != 0)) 548 return 0; 549 } 550 #endif /* CONFIG_X86_64 */ 551 info->address = addr; 552 553 info->cs = gate_segment(*val); 554 info->flags = val->dpl; 555 /* interrupt gates clear IF */ 556 if (val->type == GATE_INTERRUPT) 557 info->flags |= 1 << 2; 558 559 return 1; 560 } 561 562 /* Locations of each CPU's IDT */ 563 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 564 565 /* Set an IDT entry. If the entry is part of the current IDT, then 566 also update Xen. */ 567 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 568 { 569 unsigned long p = (unsigned long)&dt[entrynum]; 570 unsigned long start, end; 571 572 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 573 574 preempt_disable(); 575 576 start = __this_cpu_read(idt_desc.address); 577 end = start + __this_cpu_read(idt_desc.size) + 1; 578 579 xen_mc_flush(); 580 581 native_write_idt_entry(dt, entrynum, g); 582 583 if (p >= start && (p + 8) <= end) { 584 struct trap_info info[2]; 585 586 info[1].address = 0; 587 588 if (cvt_gate_to_trap(entrynum, g, &info[0])) 589 if (HYPERVISOR_set_trap_table(info)) 590 BUG(); 591 } 592 593 preempt_enable(); 594 } 595 596 static void xen_convert_trap_info(const struct desc_ptr *desc, 597 struct trap_info *traps) 598 { 599 unsigned in, out, count; 600 601 count = (desc->size+1) / sizeof(gate_desc); 602 BUG_ON(count > 256); 603 604 for (in = out = 0; in < count; in++) { 605 gate_desc *entry = (gate_desc*)(desc->address) + in; 606 607 if (cvt_gate_to_trap(in, entry, &traps[out])) 608 out++; 609 } 610 traps[out].address = 0; 611 } 612 613 void xen_copy_trap_info(struct trap_info *traps) 614 { 615 const struct desc_ptr *desc = &__get_cpu_var(idt_desc); 616 617 xen_convert_trap_info(desc, traps); 618 } 619 620 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 621 hold a spinlock to protect the static traps[] array (static because 622 it avoids allocation, and saves stack space). */ 623 static void xen_load_idt(const struct desc_ptr *desc) 624 { 625 static DEFINE_SPINLOCK(lock); 626 static struct trap_info traps[257]; 627 628 trace_xen_cpu_load_idt(desc); 629 630 spin_lock(&lock); 631 632 __get_cpu_var(idt_desc) = *desc; 633 634 xen_convert_trap_info(desc, traps); 635 636 xen_mc_flush(); 637 if (HYPERVISOR_set_trap_table(traps)) 638 BUG(); 639 640 spin_unlock(&lock); 641 } 642 643 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 644 they're handled differently. */ 645 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 646 const void *desc, int type) 647 { 648 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 649 650 preempt_disable(); 651 652 switch (type) { 653 case DESC_LDT: 654 case DESC_TSS: 655 /* ignore */ 656 break; 657 658 default: { 659 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 660 661 xen_mc_flush(); 662 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 663 BUG(); 664 } 665 666 } 667 668 preempt_enable(); 669 } 670 671 /* 672 * Version of write_gdt_entry for use at early boot-time needed to 673 * update an entry as simply as possible. 674 */ 675 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 676 const void *desc, int type) 677 { 678 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 679 680 switch (type) { 681 case DESC_LDT: 682 case DESC_TSS: 683 /* ignore */ 684 break; 685 686 default: { 687 xmaddr_t maddr = virt_to_machine(&dt[entry]); 688 689 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 690 dt[entry] = *(struct desc_struct *)desc; 691 } 692 693 } 694 } 695 696 static void xen_load_sp0(struct tss_struct *tss, 697 struct thread_struct *thread) 698 { 699 struct multicall_space mcs; 700 701 mcs = xen_mc_entry(0); 702 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 703 xen_mc_issue(PARAVIRT_LAZY_CPU); 704 } 705 706 static void xen_set_iopl_mask(unsigned mask) 707 { 708 struct physdev_set_iopl set_iopl; 709 710 /* Force the change at ring 0. */ 711 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 712 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 713 } 714 715 static void xen_io_delay(void) 716 { 717 } 718 719 #ifdef CONFIG_X86_LOCAL_APIC 720 static u32 xen_apic_read(u32 reg) 721 { 722 return 0; 723 } 724 725 static void xen_apic_write(u32 reg, u32 val) 726 { 727 /* Warn to see if there's any stray references */ 728 WARN_ON(1); 729 } 730 731 static u64 xen_apic_icr_read(void) 732 { 733 return 0; 734 } 735 736 static void xen_apic_icr_write(u32 low, u32 id) 737 { 738 /* Warn to see if there's any stray references */ 739 WARN_ON(1); 740 } 741 742 static void xen_apic_wait_icr_idle(void) 743 { 744 return; 745 } 746 747 static u32 xen_safe_apic_wait_icr_idle(void) 748 { 749 return 0; 750 } 751 752 static void set_xen_basic_apic_ops(void) 753 { 754 apic->read = xen_apic_read; 755 apic->write = xen_apic_write; 756 apic->icr_read = xen_apic_icr_read; 757 apic->icr_write = xen_apic_icr_write; 758 apic->wait_icr_idle = xen_apic_wait_icr_idle; 759 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; 760 } 761 762 #endif 763 764 static void xen_clts(void) 765 { 766 struct multicall_space mcs; 767 768 mcs = xen_mc_entry(0); 769 770 MULTI_fpu_taskswitch(mcs.mc, 0); 771 772 xen_mc_issue(PARAVIRT_LAZY_CPU); 773 } 774 775 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 776 777 static unsigned long xen_read_cr0(void) 778 { 779 unsigned long cr0 = percpu_read(xen_cr0_value); 780 781 if (unlikely(cr0 == 0)) { 782 cr0 = native_read_cr0(); 783 percpu_write(xen_cr0_value, cr0); 784 } 785 786 return cr0; 787 } 788 789 static void xen_write_cr0(unsigned long cr0) 790 { 791 struct multicall_space mcs; 792 793 percpu_write(xen_cr0_value, cr0); 794 795 /* Only pay attention to cr0.TS; everything else is 796 ignored. */ 797 mcs = xen_mc_entry(0); 798 799 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 800 801 xen_mc_issue(PARAVIRT_LAZY_CPU); 802 } 803 804 static void xen_write_cr4(unsigned long cr4) 805 { 806 cr4 &= ~X86_CR4_PGE; 807 cr4 &= ~X86_CR4_PSE; 808 809 native_write_cr4(cr4); 810 } 811 812 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 813 { 814 int ret; 815 816 ret = 0; 817 818 switch (msr) { 819 #ifdef CONFIG_X86_64 820 unsigned which; 821 u64 base; 822 823 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 824 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 825 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 826 827 set: 828 base = ((u64)high << 32) | low; 829 if (HYPERVISOR_set_segment_base(which, base) != 0) 830 ret = -EIO; 831 break; 832 #endif 833 834 case MSR_STAR: 835 case MSR_CSTAR: 836 case MSR_LSTAR: 837 case MSR_SYSCALL_MASK: 838 case MSR_IA32_SYSENTER_CS: 839 case MSR_IA32_SYSENTER_ESP: 840 case MSR_IA32_SYSENTER_EIP: 841 /* Fast syscall setup is all done in hypercalls, so 842 these are all ignored. Stub them out here to stop 843 Xen console noise. */ 844 break; 845 846 case MSR_IA32_CR_PAT: 847 if (smp_processor_id() == 0) 848 xen_set_pat(((u64)high << 32) | low); 849 break; 850 851 default: 852 ret = native_write_msr_safe(msr, low, high); 853 } 854 855 return ret; 856 } 857 858 void xen_setup_shared_info(void) 859 { 860 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 861 set_fixmap(FIX_PARAVIRT_BOOTMAP, 862 xen_start_info->shared_info); 863 864 HYPERVISOR_shared_info = 865 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 866 } else 867 HYPERVISOR_shared_info = 868 (struct shared_info *)__va(xen_start_info->shared_info); 869 870 #ifndef CONFIG_SMP 871 /* In UP this is as good a place as any to set up shared info */ 872 xen_setup_vcpu_info_placement(); 873 #endif 874 875 xen_setup_mfn_list_list(); 876 } 877 878 /* This is called once we have the cpu_possible_map */ 879 void xen_setup_vcpu_info_placement(void) 880 { 881 int cpu; 882 883 for_each_possible_cpu(cpu) 884 xen_vcpu_setup(cpu); 885 886 /* xen_vcpu_setup managed to place the vcpu_info within the 887 percpu area for all cpus, so make use of it */ 888 if (have_vcpu_info_placement) { 889 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 890 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 891 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 892 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 893 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 894 } 895 } 896 897 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 898 unsigned long addr, unsigned len) 899 { 900 char *start, *end, *reloc; 901 unsigned ret; 902 903 start = end = reloc = NULL; 904 905 #define SITE(op, x) \ 906 case PARAVIRT_PATCH(op.x): \ 907 if (have_vcpu_info_placement) { \ 908 start = (char *)xen_##x##_direct; \ 909 end = xen_##x##_direct_end; \ 910 reloc = xen_##x##_direct_reloc; \ 911 } \ 912 goto patch_site 913 914 switch (type) { 915 SITE(pv_irq_ops, irq_enable); 916 SITE(pv_irq_ops, irq_disable); 917 SITE(pv_irq_ops, save_fl); 918 SITE(pv_irq_ops, restore_fl); 919 #undef SITE 920 921 patch_site: 922 if (start == NULL || (end-start) > len) 923 goto default_patch; 924 925 ret = paravirt_patch_insns(insnbuf, len, start, end); 926 927 /* Note: because reloc is assigned from something that 928 appears to be an array, gcc assumes it's non-null, 929 but doesn't know its relationship with start and 930 end. */ 931 if (reloc > start && reloc < end) { 932 int reloc_off = reloc - start; 933 long *relocp = (long *)(insnbuf + reloc_off); 934 long delta = start - (char *)addr; 935 936 *relocp += delta; 937 } 938 break; 939 940 default_patch: 941 default: 942 ret = paravirt_patch_default(type, clobbers, insnbuf, 943 addr, len); 944 break; 945 } 946 947 return ret; 948 } 949 950 static const struct pv_info xen_info __initconst = { 951 .paravirt_enabled = 1, 952 .shared_kernel_pmd = 0, 953 954 #ifdef CONFIG_X86_64 955 .extra_user_64bit_cs = FLAT_USER_CS64, 956 #endif 957 958 .name = "Xen", 959 }; 960 961 static const struct pv_init_ops xen_init_ops __initconst = { 962 .patch = xen_patch, 963 }; 964 965 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 966 .cpuid = xen_cpuid, 967 968 .set_debugreg = xen_set_debugreg, 969 .get_debugreg = xen_get_debugreg, 970 971 .clts = xen_clts, 972 973 .read_cr0 = xen_read_cr0, 974 .write_cr0 = xen_write_cr0, 975 976 .read_cr4 = native_read_cr4, 977 .read_cr4_safe = native_read_cr4_safe, 978 .write_cr4 = xen_write_cr4, 979 980 .wbinvd = native_wbinvd, 981 982 .read_msr = native_read_msr_safe, 983 .write_msr = xen_write_msr_safe, 984 .read_tsc = native_read_tsc, 985 .read_pmc = native_read_pmc, 986 987 .iret = xen_iret, 988 .irq_enable_sysexit = xen_sysexit, 989 #ifdef CONFIG_X86_64 990 .usergs_sysret32 = xen_sysret32, 991 .usergs_sysret64 = xen_sysret64, 992 #endif 993 994 .load_tr_desc = paravirt_nop, 995 .set_ldt = xen_set_ldt, 996 .load_gdt = xen_load_gdt, 997 .load_idt = xen_load_idt, 998 .load_tls = xen_load_tls, 999 #ifdef CONFIG_X86_64 1000 .load_gs_index = xen_load_gs_index, 1001 #endif 1002 1003 .alloc_ldt = xen_alloc_ldt, 1004 .free_ldt = xen_free_ldt, 1005 1006 .store_gdt = native_store_gdt, 1007 .store_idt = native_store_idt, 1008 .store_tr = xen_store_tr, 1009 1010 .write_ldt_entry = xen_write_ldt_entry, 1011 .write_gdt_entry = xen_write_gdt_entry, 1012 .write_idt_entry = xen_write_idt_entry, 1013 .load_sp0 = xen_load_sp0, 1014 1015 .set_iopl_mask = xen_set_iopl_mask, 1016 .io_delay = xen_io_delay, 1017 1018 /* Xen takes care of %gs when switching to usermode for us */ 1019 .swapgs = paravirt_nop, 1020 1021 .start_context_switch = paravirt_start_context_switch, 1022 .end_context_switch = xen_end_context_switch, 1023 }; 1024 1025 static const struct pv_apic_ops xen_apic_ops __initconst = { 1026 #ifdef CONFIG_X86_LOCAL_APIC 1027 .startup_ipi_hook = paravirt_nop, 1028 #endif 1029 }; 1030 1031 static void xen_reboot(int reason) 1032 { 1033 struct sched_shutdown r = { .reason = reason }; 1034 1035 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1036 BUG(); 1037 } 1038 1039 static void xen_restart(char *msg) 1040 { 1041 xen_reboot(SHUTDOWN_reboot); 1042 } 1043 1044 static void xen_emergency_restart(void) 1045 { 1046 xen_reboot(SHUTDOWN_reboot); 1047 } 1048 1049 static void xen_machine_halt(void) 1050 { 1051 xen_reboot(SHUTDOWN_poweroff); 1052 } 1053 1054 static void xen_machine_power_off(void) 1055 { 1056 if (pm_power_off) 1057 pm_power_off(); 1058 xen_reboot(SHUTDOWN_poweroff); 1059 } 1060 1061 static void xen_crash_shutdown(struct pt_regs *regs) 1062 { 1063 xen_reboot(SHUTDOWN_crash); 1064 } 1065 1066 static int 1067 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1068 { 1069 xen_reboot(SHUTDOWN_crash); 1070 return NOTIFY_DONE; 1071 } 1072 1073 static struct notifier_block xen_panic_block = { 1074 .notifier_call= xen_panic_event, 1075 }; 1076 1077 int xen_panic_handler_init(void) 1078 { 1079 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1080 return 0; 1081 } 1082 1083 static const struct machine_ops xen_machine_ops __initconst = { 1084 .restart = xen_restart, 1085 .halt = xen_machine_halt, 1086 .power_off = xen_machine_power_off, 1087 .shutdown = xen_machine_halt, 1088 .crash_shutdown = xen_crash_shutdown, 1089 .emergency_restart = xen_emergency_restart, 1090 }; 1091 1092 /* 1093 * Set up the GDT and segment registers for -fstack-protector. Until 1094 * we do this, we have to be careful not to call any stack-protected 1095 * function, which is most of the kernel. 1096 */ 1097 static void __init xen_setup_stackprotector(void) 1098 { 1099 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1100 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1101 1102 setup_stack_canary_segment(0); 1103 switch_to_new_gdt(0); 1104 1105 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1106 pv_cpu_ops.load_gdt = xen_load_gdt; 1107 } 1108 1109 /* First C function to be called on Xen boot */ 1110 asmlinkage void __init xen_start_kernel(void) 1111 { 1112 struct physdev_set_iopl set_iopl; 1113 int rc; 1114 pgd_t *pgd; 1115 1116 if (!xen_start_info) 1117 return; 1118 1119 xen_domain_type = XEN_PV_DOMAIN; 1120 1121 xen_setup_machphys_mapping(); 1122 1123 /* Install Xen paravirt ops */ 1124 pv_info = xen_info; 1125 pv_init_ops = xen_init_ops; 1126 pv_cpu_ops = xen_cpu_ops; 1127 pv_apic_ops = xen_apic_ops; 1128 1129 x86_init.resources.memory_setup = xen_memory_setup; 1130 x86_init.oem.arch_setup = xen_arch_setup; 1131 x86_init.oem.banner = xen_banner; 1132 1133 xen_init_time_ops(); 1134 1135 /* 1136 * Set up some pagetable state before starting to set any ptes. 1137 */ 1138 1139 xen_init_mmu_ops(); 1140 1141 /* Prevent unwanted bits from being set in PTEs. */ 1142 __supported_pte_mask &= ~_PAGE_GLOBAL; 1143 if (!xen_initial_domain()) 1144 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1145 1146 __supported_pte_mask |= _PAGE_IOMAP; 1147 1148 /* 1149 * Prevent page tables from being allocated in highmem, even 1150 * if CONFIG_HIGHPTE is enabled. 1151 */ 1152 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1153 1154 /* Work out if we support NX */ 1155 x86_configure_nx(); 1156 1157 xen_setup_features(); 1158 1159 /* Get mfn list */ 1160 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1161 xen_build_dynamic_phys_to_machine(); 1162 1163 /* 1164 * Set up kernel GDT and segment registers, mainly so that 1165 * -fstack-protector code can be executed. 1166 */ 1167 xen_setup_stackprotector(); 1168 1169 xen_init_irq_ops(); 1170 xen_init_cpuid_mask(); 1171 1172 #ifdef CONFIG_X86_LOCAL_APIC 1173 /* 1174 * set up the basic apic ops. 1175 */ 1176 set_xen_basic_apic_ops(); 1177 #endif 1178 1179 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1180 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1181 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1182 } 1183 1184 machine_ops = xen_machine_ops; 1185 1186 /* 1187 * The only reliable way to retain the initial address of the 1188 * percpu gdt_page is to remember it here, so we can go and 1189 * mark it RW later, when the initial percpu area is freed. 1190 */ 1191 xen_initial_gdt = &per_cpu(gdt_page, 0); 1192 1193 xen_smp_init(); 1194 1195 #ifdef CONFIG_ACPI_NUMA 1196 /* 1197 * The pages we from Xen are not related to machine pages, so 1198 * any NUMA information the kernel tries to get from ACPI will 1199 * be meaningless. Prevent it from trying. 1200 */ 1201 acpi_numa = -1; 1202 #endif 1203 1204 pgd = (pgd_t *)xen_start_info->pt_base; 1205 1206 if (!xen_initial_domain()) 1207 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1208 1209 __supported_pte_mask |= _PAGE_IOMAP; 1210 /* Don't do the full vcpu_info placement stuff until we have a 1211 possible map and a non-dummy shared_info. */ 1212 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1213 1214 local_irq_disable(); 1215 early_boot_irqs_disabled = true; 1216 1217 memblock_init(); 1218 1219 xen_raw_console_write("mapping kernel into physical memory\n"); 1220 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages); 1221 xen_ident_map_ISA(); 1222 1223 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1224 xen_build_mfn_list_list(); 1225 1226 /* keep using Xen gdt for now; no urgent need to change it */ 1227 1228 #ifdef CONFIG_X86_32 1229 pv_info.kernel_rpl = 1; 1230 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1231 pv_info.kernel_rpl = 0; 1232 #else 1233 pv_info.kernel_rpl = 0; 1234 #endif 1235 /* set the limit of our address space */ 1236 xen_reserve_top(); 1237 1238 /* We used to do this in xen_arch_setup, but that is too late on AMD 1239 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init 1240 * which pokes 0xcf8 port. 1241 */ 1242 set_iopl.iopl = 1; 1243 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1244 if (rc != 0) 1245 xen_raw_printk("physdev_op failed %d\n", rc); 1246 1247 #ifdef CONFIG_X86_32 1248 /* set up basic CPUID stuff */ 1249 cpu_detect(&new_cpu_data); 1250 new_cpu_data.hard_math = 1; 1251 new_cpu_data.wp_works_ok = 1; 1252 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1253 #endif 1254 1255 /* Poke various useful things into boot_params */ 1256 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1257 boot_params.hdr.ramdisk_image = xen_start_info->mod_start 1258 ? __pa(xen_start_info->mod_start) : 0; 1259 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1260 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1261 1262 if (!xen_initial_domain()) { 1263 add_preferred_console("xenboot", 0, NULL); 1264 add_preferred_console("tty", 0, NULL); 1265 add_preferred_console("hvc", 0, NULL); 1266 if (pci_xen) 1267 x86_init.pci.arch_init = pci_xen_init; 1268 } else { 1269 const struct dom0_vga_console_info *info = 1270 (void *)((char *)xen_start_info + 1271 xen_start_info->console.dom0.info_off); 1272 1273 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1274 xen_start_info->console.domU.mfn = 0; 1275 xen_start_info->console.domU.evtchn = 0; 1276 1277 /* Make sure ACS will be enabled */ 1278 pci_request_acs(); 1279 } 1280 1281 1282 xen_raw_console_write("about to get started...\n"); 1283 1284 xen_setup_runstate_info(0); 1285 1286 /* Start the world */ 1287 #ifdef CONFIG_X86_32 1288 i386_start_kernel(); 1289 #else 1290 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1291 #endif 1292 } 1293 1294 static int init_hvm_pv_info(int *major, int *minor) 1295 { 1296 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1297 u64 pfn; 1298 1299 base = xen_cpuid_base(); 1300 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1301 1302 *major = eax >> 16; 1303 *minor = eax & 0xffff; 1304 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor); 1305 1306 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1307 1308 pfn = __pa(hypercall_page); 1309 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1310 1311 xen_setup_features(); 1312 1313 pv_info.name = "Xen HVM"; 1314 1315 xen_domain_type = XEN_HVM_DOMAIN; 1316 1317 return 0; 1318 } 1319 1320 void __ref xen_hvm_init_shared_info(void) 1321 { 1322 int cpu; 1323 struct xen_add_to_physmap xatp; 1324 static struct shared_info *shared_info_page = 0; 1325 1326 if (!shared_info_page) 1327 shared_info_page = (struct shared_info *) 1328 extend_brk(PAGE_SIZE, PAGE_SIZE); 1329 xatp.domid = DOMID_SELF; 1330 xatp.idx = 0; 1331 xatp.space = XENMAPSPACE_shared_info; 1332 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1333 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1334 BUG(); 1335 1336 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1337 1338 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1339 * page, we use it in the event channel upcall and in some pvclock 1340 * related functions. We don't need the vcpu_info placement 1341 * optimizations because we don't use any pv_mmu or pv_irq op on 1342 * HVM. 1343 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1344 * online but xen_hvm_init_shared_info is run at resume time too and 1345 * in that case multiple vcpus might be online. */ 1346 for_each_online_cpu(cpu) { 1347 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1348 } 1349 } 1350 1351 #ifdef CONFIG_XEN_PVHVM 1352 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self, 1353 unsigned long action, void *hcpu) 1354 { 1355 int cpu = (long)hcpu; 1356 switch (action) { 1357 case CPU_UP_PREPARE: 1358 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1359 if (xen_have_vector_callback) 1360 xen_init_lock_cpu(cpu); 1361 break; 1362 default: 1363 break; 1364 } 1365 return NOTIFY_OK; 1366 } 1367 1368 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = { 1369 .notifier_call = xen_hvm_cpu_notify, 1370 }; 1371 1372 static void __init xen_hvm_guest_init(void) 1373 { 1374 int r; 1375 int major, minor; 1376 1377 r = init_hvm_pv_info(&major, &minor); 1378 if (r < 0) 1379 return; 1380 1381 xen_hvm_init_shared_info(); 1382 1383 if (xen_feature(XENFEAT_hvm_callback_vector)) 1384 xen_have_vector_callback = 1; 1385 xen_hvm_smp_init(); 1386 register_cpu_notifier(&xen_hvm_cpu_notifier); 1387 xen_unplug_emulated_devices(); 1388 have_vcpu_info_placement = 0; 1389 x86_init.irqs.intr_init = xen_init_IRQ; 1390 xen_hvm_init_time_ops(); 1391 xen_hvm_init_mmu_ops(); 1392 } 1393 1394 static bool __init xen_hvm_platform(void) 1395 { 1396 if (xen_pv_domain()) 1397 return false; 1398 1399 if (!xen_cpuid_base()) 1400 return false; 1401 1402 return true; 1403 } 1404 1405 bool xen_hvm_need_lapic(void) 1406 { 1407 if (xen_pv_domain()) 1408 return false; 1409 if (!xen_hvm_domain()) 1410 return false; 1411 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) 1412 return false; 1413 return true; 1414 } 1415 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1416 1417 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = { 1418 .name = "Xen HVM", 1419 .detect = xen_hvm_platform, 1420 .init_platform = xen_hvm_guest_init, 1421 }; 1422 EXPORT_SYMBOL(x86_hyper_xen_hvm); 1423 #endif 1424