1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 35 #include <xen/xen.h> 36 #include <xen/interface/xen.h> 37 #include <xen/interface/version.h> 38 #include <xen/interface/physdev.h> 39 #include <xen/interface/vcpu.h> 40 #include <xen/interface/memory.h> 41 #include <xen/features.h> 42 #include <xen/page.h> 43 #include <xen/hvm.h> 44 #include <xen/hvc-console.h> 45 46 #include <asm/paravirt.h> 47 #include <asm/apic.h> 48 #include <asm/page.h> 49 #include <asm/xen/pci.h> 50 #include <asm/xen/hypercall.h> 51 #include <asm/xen/hypervisor.h> 52 #include <asm/fixmap.h> 53 #include <asm/processor.h> 54 #include <asm/proto.h> 55 #include <asm/msr-index.h> 56 #include <asm/traps.h> 57 #include <asm/setup.h> 58 #include <asm/desc.h> 59 #include <asm/pgalloc.h> 60 #include <asm/pgtable.h> 61 #include <asm/tlbflush.h> 62 #include <asm/reboot.h> 63 #include <asm/stackprotector.h> 64 #include <asm/hypervisor.h> 65 #include <asm/mwait.h> 66 67 #ifdef CONFIG_ACPI 68 #include <linux/acpi.h> 69 #include <asm/acpi.h> 70 #include <acpi/pdc_intel.h> 71 #include <acpi/processor.h> 72 #include <xen/interface/platform.h> 73 #endif 74 75 #include "xen-ops.h" 76 #include "mmu.h" 77 #include "multicalls.h" 78 79 EXPORT_SYMBOL_GPL(hypercall_page); 80 81 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 82 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 83 84 enum xen_domain_type xen_domain_type = XEN_NATIVE; 85 EXPORT_SYMBOL_GPL(xen_domain_type); 86 87 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 88 EXPORT_SYMBOL(machine_to_phys_mapping); 89 unsigned long machine_to_phys_nr; 90 EXPORT_SYMBOL(machine_to_phys_nr); 91 92 struct start_info *xen_start_info; 93 EXPORT_SYMBOL_GPL(xen_start_info); 94 95 struct shared_info xen_dummy_shared_info; 96 97 void *xen_initial_gdt; 98 99 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 100 __read_mostly int xen_have_vector_callback; 101 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 102 103 /* 104 * Point at some empty memory to start with. We map the real shared_info 105 * page as soon as fixmap is up and running. 106 */ 107 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; 108 109 /* 110 * Flag to determine whether vcpu info placement is available on all 111 * VCPUs. We assume it is to start with, and then set it to zero on 112 * the first failure. This is because it can succeed on some VCPUs 113 * and not others, since it can involve hypervisor memory allocation, 114 * or because the guest failed to guarantee all the appropriate 115 * constraints on all VCPUs (ie buffer can't cross a page boundary). 116 * 117 * Note that any particular CPU may be using a placed vcpu structure, 118 * but we can only optimise if the all are. 119 * 120 * 0: not available, 1: available 121 */ 122 static int have_vcpu_info_placement = 1; 123 124 static void clamp_max_cpus(void) 125 { 126 #ifdef CONFIG_SMP 127 if (setup_max_cpus > MAX_VIRT_CPUS) 128 setup_max_cpus = MAX_VIRT_CPUS; 129 #endif 130 } 131 132 static void xen_vcpu_setup(int cpu) 133 { 134 struct vcpu_register_vcpu_info info; 135 int err; 136 struct vcpu_info *vcpup; 137 138 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 139 140 if (cpu < MAX_VIRT_CPUS) 141 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 142 143 if (!have_vcpu_info_placement) { 144 if (cpu >= MAX_VIRT_CPUS) 145 clamp_max_cpus(); 146 return; 147 } 148 149 vcpup = &per_cpu(xen_vcpu_info, cpu); 150 info.mfn = arbitrary_virt_to_mfn(vcpup); 151 info.offset = offset_in_page(vcpup); 152 153 /* Check to see if the hypervisor will put the vcpu_info 154 structure where we want it, which allows direct access via 155 a percpu-variable. */ 156 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 157 158 if (err) { 159 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 160 have_vcpu_info_placement = 0; 161 clamp_max_cpus(); 162 } else { 163 /* This cpu is using the registered vcpu info, even if 164 later ones fail to. */ 165 per_cpu(xen_vcpu, cpu) = vcpup; 166 } 167 } 168 169 /* 170 * On restore, set the vcpu placement up again. 171 * If it fails, then we're in a bad state, since 172 * we can't back out from using it... 173 */ 174 void xen_vcpu_restore(void) 175 { 176 int cpu; 177 178 for_each_online_cpu(cpu) { 179 bool other_cpu = (cpu != smp_processor_id()); 180 181 if (other_cpu && 182 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 183 BUG(); 184 185 xen_setup_runstate_info(cpu); 186 187 if (have_vcpu_info_placement) 188 xen_vcpu_setup(cpu); 189 190 if (other_cpu && 191 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 192 BUG(); 193 } 194 } 195 196 static void __init xen_banner(void) 197 { 198 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 199 struct xen_extraversion extra; 200 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 201 202 printk(KERN_INFO "Booting paravirtualized kernel on %s\n", 203 pv_info.name); 204 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 205 version >> 16, version & 0xffff, extra.extraversion, 206 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 207 } 208 209 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 210 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 211 212 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; 213 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 214 static __read_mostly unsigned int cpuid_leaf5_edx_val; 215 216 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 217 unsigned int *cx, unsigned int *dx) 218 { 219 unsigned maskebx = ~0; 220 unsigned maskecx = ~0; 221 unsigned maskedx = ~0; 222 unsigned setecx = 0; 223 /* 224 * Mask out inconvenient features, to try and disable as many 225 * unsupported kernel subsystems as possible. 226 */ 227 switch (*ax) { 228 case 1: 229 maskecx = cpuid_leaf1_ecx_mask; 230 setecx = cpuid_leaf1_ecx_set_mask; 231 maskedx = cpuid_leaf1_edx_mask; 232 break; 233 234 case CPUID_MWAIT_LEAF: 235 /* Synthesize the values.. */ 236 *ax = 0; 237 *bx = 0; 238 *cx = cpuid_leaf5_ecx_val; 239 *dx = cpuid_leaf5_edx_val; 240 return; 241 242 case 0xb: 243 /* Suppress extended topology stuff */ 244 maskebx = 0; 245 break; 246 } 247 248 asm(XEN_EMULATE_PREFIX "cpuid" 249 : "=a" (*ax), 250 "=b" (*bx), 251 "=c" (*cx), 252 "=d" (*dx) 253 : "0" (*ax), "2" (*cx)); 254 255 *bx &= maskebx; 256 *cx &= maskecx; 257 *cx |= setecx; 258 *dx &= maskedx; 259 260 } 261 262 static bool __init xen_check_mwait(void) 263 { 264 #ifdef CONFIG_ACPI 265 struct xen_platform_op op = { 266 .cmd = XENPF_set_processor_pminfo, 267 .u.set_pminfo.id = -1, 268 .u.set_pminfo.type = XEN_PM_PDC, 269 }; 270 uint32_t buf[3]; 271 unsigned int ax, bx, cx, dx; 272 unsigned int mwait_mask; 273 274 /* We need to determine whether it is OK to expose the MWAIT 275 * capability to the kernel to harvest deeper than C3 states from ACPI 276 * _CST using the processor_harvest_xen.c module. For this to work, we 277 * need to gather the MWAIT_LEAF values (which the cstate.c code 278 * checks against). The hypervisor won't expose the MWAIT flag because 279 * it would break backwards compatibility; so we will find out directly 280 * from the hardware and hypercall. 281 */ 282 if (!xen_initial_domain()) 283 return false; 284 285 ax = 1; 286 cx = 0; 287 288 native_cpuid(&ax, &bx, &cx, &dx); 289 290 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 291 (1 << (X86_FEATURE_MWAIT % 32)); 292 293 if ((cx & mwait_mask) != mwait_mask) 294 return false; 295 296 /* We need to emulate the MWAIT_LEAF and for that we need both 297 * ecx and edx. The hypercall provides only partial information. 298 */ 299 300 ax = CPUID_MWAIT_LEAF; 301 bx = 0; 302 cx = 0; 303 dx = 0; 304 305 native_cpuid(&ax, &bx, &cx, &dx); 306 307 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 308 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 309 */ 310 buf[0] = ACPI_PDC_REVISION_ID; 311 buf[1] = 1; 312 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 313 314 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 315 316 if ((HYPERVISOR_dom0_op(&op) == 0) && 317 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 318 cpuid_leaf5_ecx_val = cx; 319 cpuid_leaf5_edx_val = dx; 320 } 321 return true; 322 #else 323 return false; 324 #endif 325 } 326 static void __init xen_init_cpuid_mask(void) 327 { 328 unsigned int ax, bx, cx, dx; 329 unsigned int xsave_mask; 330 331 cpuid_leaf1_edx_mask = 332 ~((1 << X86_FEATURE_MCE) | /* disable MCE */ 333 (1 << X86_FEATURE_MCA) | /* disable MCA */ 334 (1 << X86_FEATURE_MTRR) | /* disable MTRR */ 335 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 336 337 if (!xen_initial_domain()) 338 cpuid_leaf1_edx_mask &= 339 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */ 340 (1 << X86_FEATURE_ACPI)); /* disable ACPI */ 341 ax = 1; 342 cx = 0; 343 xen_cpuid(&ax, &bx, &cx, &dx); 344 345 xsave_mask = 346 (1 << (X86_FEATURE_XSAVE % 32)) | 347 (1 << (X86_FEATURE_OSXSAVE % 32)); 348 349 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 350 if ((cx & xsave_mask) != xsave_mask) 351 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 352 353 if (xen_check_mwait()) 354 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); 355 } 356 357 static void xen_set_debugreg(int reg, unsigned long val) 358 { 359 HYPERVISOR_set_debugreg(reg, val); 360 } 361 362 static unsigned long xen_get_debugreg(int reg) 363 { 364 return HYPERVISOR_get_debugreg(reg); 365 } 366 367 static void xen_end_context_switch(struct task_struct *next) 368 { 369 xen_mc_flush(); 370 paravirt_end_context_switch(next); 371 } 372 373 static unsigned long xen_store_tr(void) 374 { 375 return 0; 376 } 377 378 /* 379 * Set the page permissions for a particular virtual address. If the 380 * address is a vmalloc mapping (or other non-linear mapping), then 381 * find the linear mapping of the page and also set its protections to 382 * match. 383 */ 384 static void set_aliased_prot(void *v, pgprot_t prot) 385 { 386 int level; 387 pte_t *ptep; 388 pte_t pte; 389 unsigned long pfn; 390 struct page *page; 391 392 ptep = lookup_address((unsigned long)v, &level); 393 BUG_ON(ptep == NULL); 394 395 pfn = pte_pfn(*ptep); 396 page = pfn_to_page(pfn); 397 398 pte = pfn_pte(pfn, prot); 399 400 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 401 BUG(); 402 403 if (!PageHighMem(page)) { 404 void *av = __va(PFN_PHYS(pfn)); 405 406 if (av != v) 407 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 408 BUG(); 409 } else 410 kmap_flush_unused(); 411 } 412 413 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 414 { 415 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 416 int i; 417 418 for(i = 0; i < entries; i += entries_per_page) 419 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 420 } 421 422 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 423 { 424 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 425 int i; 426 427 for(i = 0; i < entries; i += entries_per_page) 428 set_aliased_prot(ldt + i, PAGE_KERNEL); 429 } 430 431 static void xen_set_ldt(const void *addr, unsigned entries) 432 { 433 struct mmuext_op *op; 434 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 435 436 trace_xen_cpu_set_ldt(addr, entries); 437 438 op = mcs.args; 439 op->cmd = MMUEXT_SET_LDT; 440 op->arg1.linear_addr = (unsigned long)addr; 441 op->arg2.nr_ents = entries; 442 443 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 444 445 xen_mc_issue(PARAVIRT_LAZY_CPU); 446 } 447 448 static void xen_load_gdt(const struct desc_ptr *dtr) 449 { 450 unsigned long va = dtr->address; 451 unsigned int size = dtr->size + 1; 452 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 453 unsigned long frames[pages]; 454 int f; 455 456 /* 457 * A GDT can be up to 64k in size, which corresponds to 8192 458 * 8-byte entries, or 16 4k pages.. 459 */ 460 461 BUG_ON(size > 65536); 462 BUG_ON(va & ~PAGE_MASK); 463 464 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 465 int level; 466 pte_t *ptep; 467 unsigned long pfn, mfn; 468 void *virt; 469 470 /* 471 * The GDT is per-cpu and is in the percpu data area. 472 * That can be virtually mapped, so we need to do a 473 * page-walk to get the underlying MFN for the 474 * hypercall. The page can also be in the kernel's 475 * linear range, so we need to RO that mapping too. 476 */ 477 ptep = lookup_address(va, &level); 478 BUG_ON(ptep == NULL); 479 480 pfn = pte_pfn(*ptep); 481 mfn = pfn_to_mfn(pfn); 482 virt = __va(PFN_PHYS(pfn)); 483 484 frames[f] = mfn; 485 486 make_lowmem_page_readonly((void *)va); 487 make_lowmem_page_readonly(virt); 488 } 489 490 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 491 BUG(); 492 } 493 494 /* 495 * load_gdt for early boot, when the gdt is only mapped once 496 */ 497 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 498 { 499 unsigned long va = dtr->address; 500 unsigned int size = dtr->size + 1; 501 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 502 unsigned long frames[pages]; 503 int f; 504 505 /* 506 * A GDT can be up to 64k in size, which corresponds to 8192 507 * 8-byte entries, or 16 4k pages.. 508 */ 509 510 BUG_ON(size > 65536); 511 BUG_ON(va & ~PAGE_MASK); 512 513 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 514 pte_t pte; 515 unsigned long pfn, mfn; 516 517 pfn = virt_to_pfn(va); 518 mfn = pfn_to_mfn(pfn); 519 520 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 521 522 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 523 BUG(); 524 525 frames[f] = mfn; 526 } 527 528 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 529 BUG(); 530 } 531 532 static void load_TLS_descriptor(struct thread_struct *t, 533 unsigned int cpu, unsigned int i) 534 { 535 struct desc_struct *gdt = get_cpu_gdt_table(cpu); 536 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 537 struct multicall_space mc = __xen_mc_entry(0); 538 539 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 540 } 541 542 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 543 { 544 /* 545 * XXX sleazy hack: If we're being called in a lazy-cpu zone 546 * and lazy gs handling is enabled, it means we're in a 547 * context switch, and %gs has just been saved. This means we 548 * can zero it out to prevent faults on exit from the 549 * hypervisor if the next process has no %gs. Either way, it 550 * has been saved, and the new value will get loaded properly. 551 * This will go away as soon as Xen has been modified to not 552 * save/restore %gs for normal hypercalls. 553 * 554 * On x86_64, this hack is not used for %gs, because gs points 555 * to KERNEL_GS_BASE (and uses it for PDA references), so we 556 * must not zero %gs on x86_64 557 * 558 * For x86_64, we need to zero %fs, otherwise we may get an 559 * exception between the new %fs descriptor being loaded and 560 * %fs being effectively cleared at __switch_to(). 561 */ 562 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 563 #ifdef CONFIG_X86_32 564 lazy_load_gs(0); 565 #else 566 loadsegment(fs, 0); 567 #endif 568 } 569 570 xen_mc_batch(); 571 572 load_TLS_descriptor(t, cpu, 0); 573 load_TLS_descriptor(t, cpu, 1); 574 load_TLS_descriptor(t, cpu, 2); 575 576 xen_mc_issue(PARAVIRT_LAZY_CPU); 577 } 578 579 #ifdef CONFIG_X86_64 580 static void xen_load_gs_index(unsigned int idx) 581 { 582 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 583 BUG(); 584 } 585 #endif 586 587 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 588 const void *ptr) 589 { 590 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 591 u64 entry = *(u64 *)ptr; 592 593 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 594 595 preempt_disable(); 596 597 xen_mc_flush(); 598 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 599 BUG(); 600 601 preempt_enable(); 602 } 603 604 static int cvt_gate_to_trap(int vector, const gate_desc *val, 605 struct trap_info *info) 606 { 607 unsigned long addr; 608 609 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 610 return 0; 611 612 info->vector = vector; 613 614 addr = gate_offset(*val); 615 #ifdef CONFIG_X86_64 616 /* 617 * Look for known traps using IST, and substitute them 618 * appropriately. The debugger ones are the only ones we care 619 * about. Xen will handle faults like double_fault and 620 * machine_check, so we should never see them. Warn if 621 * there's an unexpected IST-using fault handler. 622 */ 623 if (addr == (unsigned long)debug) 624 addr = (unsigned long)xen_debug; 625 else if (addr == (unsigned long)int3) 626 addr = (unsigned long)xen_int3; 627 else if (addr == (unsigned long)stack_segment) 628 addr = (unsigned long)xen_stack_segment; 629 else if (addr == (unsigned long)double_fault || 630 addr == (unsigned long)nmi) { 631 /* Don't need to handle these */ 632 return 0; 633 #ifdef CONFIG_X86_MCE 634 } else if (addr == (unsigned long)machine_check) { 635 return 0; 636 #endif 637 } else { 638 /* Some other trap using IST? */ 639 if (WARN_ON(val->ist != 0)) 640 return 0; 641 } 642 #endif /* CONFIG_X86_64 */ 643 info->address = addr; 644 645 info->cs = gate_segment(*val); 646 info->flags = val->dpl; 647 /* interrupt gates clear IF */ 648 if (val->type == GATE_INTERRUPT) 649 info->flags |= 1 << 2; 650 651 return 1; 652 } 653 654 /* Locations of each CPU's IDT */ 655 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 656 657 /* Set an IDT entry. If the entry is part of the current IDT, then 658 also update Xen. */ 659 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 660 { 661 unsigned long p = (unsigned long)&dt[entrynum]; 662 unsigned long start, end; 663 664 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 665 666 preempt_disable(); 667 668 start = __this_cpu_read(idt_desc.address); 669 end = start + __this_cpu_read(idt_desc.size) + 1; 670 671 xen_mc_flush(); 672 673 native_write_idt_entry(dt, entrynum, g); 674 675 if (p >= start && (p + 8) <= end) { 676 struct trap_info info[2]; 677 678 info[1].address = 0; 679 680 if (cvt_gate_to_trap(entrynum, g, &info[0])) 681 if (HYPERVISOR_set_trap_table(info)) 682 BUG(); 683 } 684 685 preempt_enable(); 686 } 687 688 static void xen_convert_trap_info(const struct desc_ptr *desc, 689 struct trap_info *traps) 690 { 691 unsigned in, out, count; 692 693 count = (desc->size+1) / sizeof(gate_desc); 694 BUG_ON(count > 256); 695 696 for (in = out = 0; in < count; in++) { 697 gate_desc *entry = (gate_desc*)(desc->address) + in; 698 699 if (cvt_gate_to_trap(in, entry, &traps[out])) 700 out++; 701 } 702 traps[out].address = 0; 703 } 704 705 void xen_copy_trap_info(struct trap_info *traps) 706 { 707 const struct desc_ptr *desc = &__get_cpu_var(idt_desc); 708 709 xen_convert_trap_info(desc, traps); 710 } 711 712 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 713 hold a spinlock to protect the static traps[] array (static because 714 it avoids allocation, and saves stack space). */ 715 static void xen_load_idt(const struct desc_ptr *desc) 716 { 717 static DEFINE_SPINLOCK(lock); 718 static struct trap_info traps[257]; 719 720 trace_xen_cpu_load_idt(desc); 721 722 spin_lock(&lock); 723 724 __get_cpu_var(idt_desc) = *desc; 725 726 xen_convert_trap_info(desc, traps); 727 728 xen_mc_flush(); 729 if (HYPERVISOR_set_trap_table(traps)) 730 BUG(); 731 732 spin_unlock(&lock); 733 } 734 735 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 736 they're handled differently. */ 737 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 738 const void *desc, int type) 739 { 740 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 741 742 preempt_disable(); 743 744 switch (type) { 745 case DESC_LDT: 746 case DESC_TSS: 747 /* ignore */ 748 break; 749 750 default: { 751 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 752 753 xen_mc_flush(); 754 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 755 BUG(); 756 } 757 758 } 759 760 preempt_enable(); 761 } 762 763 /* 764 * Version of write_gdt_entry for use at early boot-time needed to 765 * update an entry as simply as possible. 766 */ 767 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 768 const void *desc, int type) 769 { 770 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 771 772 switch (type) { 773 case DESC_LDT: 774 case DESC_TSS: 775 /* ignore */ 776 break; 777 778 default: { 779 xmaddr_t maddr = virt_to_machine(&dt[entry]); 780 781 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 782 dt[entry] = *(struct desc_struct *)desc; 783 } 784 785 } 786 } 787 788 static void xen_load_sp0(struct tss_struct *tss, 789 struct thread_struct *thread) 790 { 791 struct multicall_space mcs; 792 793 mcs = xen_mc_entry(0); 794 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 795 xen_mc_issue(PARAVIRT_LAZY_CPU); 796 } 797 798 static void xen_set_iopl_mask(unsigned mask) 799 { 800 struct physdev_set_iopl set_iopl; 801 802 /* Force the change at ring 0. */ 803 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 804 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 805 } 806 807 static void xen_io_delay(void) 808 { 809 } 810 811 #ifdef CONFIG_X86_LOCAL_APIC 812 static u32 xen_apic_read(u32 reg) 813 { 814 return 0; 815 } 816 817 static void xen_apic_write(u32 reg, u32 val) 818 { 819 /* Warn to see if there's any stray references */ 820 WARN_ON(1); 821 } 822 823 static u64 xen_apic_icr_read(void) 824 { 825 return 0; 826 } 827 828 static void xen_apic_icr_write(u32 low, u32 id) 829 { 830 /* Warn to see if there's any stray references */ 831 WARN_ON(1); 832 } 833 834 static void xen_apic_wait_icr_idle(void) 835 { 836 return; 837 } 838 839 static u32 xen_safe_apic_wait_icr_idle(void) 840 { 841 return 0; 842 } 843 844 static void set_xen_basic_apic_ops(void) 845 { 846 apic->read = xen_apic_read; 847 apic->write = xen_apic_write; 848 apic->icr_read = xen_apic_icr_read; 849 apic->icr_write = xen_apic_icr_write; 850 apic->wait_icr_idle = xen_apic_wait_icr_idle; 851 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; 852 } 853 854 #endif 855 856 static void xen_clts(void) 857 { 858 struct multicall_space mcs; 859 860 mcs = xen_mc_entry(0); 861 862 MULTI_fpu_taskswitch(mcs.mc, 0); 863 864 xen_mc_issue(PARAVIRT_LAZY_CPU); 865 } 866 867 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 868 869 static unsigned long xen_read_cr0(void) 870 { 871 unsigned long cr0 = this_cpu_read(xen_cr0_value); 872 873 if (unlikely(cr0 == 0)) { 874 cr0 = native_read_cr0(); 875 this_cpu_write(xen_cr0_value, cr0); 876 } 877 878 return cr0; 879 } 880 881 static void xen_write_cr0(unsigned long cr0) 882 { 883 struct multicall_space mcs; 884 885 this_cpu_write(xen_cr0_value, cr0); 886 887 /* Only pay attention to cr0.TS; everything else is 888 ignored. */ 889 mcs = xen_mc_entry(0); 890 891 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 892 893 xen_mc_issue(PARAVIRT_LAZY_CPU); 894 } 895 896 static void xen_write_cr4(unsigned long cr4) 897 { 898 cr4 &= ~X86_CR4_PGE; 899 cr4 &= ~X86_CR4_PSE; 900 901 native_write_cr4(cr4); 902 } 903 904 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 905 { 906 int ret; 907 908 ret = 0; 909 910 switch (msr) { 911 #ifdef CONFIG_X86_64 912 unsigned which; 913 u64 base; 914 915 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 916 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 917 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 918 919 set: 920 base = ((u64)high << 32) | low; 921 if (HYPERVISOR_set_segment_base(which, base) != 0) 922 ret = -EIO; 923 break; 924 #endif 925 926 case MSR_STAR: 927 case MSR_CSTAR: 928 case MSR_LSTAR: 929 case MSR_SYSCALL_MASK: 930 case MSR_IA32_SYSENTER_CS: 931 case MSR_IA32_SYSENTER_ESP: 932 case MSR_IA32_SYSENTER_EIP: 933 /* Fast syscall setup is all done in hypercalls, so 934 these are all ignored. Stub them out here to stop 935 Xen console noise. */ 936 break; 937 938 case MSR_IA32_CR_PAT: 939 if (smp_processor_id() == 0) 940 xen_set_pat(((u64)high << 32) | low); 941 break; 942 943 default: 944 ret = native_write_msr_safe(msr, low, high); 945 } 946 947 return ret; 948 } 949 950 void xen_setup_shared_info(void) 951 { 952 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 953 set_fixmap(FIX_PARAVIRT_BOOTMAP, 954 xen_start_info->shared_info); 955 956 HYPERVISOR_shared_info = 957 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 958 } else 959 HYPERVISOR_shared_info = 960 (struct shared_info *)__va(xen_start_info->shared_info); 961 962 #ifndef CONFIG_SMP 963 /* In UP this is as good a place as any to set up shared info */ 964 xen_setup_vcpu_info_placement(); 965 #endif 966 967 xen_setup_mfn_list_list(); 968 } 969 970 /* This is called once we have the cpu_possible_mask */ 971 void xen_setup_vcpu_info_placement(void) 972 { 973 int cpu; 974 975 for_each_possible_cpu(cpu) 976 xen_vcpu_setup(cpu); 977 978 /* xen_vcpu_setup managed to place the vcpu_info within the 979 percpu area for all cpus, so make use of it */ 980 if (have_vcpu_info_placement) { 981 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 982 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 983 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 984 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 985 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 986 } 987 } 988 989 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 990 unsigned long addr, unsigned len) 991 { 992 char *start, *end, *reloc; 993 unsigned ret; 994 995 start = end = reloc = NULL; 996 997 #define SITE(op, x) \ 998 case PARAVIRT_PATCH(op.x): \ 999 if (have_vcpu_info_placement) { \ 1000 start = (char *)xen_##x##_direct; \ 1001 end = xen_##x##_direct_end; \ 1002 reloc = xen_##x##_direct_reloc; \ 1003 } \ 1004 goto patch_site 1005 1006 switch (type) { 1007 SITE(pv_irq_ops, irq_enable); 1008 SITE(pv_irq_ops, irq_disable); 1009 SITE(pv_irq_ops, save_fl); 1010 SITE(pv_irq_ops, restore_fl); 1011 #undef SITE 1012 1013 patch_site: 1014 if (start == NULL || (end-start) > len) 1015 goto default_patch; 1016 1017 ret = paravirt_patch_insns(insnbuf, len, start, end); 1018 1019 /* Note: because reloc is assigned from something that 1020 appears to be an array, gcc assumes it's non-null, 1021 but doesn't know its relationship with start and 1022 end. */ 1023 if (reloc > start && reloc < end) { 1024 int reloc_off = reloc - start; 1025 long *relocp = (long *)(insnbuf + reloc_off); 1026 long delta = start - (char *)addr; 1027 1028 *relocp += delta; 1029 } 1030 break; 1031 1032 default_patch: 1033 default: 1034 ret = paravirt_patch_default(type, clobbers, insnbuf, 1035 addr, len); 1036 break; 1037 } 1038 1039 return ret; 1040 } 1041 1042 static const struct pv_info xen_info __initconst = { 1043 .paravirt_enabled = 1, 1044 .shared_kernel_pmd = 0, 1045 1046 #ifdef CONFIG_X86_64 1047 .extra_user_64bit_cs = FLAT_USER_CS64, 1048 #endif 1049 1050 .name = "Xen", 1051 }; 1052 1053 static const struct pv_init_ops xen_init_ops __initconst = { 1054 .patch = xen_patch, 1055 }; 1056 1057 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1058 .cpuid = xen_cpuid, 1059 1060 .set_debugreg = xen_set_debugreg, 1061 .get_debugreg = xen_get_debugreg, 1062 1063 .clts = xen_clts, 1064 1065 .read_cr0 = xen_read_cr0, 1066 .write_cr0 = xen_write_cr0, 1067 1068 .read_cr4 = native_read_cr4, 1069 .read_cr4_safe = native_read_cr4_safe, 1070 .write_cr4 = xen_write_cr4, 1071 1072 .wbinvd = native_wbinvd, 1073 1074 .read_msr = native_read_msr_safe, 1075 .write_msr = xen_write_msr_safe, 1076 .read_tsc = native_read_tsc, 1077 .read_pmc = native_read_pmc, 1078 1079 .iret = xen_iret, 1080 .irq_enable_sysexit = xen_sysexit, 1081 #ifdef CONFIG_X86_64 1082 .usergs_sysret32 = xen_sysret32, 1083 .usergs_sysret64 = xen_sysret64, 1084 #endif 1085 1086 .load_tr_desc = paravirt_nop, 1087 .set_ldt = xen_set_ldt, 1088 .load_gdt = xen_load_gdt, 1089 .load_idt = xen_load_idt, 1090 .load_tls = xen_load_tls, 1091 #ifdef CONFIG_X86_64 1092 .load_gs_index = xen_load_gs_index, 1093 #endif 1094 1095 .alloc_ldt = xen_alloc_ldt, 1096 .free_ldt = xen_free_ldt, 1097 1098 .store_gdt = native_store_gdt, 1099 .store_idt = native_store_idt, 1100 .store_tr = xen_store_tr, 1101 1102 .write_ldt_entry = xen_write_ldt_entry, 1103 .write_gdt_entry = xen_write_gdt_entry, 1104 .write_idt_entry = xen_write_idt_entry, 1105 .load_sp0 = xen_load_sp0, 1106 1107 .set_iopl_mask = xen_set_iopl_mask, 1108 .io_delay = xen_io_delay, 1109 1110 /* Xen takes care of %gs when switching to usermode for us */ 1111 .swapgs = paravirt_nop, 1112 1113 .start_context_switch = paravirt_start_context_switch, 1114 .end_context_switch = xen_end_context_switch, 1115 }; 1116 1117 static const struct pv_apic_ops xen_apic_ops __initconst = { 1118 #ifdef CONFIG_X86_LOCAL_APIC 1119 .startup_ipi_hook = paravirt_nop, 1120 #endif 1121 }; 1122 1123 static void xen_reboot(int reason) 1124 { 1125 struct sched_shutdown r = { .reason = reason }; 1126 1127 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1128 BUG(); 1129 } 1130 1131 static void xen_restart(char *msg) 1132 { 1133 xen_reboot(SHUTDOWN_reboot); 1134 } 1135 1136 static void xen_emergency_restart(void) 1137 { 1138 xen_reboot(SHUTDOWN_reboot); 1139 } 1140 1141 static void xen_machine_halt(void) 1142 { 1143 xen_reboot(SHUTDOWN_poweroff); 1144 } 1145 1146 static void xen_machine_power_off(void) 1147 { 1148 if (pm_power_off) 1149 pm_power_off(); 1150 xen_reboot(SHUTDOWN_poweroff); 1151 } 1152 1153 static void xen_crash_shutdown(struct pt_regs *regs) 1154 { 1155 xen_reboot(SHUTDOWN_crash); 1156 } 1157 1158 static int 1159 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1160 { 1161 xen_reboot(SHUTDOWN_crash); 1162 return NOTIFY_DONE; 1163 } 1164 1165 static struct notifier_block xen_panic_block = { 1166 .notifier_call= xen_panic_event, 1167 }; 1168 1169 int xen_panic_handler_init(void) 1170 { 1171 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1172 return 0; 1173 } 1174 1175 static const struct machine_ops xen_machine_ops __initconst = { 1176 .restart = xen_restart, 1177 .halt = xen_machine_halt, 1178 .power_off = xen_machine_power_off, 1179 .shutdown = xen_machine_halt, 1180 .crash_shutdown = xen_crash_shutdown, 1181 .emergency_restart = xen_emergency_restart, 1182 }; 1183 1184 /* 1185 * Set up the GDT and segment registers for -fstack-protector. Until 1186 * we do this, we have to be careful not to call any stack-protected 1187 * function, which is most of the kernel. 1188 */ 1189 static void __init xen_setup_stackprotector(void) 1190 { 1191 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1192 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1193 1194 setup_stack_canary_segment(0); 1195 switch_to_new_gdt(0); 1196 1197 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1198 pv_cpu_ops.load_gdt = xen_load_gdt; 1199 } 1200 1201 /* First C function to be called on Xen boot */ 1202 asmlinkage void __init xen_start_kernel(void) 1203 { 1204 struct physdev_set_iopl set_iopl; 1205 int rc; 1206 pgd_t *pgd; 1207 1208 if (!xen_start_info) 1209 return; 1210 1211 xen_domain_type = XEN_PV_DOMAIN; 1212 1213 xen_setup_machphys_mapping(); 1214 1215 /* Install Xen paravirt ops */ 1216 pv_info = xen_info; 1217 pv_init_ops = xen_init_ops; 1218 pv_cpu_ops = xen_cpu_ops; 1219 pv_apic_ops = xen_apic_ops; 1220 1221 x86_init.resources.memory_setup = xen_memory_setup; 1222 x86_init.oem.arch_setup = xen_arch_setup; 1223 x86_init.oem.banner = xen_banner; 1224 1225 xen_init_time_ops(); 1226 1227 /* 1228 * Set up some pagetable state before starting to set any ptes. 1229 */ 1230 1231 xen_init_mmu_ops(); 1232 1233 /* Prevent unwanted bits from being set in PTEs. */ 1234 __supported_pte_mask &= ~_PAGE_GLOBAL; 1235 #if 0 1236 if (!xen_initial_domain()) 1237 #endif 1238 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1239 1240 __supported_pte_mask |= _PAGE_IOMAP; 1241 1242 /* 1243 * Prevent page tables from being allocated in highmem, even 1244 * if CONFIG_HIGHPTE is enabled. 1245 */ 1246 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1247 1248 /* Work out if we support NX */ 1249 x86_configure_nx(); 1250 1251 xen_setup_features(); 1252 1253 /* Get mfn list */ 1254 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1255 xen_build_dynamic_phys_to_machine(); 1256 1257 /* 1258 * Set up kernel GDT and segment registers, mainly so that 1259 * -fstack-protector code can be executed. 1260 */ 1261 xen_setup_stackprotector(); 1262 1263 xen_init_irq_ops(); 1264 xen_init_cpuid_mask(); 1265 1266 #ifdef CONFIG_X86_LOCAL_APIC 1267 /* 1268 * set up the basic apic ops. 1269 */ 1270 set_xen_basic_apic_ops(); 1271 #endif 1272 1273 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1274 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1275 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1276 } 1277 1278 machine_ops = xen_machine_ops; 1279 1280 /* 1281 * The only reliable way to retain the initial address of the 1282 * percpu gdt_page is to remember it here, so we can go and 1283 * mark it RW later, when the initial percpu area is freed. 1284 */ 1285 xen_initial_gdt = &per_cpu(gdt_page, 0); 1286 1287 xen_smp_init(); 1288 1289 #ifdef CONFIG_ACPI_NUMA 1290 /* 1291 * The pages we from Xen are not related to machine pages, so 1292 * any NUMA information the kernel tries to get from ACPI will 1293 * be meaningless. Prevent it from trying. 1294 */ 1295 acpi_numa = -1; 1296 #endif 1297 1298 pgd = (pgd_t *)xen_start_info->pt_base; 1299 1300 /* Don't do the full vcpu_info placement stuff until we have a 1301 possible map and a non-dummy shared_info. */ 1302 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1303 1304 local_irq_disable(); 1305 early_boot_irqs_disabled = true; 1306 1307 xen_raw_console_write("mapping kernel into physical memory\n"); 1308 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages); 1309 xen_ident_map_ISA(); 1310 1311 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1312 xen_build_mfn_list_list(); 1313 1314 /* keep using Xen gdt for now; no urgent need to change it */ 1315 1316 #ifdef CONFIG_X86_32 1317 pv_info.kernel_rpl = 1; 1318 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1319 pv_info.kernel_rpl = 0; 1320 #else 1321 pv_info.kernel_rpl = 0; 1322 #endif 1323 /* set the limit of our address space */ 1324 xen_reserve_top(); 1325 1326 /* We used to do this in xen_arch_setup, but that is too late on AMD 1327 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init 1328 * which pokes 0xcf8 port. 1329 */ 1330 set_iopl.iopl = 1; 1331 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1332 if (rc != 0) 1333 xen_raw_printk("physdev_op failed %d\n", rc); 1334 1335 #ifdef CONFIG_X86_32 1336 /* set up basic CPUID stuff */ 1337 cpu_detect(&new_cpu_data); 1338 new_cpu_data.hard_math = 1; 1339 new_cpu_data.wp_works_ok = 1; 1340 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1341 #endif 1342 1343 /* Poke various useful things into boot_params */ 1344 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1345 boot_params.hdr.ramdisk_image = xen_start_info->mod_start 1346 ? __pa(xen_start_info->mod_start) : 0; 1347 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1348 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1349 1350 if (!xen_initial_domain()) { 1351 add_preferred_console("xenboot", 0, NULL); 1352 add_preferred_console("tty", 0, NULL); 1353 add_preferred_console("hvc", 0, NULL); 1354 if (pci_xen) 1355 x86_init.pci.arch_init = pci_xen_init; 1356 } else { 1357 const struct dom0_vga_console_info *info = 1358 (void *)((char *)xen_start_info + 1359 xen_start_info->console.dom0.info_off); 1360 1361 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1362 xen_start_info->console.domU.mfn = 0; 1363 xen_start_info->console.domU.evtchn = 0; 1364 1365 /* Make sure ACS will be enabled */ 1366 pci_request_acs(); 1367 } 1368 1369 1370 xen_raw_console_write("about to get started...\n"); 1371 1372 xen_setup_runstate_info(0); 1373 1374 /* Start the world */ 1375 #ifdef CONFIG_X86_32 1376 i386_start_kernel(); 1377 #else 1378 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1379 #endif 1380 } 1381 1382 static int init_hvm_pv_info(int *major, int *minor) 1383 { 1384 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1385 u64 pfn; 1386 1387 base = xen_cpuid_base(); 1388 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1389 1390 *major = eax >> 16; 1391 *minor = eax & 0xffff; 1392 printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor); 1393 1394 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1395 1396 pfn = __pa(hypercall_page); 1397 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1398 1399 xen_setup_features(); 1400 1401 pv_info.name = "Xen HVM"; 1402 1403 xen_domain_type = XEN_HVM_DOMAIN; 1404 1405 return 0; 1406 } 1407 1408 void __ref xen_hvm_init_shared_info(void) 1409 { 1410 int cpu; 1411 struct xen_add_to_physmap xatp; 1412 static struct shared_info *shared_info_page = 0; 1413 1414 if (!shared_info_page) 1415 shared_info_page = (struct shared_info *) 1416 extend_brk(PAGE_SIZE, PAGE_SIZE); 1417 xatp.domid = DOMID_SELF; 1418 xatp.idx = 0; 1419 xatp.space = XENMAPSPACE_shared_info; 1420 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1421 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1422 BUG(); 1423 1424 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1425 1426 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1427 * page, we use it in the event channel upcall and in some pvclock 1428 * related functions. We don't need the vcpu_info placement 1429 * optimizations because we don't use any pv_mmu or pv_irq op on 1430 * HVM. 1431 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1432 * online but xen_hvm_init_shared_info is run at resume time too and 1433 * in that case multiple vcpus might be online. */ 1434 for_each_online_cpu(cpu) { 1435 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1436 } 1437 } 1438 1439 #ifdef CONFIG_XEN_PVHVM 1440 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self, 1441 unsigned long action, void *hcpu) 1442 { 1443 int cpu = (long)hcpu; 1444 switch (action) { 1445 case CPU_UP_PREPARE: 1446 xen_vcpu_setup(cpu); 1447 if (xen_have_vector_callback) 1448 xen_init_lock_cpu(cpu); 1449 break; 1450 default: 1451 break; 1452 } 1453 return NOTIFY_OK; 1454 } 1455 1456 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = { 1457 .notifier_call = xen_hvm_cpu_notify, 1458 }; 1459 1460 static void __init xen_hvm_guest_init(void) 1461 { 1462 int r; 1463 int major, minor; 1464 1465 r = init_hvm_pv_info(&major, &minor); 1466 if (r < 0) 1467 return; 1468 1469 xen_hvm_init_shared_info(); 1470 1471 if (xen_feature(XENFEAT_hvm_callback_vector)) 1472 xen_have_vector_callback = 1; 1473 xen_hvm_smp_init(); 1474 register_cpu_notifier(&xen_hvm_cpu_notifier); 1475 xen_unplug_emulated_devices(); 1476 x86_init.irqs.intr_init = xen_init_IRQ; 1477 xen_hvm_init_time_ops(); 1478 xen_hvm_init_mmu_ops(); 1479 } 1480 1481 static bool __init xen_hvm_platform(void) 1482 { 1483 if (xen_pv_domain()) 1484 return false; 1485 1486 if (!xen_cpuid_base()) 1487 return false; 1488 1489 return true; 1490 } 1491 1492 bool xen_hvm_need_lapic(void) 1493 { 1494 if (xen_pv_domain()) 1495 return false; 1496 if (!xen_hvm_domain()) 1497 return false; 1498 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) 1499 return false; 1500 return true; 1501 } 1502 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1503 1504 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = { 1505 .name = "Xen HVM", 1506 .detect = xen_hvm_platform, 1507 .init_platform = xen_hvm_guest_init, 1508 }; 1509 EXPORT_SYMBOL(x86_hyper_xen_hvm); 1510 #endif 1511