xref: /linux/arch/x86/xen/enlighten.c (revision 577eebeae34d340685d8985dfdb7dfe337c511e8)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/kprobes.h>
24 #include <linux/bootmem.h>
25 #include <linux/module.h>
26 #include <linux/mm.h>
27 #include <linux/page-flags.h>
28 #include <linux/highmem.h>
29 #include <linux/console.h>
30 
31 #include <xen/interface/xen.h>
32 #include <xen/interface/version.h>
33 #include <xen/interface/physdev.h>
34 #include <xen/interface/vcpu.h>
35 #include <xen/features.h>
36 #include <xen/page.h>
37 #include <xen/hvc-console.h>
38 
39 #include <asm/paravirt.h>
40 #include <asm/apic.h>
41 #include <asm/page.h>
42 #include <asm/xen/hypercall.h>
43 #include <asm/xen/hypervisor.h>
44 #include <asm/fixmap.h>
45 #include <asm/processor.h>
46 #include <asm/proto.h>
47 #include <asm/msr-index.h>
48 #include <asm/traps.h>
49 #include <asm/setup.h>
50 #include <asm/desc.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/reboot.h>
54 #include <asm/stackprotector.h>
55 
56 #include "xen-ops.h"
57 #include "mmu.h"
58 #include "multicalls.h"
59 
60 EXPORT_SYMBOL_GPL(hypercall_page);
61 
62 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
63 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
64 
65 enum xen_domain_type xen_domain_type = XEN_NATIVE;
66 EXPORT_SYMBOL_GPL(xen_domain_type);
67 
68 struct start_info *xen_start_info;
69 EXPORT_SYMBOL_GPL(xen_start_info);
70 
71 struct shared_info xen_dummy_shared_info;
72 
73 void *xen_initial_gdt;
74 
75 /*
76  * Point at some empty memory to start with. We map the real shared_info
77  * page as soon as fixmap is up and running.
78  */
79 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
80 
81 /*
82  * Flag to determine whether vcpu info placement is available on all
83  * VCPUs.  We assume it is to start with, and then set it to zero on
84  * the first failure.  This is because it can succeed on some VCPUs
85  * and not others, since it can involve hypervisor memory allocation,
86  * or because the guest failed to guarantee all the appropriate
87  * constraints on all VCPUs (ie buffer can't cross a page boundary).
88  *
89  * Note that any particular CPU may be using a placed vcpu structure,
90  * but we can only optimise if the all are.
91  *
92  * 0: not available, 1: available
93  */
94 static int have_vcpu_info_placement = 1;
95 
96 static void xen_vcpu_setup(int cpu)
97 {
98 	struct vcpu_register_vcpu_info info;
99 	int err;
100 	struct vcpu_info *vcpup;
101 
102 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
103 	per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
104 
105 	if (!have_vcpu_info_placement)
106 		return;		/* already tested, not available */
107 
108 	vcpup = &per_cpu(xen_vcpu_info, cpu);
109 
110 	info.mfn = arbitrary_virt_to_mfn(vcpup);
111 	info.offset = offset_in_page(vcpup);
112 
113 	printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
114 	       cpu, vcpup, info.mfn, info.offset);
115 
116 	/* Check to see if the hypervisor will put the vcpu_info
117 	   structure where we want it, which allows direct access via
118 	   a percpu-variable. */
119 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
120 
121 	if (err) {
122 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
123 		have_vcpu_info_placement = 0;
124 	} else {
125 		/* This cpu is using the registered vcpu info, even if
126 		   later ones fail to. */
127 		per_cpu(xen_vcpu, cpu) = vcpup;
128 
129 		printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
130 		       cpu, vcpup);
131 	}
132 }
133 
134 /*
135  * On restore, set the vcpu placement up again.
136  * If it fails, then we're in a bad state, since
137  * we can't back out from using it...
138  */
139 void xen_vcpu_restore(void)
140 {
141 	if (have_vcpu_info_placement) {
142 		int cpu;
143 
144 		for_each_online_cpu(cpu) {
145 			bool other_cpu = (cpu != smp_processor_id());
146 
147 			if (other_cpu &&
148 			    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
149 				BUG();
150 
151 			xen_vcpu_setup(cpu);
152 
153 			if (other_cpu &&
154 			    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
155 				BUG();
156 		}
157 
158 		BUG_ON(!have_vcpu_info_placement);
159 	}
160 }
161 
162 static void __init xen_banner(void)
163 {
164 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
165 	struct xen_extraversion extra;
166 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
167 
168 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
169 	       pv_info.name);
170 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
171 	       version >> 16, version & 0xffff, extra.extraversion,
172 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
173 }
174 
175 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
176 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
177 
178 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
179 		      unsigned int *cx, unsigned int *dx)
180 {
181 	unsigned maskecx = ~0;
182 	unsigned maskedx = ~0;
183 
184 	/*
185 	 * Mask out inconvenient features, to try and disable as many
186 	 * unsupported kernel subsystems as possible.
187 	 */
188 	if (*ax == 1) {
189 		maskecx = cpuid_leaf1_ecx_mask;
190 		maskedx = cpuid_leaf1_edx_mask;
191 	}
192 
193 	asm(XEN_EMULATE_PREFIX "cpuid"
194 		: "=a" (*ax),
195 		  "=b" (*bx),
196 		  "=c" (*cx),
197 		  "=d" (*dx)
198 		: "0" (*ax), "2" (*cx));
199 
200 	*cx &= maskecx;
201 	*dx &= maskedx;
202 }
203 
204 static __init void xen_init_cpuid_mask(void)
205 {
206 	unsigned int ax, bx, cx, dx;
207 
208 	cpuid_leaf1_edx_mask =
209 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
210 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
211 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
212 
213 	if (!xen_initial_domain())
214 		cpuid_leaf1_edx_mask &=
215 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
216 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
217 
218 	ax = 1;
219 	cx = 0;
220 	xen_cpuid(&ax, &bx, &cx, &dx);
221 
222 	/* cpuid claims we support xsave; try enabling it to see what happens */
223 	if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
224 		unsigned long cr4;
225 
226 		set_in_cr4(X86_CR4_OSXSAVE);
227 
228 		cr4 = read_cr4();
229 
230 		if ((cr4 & X86_CR4_OSXSAVE) == 0)
231 			cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
232 
233 		clear_in_cr4(X86_CR4_OSXSAVE);
234 	}
235 }
236 
237 static void xen_set_debugreg(int reg, unsigned long val)
238 {
239 	HYPERVISOR_set_debugreg(reg, val);
240 }
241 
242 static unsigned long xen_get_debugreg(int reg)
243 {
244 	return HYPERVISOR_get_debugreg(reg);
245 }
246 
247 static void xen_end_context_switch(struct task_struct *next)
248 {
249 	xen_mc_flush();
250 	paravirt_end_context_switch(next);
251 }
252 
253 static unsigned long xen_store_tr(void)
254 {
255 	return 0;
256 }
257 
258 /*
259  * Set the page permissions for a particular virtual address.  If the
260  * address is a vmalloc mapping (or other non-linear mapping), then
261  * find the linear mapping of the page and also set its protections to
262  * match.
263  */
264 static void set_aliased_prot(void *v, pgprot_t prot)
265 {
266 	int level;
267 	pte_t *ptep;
268 	pte_t pte;
269 	unsigned long pfn;
270 	struct page *page;
271 
272 	ptep = lookup_address((unsigned long)v, &level);
273 	BUG_ON(ptep == NULL);
274 
275 	pfn = pte_pfn(*ptep);
276 	page = pfn_to_page(pfn);
277 
278 	pte = pfn_pte(pfn, prot);
279 
280 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
281 		BUG();
282 
283 	if (!PageHighMem(page)) {
284 		void *av = __va(PFN_PHYS(pfn));
285 
286 		if (av != v)
287 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
288 				BUG();
289 	} else
290 		kmap_flush_unused();
291 }
292 
293 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
294 {
295 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
296 	int i;
297 
298 	for(i = 0; i < entries; i += entries_per_page)
299 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
300 }
301 
302 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
303 {
304 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
305 	int i;
306 
307 	for(i = 0; i < entries; i += entries_per_page)
308 		set_aliased_prot(ldt + i, PAGE_KERNEL);
309 }
310 
311 static void xen_set_ldt(const void *addr, unsigned entries)
312 {
313 	struct mmuext_op *op;
314 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
315 
316 	op = mcs.args;
317 	op->cmd = MMUEXT_SET_LDT;
318 	op->arg1.linear_addr = (unsigned long)addr;
319 	op->arg2.nr_ents = entries;
320 
321 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
322 
323 	xen_mc_issue(PARAVIRT_LAZY_CPU);
324 }
325 
326 static void xen_load_gdt(const struct desc_ptr *dtr)
327 {
328 	unsigned long va = dtr->address;
329 	unsigned int size = dtr->size + 1;
330 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
331 	unsigned long frames[pages];
332 	int f;
333 
334 	/*
335 	 * A GDT can be up to 64k in size, which corresponds to 8192
336 	 * 8-byte entries, or 16 4k pages..
337 	 */
338 
339 	BUG_ON(size > 65536);
340 	BUG_ON(va & ~PAGE_MASK);
341 
342 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
343 		int level;
344 		pte_t *ptep;
345 		unsigned long pfn, mfn;
346 		void *virt;
347 
348 		/*
349 		 * The GDT is per-cpu and is in the percpu data area.
350 		 * That can be virtually mapped, so we need to do a
351 		 * page-walk to get the underlying MFN for the
352 		 * hypercall.  The page can also be in the kernel's
353 		 * linear range, so we need to RO that mapping too.
354 		 */
355 		ptep = lookup_address(va, &level);
356 		BUG_ON(ptep == NULL);
357 
358 		pfn = pte_pfn(*ptep);
359 		mfn = pfn_to_mfn(pfn);
360 		virt = __va(PFN_PHYS(pfn));
361 
362 		frames[f] = mfn;
363 
364 		make_lowmem_page_readonly((void *)va);
365 		make_lowmem_page_readonly(virt);
366 	}
367 
368 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
369 		BUG();
370 }
371 
372 /*
373  * load_gdt for early boot, when the gdt is only mapped once
374  */
375 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
376 {
377 	unsigned long va = dtr->address;
378 	unsigned int size = dtr->size + 1;
379 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
380 	unsigned long frames[pages];
381 	int f;
382 
383 	/*
384 	 * A GDT can be up to 64k in size, which corresponds to 8192
385 	 * 8-byte entries, or 16 4k pages..
386 	 */
387 
388 	BUG_ON(size > 65536);
389 	BUG_ON(va & ~PAGE_MASK);
390 
391 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
392 		pte_t pte;
393 		unsigned long pfn, mfn;
394 
395 		pfn = virt_to_pfn(va);
396 		mfn = pfn_to_mfn(pfn);
397 
398 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
399 
400 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
401 			BUG();
402 
403 		frames[f] = mfn;
404 	}
405 
406 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
407 		BUG();
408 }
409 
410 static void load_TLS_descriptor(struct thread_struct *t,
411 				unsigned int cpu, unsigned int i)
412 {
413 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
414 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
415 	struct multicall_space mc = __xen_mc_entry(0);
416 
417 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
418 }
419 
420 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
421 {
422 	/*
423 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
424 	 * and lazy gs handling is enabled, it means we're in a
425 	 * context switch, and %gs has just been saved.  This means we
426 	 * can zero it out to prevent faults on exit from the
427 	 * hypervisor if the next process has no %gs.  Either way, it
428 	 * has been saved, and the new value will get loaded properly.
429 	 * This will go away as soon as Xen has been modified to not
430 	 * save/restore %gs for normal hypercalls.
431 	 *
432 	 * On x86_64, this hack is not used for %gs, because gs points
433 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
434 	 * must not zero %gs on x86_64
435 	 *
436 	 * For x86_64, we need to zero %fs, otherwise we may get an
437 	 * exception between the new %fs descriptor being loaded and
438 	 * %fs being effectively cleared at __switch_to().
439 	 */
440 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
441 #ifdef CONFIG_X86_32
442 		lazy_load_gs(0);
443 #else
444 		loadsegment(fs, 0);
445 #endif
446 	}
447 
448 	xen_mc_batch();
449 
450 	load_TLS_descriptor(t, cpu, 0);
451 	load_TLS_descriptor(t, cpu, 1);
452 	load_TLS_descriptor(t, cpu, 2);
453 
454 	xen_mc_issue(PARAVIRT_LAZY_CPU);
455 }
456 
457 #ifdef CONFIG_X86_64
458 static void xen_load_gs_index(unsigned int idx)
459 {
460 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
461 		BUG();
462 }
463 #endif
464 
465 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
466 				const void *ptr)
467 {
468 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
469 	u64 entry = *(u64 *)ptr;
470 
471 	preempt_disable();
472 
473 	xen_mc_flush();
474 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
475 		BUG();
476 
477 	preempt_enable();
478 }
479 
480 static int cvt_gate_to_trap(int vector, const gate_desc *val,
481 			    struct trap_info *info)
482 {
483 	unsigned long addr;
484 
485 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
486 		return 0;
487 
488 	info->vector = vector;
489 
490 	addr = gate_offset(*val);
491 #ifdef CONFIG_X86_64
492 	/*
493 	 * Look for known traps using IST, and substitute them
494 	 * appropriately.  The debugger ones are the only ones we care
495 	 * about.  Xen will handle faults like double_fault and
496 	 * machine_check, so we should never see them.  Warn if
497 	 * there's an unexpected IST-using fault handler.
498 	 */
499 	if (addr == (unsigned long)debug)
500 		addr = (unsigned long)xen_debug;
501 	else if (addr == (unsigned long)int3)
502 		addr = (unsigned long)xen_int3;
503 	else if (addr == (unsigned long)stack_segment)
504 		addr = (unsigned long)xen_stack_segment;
505 	else if (addr == (unsigned long)double_fault ||
506 		 addr == (unsigned long)nmi) {
507 		/* Don't need to handle these */
508 		return 0;
509 #ifdef CONFIG_X86_MCE
510 	} else if (addr == (unsigned long)machine_check) {
511 		return 0;
512 #endif
513 	} else {
514 		/* Some other trap using IST? */
515 		if (WARN_ON(val->ist != 0))
516 			return 0;
517 	}
518 #endif	/* CONFIG_X86_64 */
519 	info->address = addr;
520 
521 	info->cs = gate_segment(*val);
522 	info->flags = val->dpl;
523 	/* interrupt gates clear IF */
524 	if (val->type == GATE_INTERRUPT)
525 		info->flags |= 1 << 2;
526 
527 	return 1;
528 }
529 
530 /* Locations of each CPU's IDT */
531 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
532 
533 /* Set an IDT entry.  If the entry is part of the current IDT, then
534    also update Xen. */
535 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
536 {
537 	unsigned long p = (unsigned long)&dt[entrynum];
538 	unsigned long start, end;
539 
540 	preempt_disable();
541 
542 	start = __get_cpu_var(idt_desc).address;
543 	end = start + __get_cpu_var(idt_desc).size + 1;
544 
545 	xen_mc_flush();
546 
547 	native_write_idt_entry(dt, entrynum, g);
548 
549 	if (p >= start && (p + 8) <= end) {
550 		struct trap_info info[2];
551 
552 		info[1].address = 0;
553 
554 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
555 			if (HYPERVISOR_set_trap_table(info))
556 				BUG();
557 	}
558 
559 	preempt_enable();
560 }
561 
562 static void xen_convert_trap_info(const struct desc_ptr *desc,
563 				  struct trap_info *traps)
564 {
565 	unsigned in, out, count;
566 
567 	count = (desc->size+1) / sizeof(gate_desc);
568 	BUG_ON(count > 256);
569 
570 	for (in = out = 0; in < count; in++) {
571 		gate_desc *entry = (gate_desc*)(desc->address) + in;
572 
573 		if (cvt_gate_to_trap(in, entry, &traps[out]))
574 			out++;
575 	}
576 	traps[out].address = 0;
577 }
578 
579 void xen_copy_trap_info(struct trap_info *traps)
580 {
581 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
582 
583 	xen_convert_trap_info(desc, traps);
584 }
585 
586 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
587    hold a spinlock to protect the static traps[] array (static because
588    it avoids allocation, and saves stack space). */
589 static void xen_load_idt(const struct desc_ptr *desc)
590 {
591 	static DEFINE_SPINLOCK(lock);
592 	static struct trap_info traps[257];
593 
594 	spin_lock(&lock);
595 
596 	__get_cpu_var(idt_desc) = *desc;
597 
598 	xen_convert_trap_info(desc, traps);
599 
600 	xen_mc_flush();
601 	if (HYPERVISOR_set_trap_table(traps))
602 		BUG();
603 
604 	spin_unlock(&lock);
605 }
606 
607 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
608    they're handled differently. */
609 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
610 				const void *desc, int type)
611 {
612 	preempt_disable();
613 
614 	switch (type) {
615 	case DESC_LDT:
616 	case DESC_TSS:
617 		/* ignore */
618 		break;
619 
620 	default: {
621 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
622 
623 		xen_mc_flush();
624 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
625 			BUG();
626 	}
627 
628 	}
629 
630 	preempt_enable();
631 }
632 
633 /*
634  * Version of write_gdt_entry for use at early boot-time needed to
635  * update an entry as simply as possible.
636  */
637 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
638 					    const void *desc, int type)
639 {
640 	switch (type) {
641 	case DESC_LDT:
642 	case DESC_TSS:
643 		/* ignore */
644 		break;
645 
646 	default: {
647 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
648 
649 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
650 			dt[entry] = *(struct desc_struct *)desc;
651 	}
652 
653 	}
654 }
655 
656 static void xen_load_sp0(struct tss_struct *tss,
657 			 struct thread_struct *thread)
658 {
659 	struct multicall_space mcs = xen_mc_entry(0);
660 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
661 	xen_mc_issue(PARAVIRT_LAZY_CPU);
662 }
663 
664 static void xen_set_iopl_mask(unsigned mask)
665 {
666 	struct physdev_set_iopl set_iopl;
667 
668 	/* Force the change at ring 0. */
669 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
670 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
671 }
672 
673 static void xen_io_delay(void)
674 {
675 }
676 
677 #ifdef CONFIG_X86_LOCAL_APIC
678 static u32 xen_apic_read(u32 reg)
679 {
680 	return 0;
681 }
682 
683 static void xen_apic_write(u32 reg, u32 val)
684 {
685 	/* Warn to see if there's any stray references */
686 	WARN_ON(1);
687 }
688 
689 static u64 xen_apic_icr_read(void)
690 {
691 	return 0;
692 }
693 
694 static void xen_apic_icr_write(u32 low, u32 id)
695 {
696 	/* Warn to see if there's any stray references */
697 	WARN_ON(1);
698 }
699 
700 static void xen_apic_wait_icr_idle(void)
701 {
702         return;
703 }
704 
705 static u32 xen_safe_apic_wait_icr_idle(void)
706 {
707         return 0;
708 }
709 
710 static void set_xen_basic_apic_ops(void)
711 {
712 	apic->read = xen_apic_read;
713 	apic->write = xen_apic_write;
714 	apic->icr_read = xen_apic_icr_read;
715 	apic->icr_write = xen_apic_icr_write;
716 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
717 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
718 }
719 
720 #endif
721 
722 
723 static void xen_clts(void)
724 {
725 	struct multicall_space mcs;
726 
727 	mcs = xen_mc_entry(0);
728 
729 	MULTI_fpu_taskswitch(mcs.mc, 0);
730 
731 	xen_mc_issue(PARAVIRT_LAZY_CPU);
732 }
733 
734 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
735 
736 static unsigned long xen_read_cr0(void)
737 {
738 	unsigned long cr0 = percpu_read(xen_cr0_value);
739 
740 	if (unlikely(cr0 == 0)) {
741 		cr0 = native_read_cr0();
742 		percpu_write(xen_cr0_value, cr0);
743 	}
744 
745 	return cr0;
746 }
747 
748 static void xen_write_cr0(unsigned long cr0)
749 {
750 	struct multicall_space mcs;
751 
752 	percpu_write(xen_cr0_value, cr0);
753 
754 	/* Only pay attention to cr0.TS; everything else is
755 	   ignored. */
756 	mcs = xen_mc_entry(0);
757 
758 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
759 
760 	xen_mc_issue(PARAVIRT_LAZY_CPU);
761 }
762 
763 static void xen_write_cr4(unsigned long cr4)
764 {
765 	cr4 &= ~X86_CR4_PGE;
766 	cr4 &= ~X86_CR4_PSE;
767 
768 	native_write_cr4(cr4);
769 }
770 
771 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
772 {
773 	int ret;
774 
775 	ret = 0;
776 
777 	switch (msr) {
778 #ifdef CONFIG_X86_64
779 		unsigned which;
780 		u64 base;
781 
782 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
783 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
784 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
785 
786 	set:
787 		base = ((u64)high << 32) | low;
788 		if (HYPERVISOR_set_segment_base(which, base) != 0)
789 			ret = -EFAULT;
790 		break;
791 #endif
792 
793 	case MSR_STAR:
794 	case MSR_CSTAR:
795 	case MSR_LSTAR:
796 	case MSR_SYSCALL_MASK:
797 	case MSR_IA32_SYSENTER_CS:
798 	case MSR_IA32_SYSENTER_ESP:
799 	case MSR_IA32_SYSENTER_EIP:
800 		/* Fast syscall setup is all done in hypercalls, so
801 		   these are all ignored.  Stub them out here to stop
802 		   Xen console noise. */
803 		break;
804 
805 	default:
806 		ret = native_write_msr_safe(msr, low, high);
807 	}
808 
809 	return ret;
810 }
811 
812 void xen_setup_shared_info(void)
813 {
814 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
815 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
816 			   xen_start_info->shared_info);
817 
818 		HYPERVISOR_shared_info =
819 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
820 	} else
821 		HYPERVISOR_shared_info =
822 			(struct shared_info *)__va(xen_start_info->shared_info);
823 
824 #ifndef CONFIG_SMP
825 	/* In UP this is as good a place as any to set up shared info */
826 	xen_setup_vcpu_info_placement();
827 #endif
828 
829 	xen_setup_mfn_list_list();
830 }
831 
832 /* This is called once we have the cpu_possible_map */
833 void xen_setup_vcpu_info_placement(void)
834 {
835 	int cpu;
836 
837 	for_each_possible_cpu(cpu)
838 		xen_vcpu_setup(cpu);
839 
840 	/* xen_vcpu_setup managed to place the vcpu_info within the
841 	   percpu area for all cpus, so make use of it */
842 	if (have_vcpu_info_placement) {
843 		printk(KERN_INFO "Xen: using vcpu_info placement\n");
844 
845 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
846 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
847 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
848 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
849 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
850 	}
851 }
852 
853 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
854 			  unsigned long addr, unsigned len)
855 {
856 	char *start, *end, *reloc;
857 	unsigned ret;
858 
859 	start = end = reloc = NULL;
860 
861 #define SITE(op, x)							\
862 	case PARAVIRT_PATCH(op.x):					\
863 	if (have_vcpu_info_placement) {					\
864 		start = (char *)xen_##x##_direct;			\
865 		end = xen_##x##_direct_end;				\
866 		reloc = xen_##x##_direct_reloc;				\
867 	}								\
868 	goto patch_site
869 
870 	switch (type) {
871 		SITE(pv_irq_ops, irq_enable);
872 		SITE(pv_irq_ops, irq_disable);
873 		SITE(pv_irq_ops, save_fl);
874 		SITE(pv_irq_ops, restore_fl);
875 #undef SITE
876 
877 	patch_site:
878 		if (start == NULL || (end-start) > len)
879 			goto default_patch;
880 
881 		ret = paravirt_patch_insns(insnbuf, len, start, end);
882 
883 		/* Note: because reloc is assigned from something that
884 		   appears to be an array, gcc assumes it's non-null,
885 		   but doesn't know its relationship with start and
886 		   end. */
887 		if (reloc > start && reloc < end) {
888 			int reloc_off = reloc - start;
889 			long *relocp = (long *)(insnbuf + reloc_off);
890 			long delta = start - (char *)addr;
891 
892 			*relocp += delta;
893 		}
894 		break;
895 
896 	default_patch:
897 	default:
898 		ret = paravirt_patch_default(type, clobbers, insnbuf,
899 					     addr, len);
900 		break;
901 	}
902 
903 	return ret;
904 }
905 
906 static const struct pv_info xen_info __initdata = {
907 	.paravirt_enabled = 1,
908 	.shared_kernel_pmd = 0,
909 
910 	.name = "Xen",
911 };
912 
913 static const struct pv_init_ops xen_init_ops __initdata = {
914 	.patch = xen_patch,
915 
916 	.banner = xen_banner,
917 	.memory_setup = xen_memory_setup,
918 	.arch_setup = xen_arch_setup,
919 	.post_allocator_init = xen_post_allocator_init,
920 };
921 
922 static const struct pv_time_ops xen_time_ops __initdata = {
923 	.time_init = xen_time_init,
924 
925 	.set_wallclock = xen_set_wallclock,
926 	.get_wallclock = xen_get_wallclock,
927 	.get_tsc_khz = xen_tsc_khz,
928 	.sched_clock = xen_sched_clock,
929 };
930 
931 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
932 	.cpuid = xen_cpuid,
933 
934 	.set_debugreg = xen_set_debugreg,
935 	.get_debugreg = xen_get_debugreg,
936 
937 	.clts = xen_clts,
938 
939 	.read_cr0 = xen_read_cr0,
940 	.write_cr0 = xen_write_cr0,
941 
942 	.read_cr4 = native_read_cr4,
943 	.read_cr4_safe = native_read_cr4_safe,
944 	.write_cr4 = xen_write_cr4,
945 
946 	.wbinvd = native_wbinvd,
947 
948 	.read_msr = native_read_msr_safe,
949 	.write_msr = xen_write_msr_safe,
950 	.read_tsc = native_read_tsc,
951 	.read_pmc = native_read_pmc,
952 
953 	.iret = xen_iret,
954 	.irq_enable_sysexit = xen_sysexit,
955 #ifdef CONFIG_X86_64
956 	.usergs_sysret32 = xen_sysret32,
957 	.usergs_sysret64 = xen_sysret64,
958 #endif
959 
960 	.load_tr_desc = paravirt_nop,
961 	.set_ldt = xen_set_ldt,
962 	.load_gdt = xen_load_gdt,
963 	.load_idt = xen_load_idt,
964 	.load_tls = xen_load_tls,
965 #ifdef CONFIG_X86_64
966 	.load_gs_index = xen_load_gs_index,
967 #endif
968 
969 	.alloc_ldt = xen_alloc_ldt,
970 	.free_ldt = xen_free_ldt,
971 
972 	.store_gdt = native_store_gdt,
973 	.store_idt = native_store_idt,
974 	.store_tr = xen_store_tr,
975 
976 	.write_ldt_entry = xen_write_ldt_entry,
977 	.write_gdt_entry = xen_write_gdt_entry,
978 	.write_idt_entry = xen_write_idt_entry,
979 	.load_sp0 = xen_load_sp0,
980 
981 	.set_iopl_mask = xen_set_iopl_mask,
982 	.io_delay = xen_io_delay,
983 
984 	/* Xen takes care of %gs when switching to usermode for us */
985 	.swapgs = paravirt_nop,
986 
987 	.start_context_switch = paravirt_start_context_switch,
988 	.end_context_switch = xen_end_context_switch,
989 };
990 
991 static const struct pv_apic_ops xen_apic_ops __initdata = {
992 #ifdef CONFIG_X86_LOCAL_APIC
993 	.setup_boot_clock = paravirt_nop,
994 	.setup_secondary_clock = paravirt_nop,
995 	.startup_ipi_hook = paravirt_nop,
996 #endif
997 };
998 
999 static void xen_reboot(int reason)
1000 {
1001 	struct sched_shutdown r = { .reason = reason };
1002 
1003 #ifdef CONFIG_SMP
1004 	smp_send_stop();
1005 #endif
1006 
1007 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1008 		BUG();
1009 }
1010 
1011 static void xen_restart(char *msg)
1012 {
1013 	xen_reboot(SHUTDOWN_reboot);
1014 }
1015 
1016 static void xen_emergency_restart(void)
1017 {
1018 	xen_reboot(SHUTDOWN_reboot);
1019 }
1020 
1021 static void xen_machine_halt(void)
1022 {
1023 	xen_reboot(SHUTDOWN_poweroff);
1024 }
1025 
1026 static void xen_crash_shutdown(struct pt_regs *regs)
1027 {
1028 	xen_reboot(SHUTDOWN_crash);
1029 }
1030 
1031 static const struct machine_ops __initdata xen_machine_ops = {
1032 	.restart = xen_restart,
1033 	.halt = xen_machine_halt,
1034 	.power_off = xen_machine_halt,
1035 	.shutdown = xen_machine_halt,
1036 	.crash_shutdown = xen_crash_shutdown,
1037 	.emergency_restart = xen_emergency_restart,
1038 };
1039 
1040 /*
1041  * Set up the GDT and segment registers for -fstack-protector.  Until
1042  * we do this, we have to be careful not to call any stack-protected
1043  * function, which is most of the kernel.
1044  */
1045 static void __init xen_setup_stackprotector(void)
1046 {
1047 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1048 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1049 
1050 	setup_stack_canary_segment(0);
1051 	switch_to_new_gdt(0);
1052 
1053 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1054 	pv_cpu_ops.load_gdt = xen_load_gdt;
1055 }
1056 
1057 /* First C function to be called on Xen boot */
1058 asmlinkage void __init xen_start_kernel(void)
1059 {
1060 	pgd_t *pgd;
1061 
1062 	if (!xen_start_info)
1063 		return;
1064 
1065 	xen_domain_type = XEN_PV_DOMAIN;
1066 
1067 	/* Install Xen paravirt ops */
1068 	pv_info = xen_info;
1069 	pv_init_ops = xen_init_ops;
1070 	pv_time_ops = xen_time_ops;
1071 	pv_cpu_ops = xen_cpu_ops;
1072 	pv_apic_ops = xen_apic_ops;
1073 	pv_mmu_ops = xen_mmu_ops;
1074 
1075 	/*
1076 	 * Set up some pagetable state before starting to set any ptes.
1077 	 */
1078 
1079 	/* Prevent unwanted bits from being set in PTEs. */
1080 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1081 	if (!xen_initial_domain())
1082 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1083 
1084 	__supported_pte_mask |= _PAGE_IOMAP;
1085 
1086 	xen_setup_features();
1087 
1088 	/* Get mfn list */
1089 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1090 		xen_build_dynamic_phys_to_machine();
1091 
1092 	/*
1093 	 * Set up kernel GDT and segment registers, mainly so that
1094 	 * -fstack-protector code can be executed.
1095 	 */
1096 	xen_setup_stackprotector();
1097 
1098 	xen_init_irq_ops();
1099 	xen_init_cpuid_mask();
1100 
1101 #ifdef CONFIG_X86_LOCAL_APIC
1102 	/*
1103 	 * set up the basic apic ops.
1104 	 */
1105 	set_xen_basic_apic_ops();
1106 #endif
1107 
1108 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1109 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1110 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1111 	}
1112 
1113 	machine_ops = xen_machine_ops;
1114 
1115 	/*
1116 	 * The only reliable way to retain the initial address of the
1117 	 * percpu gdt_page is to remember it here, so we can go and
1118 	 * mark it RW later, when the initial percpu area is freed.
1119 	 */
1120 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1121 
1122 	xen_smp_init();
1123 
1124 	pgd = (pgd_t *)xen_start_info->pt_base;
1125 
1126 #ifdef CONFIG_X86_64
1127 	/* Work out if we support NX */
1128 	check_efer();
1129 #endif
1130 
1131 	/* Don't do the full vcpu_info placement stuff until we have a
1132 	   possible map and a non-dummy shared_info. */
1133 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1134 
1135 	local_irq_disable();
1136 	early_boot_irqs_off();
1137 
1138 	xen_raw_console_write("mapping kernel into physical memory\n");
1139 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1140 
1141 	init_mm.pgd = pgd;
1142 
1143 	/* keep using Xen gdt for now; no urgent need to change it */
1144 
1145 	pv_info.kernel_rpl = 1;
1146 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1147 		pv_info.kernel_rpl = 0;
1148 
1149 	/* set the limit of our address space */
1150 	xen_reserve_top();
1151 
1152 #ifdef CONFIG_X86_32
1153 	/* set up basic CPUID stuff */
1154 	cpu_detect(&new_cpu_data);
1155 	new_cpu_data.hard_math = 1;
1156 	new_cpu_data.wp_works_ok = 1;
1157 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1158 #endif
1159 
1160 	/* Poke various useful things into boot_params */
1161 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1162 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1163 		? __pa(xen_start_info->mod_start) : 0;
1164 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1165 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1166 
1167 	if (!xen_initial_domain()) {
1168 		add_preferred_console("xenboot", 0, NULL);
1169 		add_preferred_console("tty", 0, NULL);
1170 		add_preferred_console("hvc", 0, NULL);
1171 	}
1172 
1173 	xen_raw_console_write("about to get started...\n");
1174 
1175 	/* Start the world */
1176 #ifdef CONFIG_X86_32
1177 	i386_start_kernel();
1178 #else
1179 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1180 #endif
1181 }
1182