xref: /linux/arch/x86/xen/enlighten.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45 #include <xen/acpi.h>
46 
47 #include <asm/paravirt.h>
48 #include <asm/apic.h>
49 #include <asm/page.h>
50 #include <asm/xen/pci.h>
51 #include <asm/xen/hypercall.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/fixmap.h>
54 #include <asm/processor.h>
55 #include <asm/proto.h>
56 #include <asm/msr-index.h>
57 #include <asm/traps.h>
58 #include <asm/setup.h>
59 #include <asm/desc.h>
60 #include <asm/pgalloc.h>
61 #include <asm/pgtable.h>
62 #include <asm/tlbflush.h>
63 #include <asm/reboot.h>
64 #include <asm/stackprotector.h>
65 #include <asm/hypervisor.h>
66 #include <asm/mwait.h>
67 #include <asm/pci_x86.h>
68 
69 #ifdef CONFIG_ACPI
70 #include <linux/acpi.h>
71 #include <asm/acpi.h>
72 #include <acpi/pdc_intel.h>
73 #include <acpi/processor.h>
74 #include <xen/interface/platform.h>
75 #endif
76 
77 #include "xen-ops.h"
78 #include "mmu.h"
79 #include "smp.h"
80 #include "multicalls.h"
81 
82 EXPORT_SYMBOL_GPL(hypercall_page);
83 
84 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
85 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
86 
87 enum xen_domain_type xen_domain_type = XEN_NATIVE;
88 EXPORT_SYMBOL_GPL(xen_domain_type);
89 
90 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
91 EXPORT_SYMBOL(machine_to_phys_mapping);
92 unsigned long  machine_to_phys_nr;
93 EXPORT_SYMBOL(machine_to_phys_nr);
94 
95 struct start_info *xen_start_info;
96 EXPORT_SYMBOL_GPL(xen_start_info);
97 
98 struct shared_info xen_dummy_shared_info;
99 
100 void *xen_initial_gdt;
101 
102 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
103 __read_mostly int xen_have_vector_callback;
104 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
105 
106 /*
107  * Point at some empty memory to start with. We map the real shared_info
108  * page as soon as fixmap is up and running.
109  */
110 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
111 
112 /*
113  * Flag to determine whether vcpu info placement is available on all
114  * VCPUs.  We assume it is to start with, and then set it to zero on
115  * the first failure.  This is because it can succeed on some VCPUs
116  * and not others, since it can involve hypervisor memory allocation,
117  * or because the guest failed to guarantee all the appropriate
118  * constraints on all VCPUs (ie buffer can't cross a page boundary).
119  *
120  * Note that any particular CPU may be using a placed vcpu structure,
121  * but we can only optimise if the all are.
122  *
123  * 0: not available, 1: available
124  */
125 static int have_vcpu_info_placement = 1;
126 
127 static void clamp_max_cpus(void)
128 {
129 #ifdef CONFIG_SMP
130 	if (setup_max_cpus > MAX_VIRT_CPUS)
131 		setup_max_cpus = MAX_VIRT_CPUS;
132 #endif
133 }
134 
135 static void xen_vcpu_setup(int cpu)
136 {
137 	struct vcpu_register_vcpu_info info;
138 	int err;
139 	struct vcpu_info *vcpup;
140 
141 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
142 
143 	if (cpu < MAX_VIRT_CPUS)
144 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
145 
146 	if (!have_vcpu_info_placement) {
147 		if (cpu >= MAX_VIRT_CPUS)
148 			clamp_max_cpus();
149 		return;
150 	}
151 
152 	vcpup = &per_cpu(xen_vcpu_info, cpu);
153 	info.mfn = arbitrary_virt_to_mfn(vcpup);
154 	info.offset = offset_in_page(vcpup);
155 
156 	/* Check to see if the hypervisor will put the vcpu_info
157 	   structure where we want it, which allows direct access via
158 	   a percpu-variable. */
159 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
160 
161 	if (err) {
162 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
163 		have_vcpu_info_placement = 0;
164 		clamp_max_cpus();
165 	} else {
166 		/* This cpu is using the registered vcpu info, even if
167 		   later ones fail to. */
168 		per_cpu(xen_vcpu, cpu) = vcpup;
169 	}
170 }
171 
172 /*
173  * On restore, set the vcpu placement up again.
174  * If it fails, then we're in a bad state, since
175  * we can't back out from using it...
176  */
177 void xen_vcpu_restore(void)
178 {
179 	int cpu;
180 
181 	for_each_online_cpu(cpu) {
182 		bool other_cpu = (cpu != smp_processor_id());
183 
184 		if (other_cpu &&
185 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
186 			BUG();
187 
188 		xen_setup_runstate_info(cpu);
189 
190 		if (have_vcpu_info_placement)
191 			xen_vcpu_setup(cpu);
192 
193 		if (other_cpu &&
194 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
195 			BUG();
196 	}
197 }
198 
199 static void __init xen_banner(void)
200 {
201 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
202 	struct xen_extraversion extra;
203 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
204 
205 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
206 	       pv_info.name);
207 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
208 	       version >> 16, version & 0xffff, extra.extraversion,
209 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
210 }
211 
212 #define CPUID_THERM_POWER_LEAF 6
213 #define APERFMPERF_PRESENT 0
214 
215 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
216 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
217 
218 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
219 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
220 static __read_mostly unsigned int cpuid_leaf5_edx_val;
221 
222 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
223 		      unsigned int *cx, unsigned int *dx)
224 {
225 	unsigned maskebx = ~0;
226 	unsigned maskecx = ~0;
227 	unsigned maskedx = ~0;
228 	unsigned setecx = 0;
229 	/*
230 	 * Mask out inconvenient features, to try and disable as many
231 	 * unsupported kernel subsystems as possible.
232 	 */
233 	switch (*ax) {
234 	case 1:
235 		maskecx = cpuid_leaf1_ecx_mask;
236 		setecx = cpuid_leaf1_ecx_set_mask;
237 		maskedx = cpuid_leaf1_edx_mask;
238 		break;
239 
240 	case CPUID_MWAIT_LEAF:
241 		/* Synthesize the values.. */
242 		*ax = 0;
243 		*bx = 0;
244 		*cx = cpuid_leaf5_ecx_val;
245 		*dx = cpuid_leaf5_edx_val;
246 		return;
247 
248 	case CPUID_THERM_POWER_LEAF:
249 		/* Disabling APERFMPERF for kernel usage */
250 		maskecx = ~(1 << APERFMPERF_PRESENT);
251 		break;
252 
253 	case 0xb:
254 		/* Suppress extended topology stuff */
255 		maskebx = 0;
256 		break;
257 	}
258 
259 	asm(XEN_EMULATE_PREFIX "cpuid"
260 		: "=a" (*ax),
261 		  "=b" (*bx),
262 		  "=c" (*cx),
263 		  "=d" (*dx)
264 		: "0" (*ax), "2" (*cx));
265 
266 	*bx &= maskebx;
267 	*cx &= maskecx;
268 	*cx |= setecx;
269 	*dx &= maskedx;
270 
271 }
272 
273 static bool __init xen_check_mwait(void)
274 {
275 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
276 	!defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
277 	struct xen_platform_op op = {
278 		.cmd			= XENPF_set_processor_pminfo,
279 		.u.set_pminfo.id	= -1,
280 		.u.set_pminfo.type	= XEN_PM_PDC,
281 	};
282 	uint32_t buf[3];
283 	unsigned int ax, bx, cx, dx;
284 	unsigned int mwait_mask;
285 
286 	/* We need to determine whether it is OK to expose the MWAIT
287 	 * capability to the kernel to harvest deeper than C3 states from ACPI
288 	 * _CST using the processor_harvest_xen.c module. For this to work, we
289 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
290 	 * checks against). The hypervisor won't expose the MWAIT flag because
291 	 * it would break backwards compatibility; so we will find out directly
292 	 * from the hardware and hypercall.
293 	 */
294 	if (!xen_initial_domain())
295 		return false;
296 
297 	ax = 1;
298 	cx = 0;
299 
300 	native_cpuid(&ax, &bx, &cx, &dx);
301 
302 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
303 		     (1 << (X86_FEATURE_MWAIT % 32));
304 
305 	if ((cx & mwait_mask) != mwait_mask)
306 		return false;
307 
308 	/* We need to emulate the MWAIT_LEAF and for that we need both
309 	 * ecx and edx. The hypercall provides only partial information.
310 	 */
311 
312 	ax = CPUID_MWAIT_LEAF;
313 	bx = 0;
314 	cx = 0;
315 	dx = 0;
316 
317 	native_cpuid(&ax, &bx, &cx, &dx);
318 
319 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
320 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
321 	 */
322 	buf[0] = ACPI_PDC_REVISION_ID;
323 	buf[1] = 1;
324 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
325 
326 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
327 
328 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
329 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
330 		cpuid_leaf5_ecx_val = cx;
331 		cpuid_leaf5_edx_val = dx;
332 	}
333 	return true;
334 #else
335 	return false;
336 #endif
337 }
338 static void __init xen_init_cpuid_mask(void)
339 {
340 	unsigned int ax, bx, cx, dx;
341 	unsigned int xsave_mask;
342 
343 	cpuid_leaf1_edx_mask =
344 		~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
345 		  (1 << X86_FEATURE_MCA)  |  /* disable MCA */
346 		  (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
347 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
348 
349 	if (!xen_initial_domain())
350 		cpuid_leaf1_edx_mask &=
351 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
352 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
353 	ax = 1;
354 	cx = 0;
355 	xen_cpuid(&ax, &bx, &cx, &dx);
356 
357 	xsave_mask =
358 		(1 << (X86_FEATURE_XSAVE % 32)) |
359 		(1 << (X86_FEATURE_OSXSAVE % 32));
360 
361 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
362 	if ((cx & xsave_mask) != xsave_mask)
363 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
364 	if (xen_check_mwait())
365 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
366 }
367 
368 static void xen_set_debugreg(int reg, unsigned long val)
369 {
370 	HYPERVISOR_set_debugreg(reg, val);
371 }
372 
373 static unsigned long xen_get_debugreg(int reg)
374 {
375 	return HYPERVISOR_get_debugreg(reg);
376 }
377 
378 static void xen_end_context_switch(struct task_struct *next)
379 {
380 	xen_mc_flush();
381 	paravirt_end_context_switch(next);
382 }
383 
384 static unsigned long xen_store_tr(void)
385 {
386 	return 0;
387 }
388 
389 /*
390  * Set the page permissions for a particular virtual address.  If the
391  * address is a vmalloc mapping (or other non-linear mapping), then
392  * find the linear mapping of the page and also set its protections to
393  * match.
394  */
395 static void set_aliased_prot(void *v, pgprot_t prot)
396 {
397 	int level;
398 	pte_t *ptep;
399 	pte_t pte;
400 	unsigned long pfn;
401 	struct page *page;
402 
403 	ptep = lookup_address((unsigned long)v, &level);
404 	BUG_ON(ptep == NULL);
405 
406 	pfn = pte_pfn(*ptep);
407 	page = pfn_to_page(pfn);
408 
409 	pte = pfn_pte(pfn, prot);
410 
411 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
412 		BUG();
413 
414 	if (!PageHighMem(page)) {
415 		void *av = __va(PFN_PHYS(pfn));
416 
417 		if (av != v)
418 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
419 				BUG();
420 	} else
421 		kmap_flush_unused();
422 }
423 
424 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
425 {
426 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
427 	int i;
428 
429 	for(i = 0; i < entries; i += entries_per_page)
430 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
431 }
432 
433 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
434 {
435 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
436 	int i;
437 
438 	for(i = 0; i < entries; i += entries_per_page)
439 		set_aliased_prot(ldt + i, PAGE_KERNEL);
440 }
441 
442 static void xen_set_ldt(const void *addr, unsigned entries)
443 {
444 	struct mmuext_op *op;
445 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
446 
447 	trace_xen_cpu_set_ldt(addr, entries);
448 
449 	op = mcs.args;
450 	op->cmd = MMUEXT_SET_LDT;
451 	op->arg1.linear_addr = (unsigned long)addr;
452 	op->arg2.nr_ents = entries;
453 
454 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
455 
456 	xen_mc_issue(PARAVIRT_LAZY_CPU);
457 }
458 
459 static void xen_load_gdt(const struct desc_ptr *dtr)
460 {
461 	unsigned long va = dtr->address;
462 	unsigned int size = dtr->size + 1;
463 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
464 	unsigned long frames[pages];
465 	int f;
466 
467 	/*
468 	 * A GDT can be up to 64k in size, which corresponds to 8192
469 	 * 8-byte entries, or 16 4k pages..
470 	 */
471 
472 	BUG_ON(size > 65536);
473 	BUG_ON(va & ~PAGE_MASK);
474 
475 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
476 		int level;
477 		pte_t *ptep;
478 		unsigned long pfn, mfn;
479 		void *virt;
480 
481 		/*
482 		 * The GDT is per-cpu and is in the percpu data area.
483 		 * That can be virtually mapped, so we need to do a
484 		 * page-walk to get the underlying MFN for the
485 		 * hypercall.  The page can also be in the kernel's
486 		 * linear range, so we need to RO that mapping too.
487 		 */
488 		ptep = lookup_address(va, &level);
489 		BUG_ON(ptep == NULL);
490 
491 		pfn = pte_pfn(*ptep);
492 		mfn = pfn_to_mfn(pfn);
493 		virt = __va(PFN_PHYS(pfn));
494 
495 		frames[f] = mfn;
496 
497 		make_lowmem_page_readonly((void *)va);
498 		make_lowmem_page_readonly(virt);
499 	}
500 
501 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
502 		BUG();
503 }
504 
505 /*
506  * load_gdt for early boot, when the gdt is only mapped once
507  */
508 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
509 {
510 	unsigned long va = dtr->address;
511 	unsigned int size = dtr->size + 1;
512 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
513 	unsigned long frames[pages];
514 	int f;
515 
516 	/*
517 	 * A GDT can be up to 64k in size, which corresponds to 8192
518 	 * 8-byte entries, or 16 4k pages..
519 	 */
520 
521 	BUG_ON(size > 65536);
522 	BUG_ON(va & ~PAGE_MASK);
523 
524 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
525 		pte_t pte;
526 		unsigned long pfn, mfn;
527 
528 		pfn = virt_to_pfn(va);
529 		mfn = pfn_to_mfn(pfn);
530 
531 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
532 
533 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
534 			BUG();
535 
536 		frames[f] = mfn;
537 	}
538 
539 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
540 		BUG();
541 }
542 
543 static void load_TLS_descriptor(struct thread_struct *t,
544 				unsigned int cpu, unsigned int i)
545 {
546 	struct desc_struct *gdt = get_cpu_gdt_table(cpu);
547 	xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
548 	struct multicall_space mc = __xen_mc_entry(0);
549 
550 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
551 }
552 
553 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
554 {
555 	/*
556 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
557 	 * and lazy gs handling is enabled, it means we're in a
558 	 * context switch, and %gs has just been saved.  This means we
559 	 * can zero it out to prevent faults on exit from the
560 	 * hypervisor if the next process has no %gs.  Either way, it
561 	 * has been saved, and the new value will get loaded properly.
562 	 * This will go away as soon as Xen has been modified to not
563 	 * save/restore %gs for normal hypercalls.
564 	 *
565 	 * On x86_64, this hack is not used for %gs, because gs points
566 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
567 	 * must not zero %gs on x86_64
568 	 *
569 	 * For x86_64, we need to zero %fs, otherwise we may get an
570 	 * exception between the new %fs descriptor being loaded and
571 	 * %fs being effectively cleared at __switch_to().
572 	 */
573 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
574 #ifdef CONFIG_X86_32
575 		lazy_load_gs(0);
576 #else
577 		loadsegment(fs, 0);
578 #endif
579 	}
580 
581 	xen_mc_batch();
582 
583 	load_TLS_descriptor(t, cpu, 0);
584 	load_TLS_descriptor(t, cpu, 1);
585 	load_TLS_descriptor(t, cpu, 2);
586 
587 	xen_mc_issue(PARAVIRT_LAZY_CPU);
588 }
589 
590 #ifdef CONFIG_X86_64
591 static void xen_load_gs_index(unsigned int idx)
592 {
593 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
594 		BUG();
595 }
596 #endif
597 
598 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
599 				const void *ptr)
600 {
601 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
602 	u64 entry = *(u64 *)ptr;
603 
604 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
605 
606 	preempt_disable();
607 
608 	xen_mc_flush();
609 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
610 		BUG();
611 
612 	preempt_enable();
613 }
614 
615 static int cvt_gate_to_trap(int vector, const gate_desc *val,
616 			    struct trap_info *info)
617 {
618 	unsigned long addr;
619 
620 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
621 		return 0;
622 
623 	info->vector = vector;
624 
625 	addr = gate_offset(*val);
626 #ifdef CONFIG_X86_64
627 	/*
628 	 * Look for known traps using IST, and substitute them
629 	 * appropriately.  The debugger ones are the only ones we care
630 	 * about.  Xen will handle faults like double_fault and
631 	 * machine_check, so we should never see them.  Warn if
632 	 * there's an unexpected IST-using fault handler.
633 	 */
634 	if (addr == (unsigned long)debug)
635 		addr = (unsigned long)xen_debug;
636 	else if (addr == (unsigned long)int3)
637 		addr = (unsigned long)xen_int3;
638 	else if (addr == (unsigned long)stack_segment)
639 		addr = (unsigned long)xen_stack_segment;
640 	else if (addr == (unsigned long)double_fault ||
641 		 addr == (unsigned long)nmi) {
642 		/* Don't need to handle these */
643 		return 0;
644 #ifdef CONFIG_X86_MCE
645 	} else if (addr == (unsigned long)machine_check) {
646 		return 0;
647 #endif
648 	} else {
649 		/* Some other trap using IST? */
650 		if (WARN_ON(val->ist != 0))
651 			return 0;
652 	}
653 #endif	/* CONFIG_X86_64 */
654 	info->address = addr;
655 
656 	info->cs = gate_segment(*val);
657 	info->flags = val->dpl;
658 	/* interrupt gates clear IF */
659 	if (val->type == GATE_INTERRUPT)
660 		info->flags |= 1 << 2;
661 
662 	return 1;
663 }
664 
665 /* Locations of each CPU's IDT */
666 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
667 
668 /* Set an IDT entry.  If the entry is part of the current IDT, then
669    also update Xen. */
670 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
671 {
672 	unsigned long p = (unsigned long)&dt[entrynum];
673 	unsigned long start, end;
674 
675 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
676 
677 	preempt_disable();
678 
679 	start = __this_cpu_read(idt_desc.address);
680 	end = start + __this_cpu_read(idt_desc.size) + 1;
681 
682 	xen_mc_flush();
683 
684 	native_write_idt_entry(dt, entrynum, g);
685 
686 	if (p >= start && (p + 8) <= end) {
687 		struct trap_info info[2];
688 
689 		info[1].address = 0;
690 
691 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
692 			if (HYPERVISOR_set_trap_table(info))
693 				BUG();
694 	}
695 
696 	preempt_enable();
697 }
698 
699 static void xen_convert_trap_info(const struct desc_ptr *desc,
700 				  struct trap_info *traps)
701 {
702 	unsigned in, out, count;
703 
704 	count = (desc->size+1) / sizeof(gate_desc);
705 	BUG_ON(count > 256);
706 
707 	for (in = out = 0; in < count; in++) {
708 		gate_desc *entry = (gate_desc*)(desc->address) + in;
709 
710 		if (cvt_gate_to_trap(in, entry, &traps[out]))
711 			out++;
712 	}
713 	traps[out].address = 0;
714 }
715 
716 void xen_copy_trap_info(struct trap_info *traps)
717 {
718 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
719 
720 	xen_convert_trap_info(desc, traps);
721 }
722 
723 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
724    hold a spinlock to protect the static traps[] array (static because
725    it avoids allocation, and saves stack space). */
726 static void xen_load_idt(const struct desc_ptr *desc)
727 {
728 	static DEFINE_SPINLOCK(lock);
729 	static struct trap_info traps[257];
730 
731 	trace_xen_cpu_load_idt(desc);
732 
733 	spin_lock(&lock);
734 
735 	__get_cpu_var(idt_desc) = *desc;
736 
737 	xen_convert_trap_info(desc, traps);
738 
739 	xen_mc_flush();
740 	if (HYPERVISOR_set_trap_table(traps))
741 		BUG();
742 
743 	spin_unlock(&lock);
744 }
745 
746 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
747    they're handled differently. */
748 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
749 				const void *desc, int type)
750 {
751 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
752 
753 	preempt_disable();
754 
755 	switch (type) {
756 	case DESC_LDT:
757 	case DESC_TSS:
758 		/* ignore */
759 		break;
760 
761 	default: {
762 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
763 
764 		xen_mc_flush();
765 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
766 			BUG();
767 	}
768 
769 	}
770 
771 	preempt_enable();
772 }
773 
774 /*
775  * Version of write_gdt_entry for use at early boot-time needed to
776  * update an entry as simply as possible.
777  */
778 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
779 					    const void *desc, int type)
780 {
781 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
782 
783 	switch (type) {
784 	case DESC_LDT:
785 	case DESC_TSS:
786 		/* ignore */
787 		break;
788 
789 	default: {
790 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
791 
792 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
793 			dt[entry] = *(struct desc_struct *)desc;
794 	}
795 
796 	}
797 }
798 
799 static void xen_load_sp0(struct tss_struct *tss,
800 			 struct thread_struct *thread)
801 {
802 	struct multicall_space mcs;
803 
804 	mcs = xen_mc_entry(0);
805 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
806 	xen_mc_issue(PARAVIRT_LAZY_CPU);
807 }
808 
809 static void xen_set_iopl_mask(unsigned mask)
810 {
811 	struct physdev_set_iopl set_iopl;
812 
813 	/* Force the change at ring 0. */
814 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
815 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
816 }
817 
818 static void xen_io_delay(void)
819 {
820 }
821 
822 #ifdef CONFIG_X86_LOCAL_APIC
823 static unsigned long xen_set_apic_id(unsigned int x)
824 {
825 	WARN_ON(1);
826 	return x;
827 }
828 static unsigned int xen_get_apic_id(unsigned long x)
829 {
830 	return ((x)>>24) & 0xFFu;
831 }
832 static u32 xen_apic_read(u32 reg)
833 {
834 	struct xen_platform_op op = {
835 		.cmd = XENPF_get_cpuinfo,
836 		.interface_version = XENPF_INTERFACE_VERSION,
837 		.u.pcpu_info.xen_cpuid = 0,
838 	};
839 	int ret = 0;
840 
841 	/* Shouldn't need this as APIC is turned off for PV, and we only
842 	 * get called on the bootup processor. But just in case. */
843 	if (!xen_initial_domain() || smp_processor_id())
844 		return 0;
845 
846 	if (reg == APIC_LVR)
847 		return 0x10;
848 
849 	if (reg != APIC_ID)
850 		return 0;
851 
852 	ret = HYPERVISOR_dom0_op(&op);
853 	if (ret)
854 		return 0;
855 
856 	return op.u.pcpu_info.apic_id << 24;
857 }
858 
859 static void xen_apic_write(u32 reg, u32 val)
860 {
861 	/* Warn to see if there's any stray references */
862 	WARN_ON(1);
863 }
864 
865 static u64 xen_apic_icr_read(void)
866 {
867 	return 0;
868 }
869 
870 static void xen_apic_icr_write(u32 low, u32 id)
871 {
872 	/* Warn to see if there's any stray references */
873 	WARN_ON(1);
874 }
875 
876 static void xen_apic_wait_icr_idle(void)
877 {
878         return;
879 }
880 
881 static u32 xen_safe_apic_wait_icr_idle(void)
882 {
883         return 0;
884 }
885 
886 static void set_xen_basic_apic_ops(void)
887 {
888 	apic->read = xen_apic_read;
889 	apic->write = xen_apic_write;
890 	apic->icr_read = xen_apic_icr_read;
891 	apic->icr_write = xen_apic_icr_write;
892 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
893 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
894 	apic->set_apic_id = xen_set_apic_id;
895 	apic->get_apic_id = xen_get_apic_id;
896 
897 #ifdef CONFIG_SMP
898 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
899 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
900 	apic->send_IPI_mask = xen_send_IPI_mask;
901 	apic->send_IPI_all = xen_send_IPI_all;
902 	apic->send_IPI_self = xen_send_IPI_self;
903 #endif
904 }
905 
906 #endif
907 
908 static void xen_clts(void)
909 {
910 	struct multicall_space mcs;
911 
912 	mcs = xen_mc_entry(0);
913 
914 	MULTI_fpu_taskswitch(mcs.mc, 0);
915 
916 	xen_mc_issue(PARAVIRT_LAZY_CPU);
917 }
918 
919 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
920 
921 static unsigned long xen_read_cr0(void)
922 {
923 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
924 
925 	if (unlikely(cr0 == 0)) {
926 		cr0 = native_read_cr0();
927 		this_cpu_write(xen_cr0_value, cr0);
928 	}
929 
930 	return cr0;
931 }
932 
933 static void xen_write_cr0(unsigned long cr0)
934 {
935 	struct multicall_space mcs;
936 
937 	this_cpu_write(xen_cr0_value, cr0);
938 
939 	/* Only pay attention to cr0.TS; everything else is
940 	   ignored. */
941 	mcs = xen_mc_entry(0);
942 
943 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
944 
945 	xen_mc_issue(PARAVIRT_LAZY_CPU);
946 }
947 
948 static void xen_write_cr4(unsigned long cr4)
949 {
950 	cr4 &= ~X86_CR4_PGE;
951 	cr4 &= ~X86_CR4_PSE;
952 
953 	native_write_cr4(cr4);
954 }
955 
956 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
957 {
958 	int ret;
959 
960 	ret = 0;
961 
962 	switch (msr) {
963 #ifdef CONFIG_X86_64
964 		unsigned which;
965 		u64 base;
966 
967 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
968 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
969 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
970 
971 	set:
972 		base = ((u64)high << 32) | low;
973 		if (HYPERVISOR_set_segment_base(which, base) != 0)
974 			ret = -EIO;
975 		break;
976 #endif
977 
978 	case MSR_STAR:
979 	case MSR_CSTAR:
980 	case MSR_LSTAR:
981 	case MSR_SYSCALL_MASK:
982 	case MSR_IA32_SYSENTER_CS:
983 	case MSR_IA32_SYSENTER_ESP:
984 	case MSR_IA32_SYSENTER_EIP:
985 		/* Fast syscall setup is all done in hypercalls, so
986 		   these are all ignored.  Stub them out here to stop
987 		   Xen console noise. */
988 		break;
989 
990 	case MSR_IA32_CR_PAT:
991 		if (smp_processor_id() == 0)
992 			xen_set_pat(((u64)high << 32) | low);
993 		break;
994 
995 	default:
996 		ret = native_write_msr_safe(msr, low, high);
997 	}
998 
999 	return ret;
1000 }
1001 
1002 void xen_setup_shared_info(void)
1003 {
1004 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1005 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1006 			   xen_start_info->shared_info);
1007 
1008 		HYPERVISOR_shared_info =
1009 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1010 	} else
1011 		HYPERVISOR_shared_info =
1012 			(struct shared_info *)__va(xen_start_info->shared_info);
1013 
1014 #ifndef CONFIG_SMP
1015 	/* In UP this is as good a place as any to set up shared info */
1016 	xen_setup_vcpu_info_placement();
1017 #endif
1018 
1019 	xen_setup_mfn_list_list();
1020 }
1021 
1022 /* This is called once we have the cpu_possible_mask */
1023 void xen_setup_vcpu_info_placement(void)
1024 {
1025 	int cpu;
1026 
1027 	for_each_possible_cpu(cpu)
1028 		xen_vcpu_setup(cpu);
1029 
1030 	/* xen_vcpu_setup managed to place the vcpu_info within the
1031 	   percpu area for all cpus, so make use of it */
1032 	if (have_vcpu_info_placement) {
1033 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1034 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1035 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1036 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1037 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1038 	}
1039 }
1040 
1041 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1042 			  unsigned long addr, unsigned len)
1043 {
1044 	char *start, *end, *reloc;
1045 	unsigned ret;
1046 
1047 	start = end = reloc = NULL;
1048 
1049 #define SITE(op, x)							\
1050 	case PARAVIRT_PATCH(op.x):					\
1051 	if (have_vcpu_info_placement) {					\
1052 		start = (char *)xen_##x##_direct;			\
1053 		end = xen_##x##_direct_end;				\
1054 		reloc = xen_##x##_direct_reloc;				\
1055 	}								\
1056 	goto patch_site
1057 
1058 	switch (type) {
1059 		SITE(pv_irq_ops, irq_enable);
1060 		SITE(pv_irq_ops, irq_disable);
1061 		SITE(pv_irq_ops, save_fl);
1062 		SITE(pv_irq_ops, restore_fl);
1063 #undef SITE
1064 
1065 	patch_site:
1066 		if (start == NULL || (end-start) > len)
1067 			goto default_patch;
1068 
1069 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1070 
1071 		/* Note: because reloc is assigned from something that
1072 		   appears to be an array, gcc assumes it's non-null,
1073 		   but doesn't know its relationship with start and
1074 		   end. */
1075 		if (reloc > start && reloc < end) {
1076 			int reloc_off = reloc - start;
1077 			long *relocp = (long *)(insnbuf + reloc_off);
1078 			long delta = start - (char *)addr;
1079 
1080 			*relocp += delta;
1081 		}
1082 		break;
1083 
1084 	default_patch:
1085 	default:
1086 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1087 					     addr, len);
1088 		break;
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 static const struct pv_info xen_info __initconst = {
1095 	.paravirt_enabled = 1,
1096 	.shared_kernel_pmd = 0,
1097 
1098 #ifdef CONFIG_X86_64
1099 	.extra_user_64bit_cs = FLAT_USER_CS64,
1100 #endif
1101 
1102 	.name = "Xen",
1103 };
1104 
1105 static const struct pv_init_ops xen_init_ops __initconst = {
1106 	.patch = xen_patch,
1107 };
1108 
1109 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1110 	.cpuid = xen_cpuid,
1111 
1112 	.set_debugreg = xen_set_debugreg,
1113 	.get_debugreg = xen_get_debugreg,
1114 
1115 	.clts = xen_clts,
1116 
1117 	.read_cr0 = xen_read_cr0,
1118 	.write_cr0 = xen_write_cr0,
1119 
1120 	.read_cr4 = native_read_cr4,
1121 	.read_cr4_safe = native_read_cr4_safe,
1122 	.write_cr4 = xen_write_cr4,
1123 
1124 	.wbinvd = native_wbinvd,
1125 
1126 	.read_msr = native_read_msr_safe,
1127 	.rdmsr_regs = native_rdmsr_safe_regs,
1128 	.write_msr = xen_write_msr_safe,
1129 	.wrmsr_regs = native_wrmsr_safe_regs,
1130 
1131 	.read_tsc = native_read_tsc,
1132 	.read_pmc = native_read_pmc,
1133 
1134 	.iret = xen_iret,
1135 	.irq_enable_sysexit = xen_sysexit,
1136 #ifdef CONFIG_X86_64
1137 	.usergs_sysret32 = xen_sysret32,
1138 	.usergs_sysret64 = xen_sysret64,
1139 #endif
1140 
1141 	.load_tr_desc = paravirt_nop,
1142 	.set_ldt = xen_set_ldt,
1143 	.load_gdt = xen_load_gdt,
1144 	.load_idt = xen_load_idt,
1145 	.load_tls = xen_load_tls,
1146 #ifdef CONFIG_X86_64
1147 	.load_gs_index = xen_load_gs_index,
1148 #endif
1149 
1150 	.alloc_ldt = xen_alloc_ldt,
1151 	.free_ldt = xen_free_ldt,
1152 
1153 	.store_gdt = native_store_gdt,
1154 	.store_idt = native_store_idt,
1155 	.store_tr = xen_store_tr,
1156 
1157 	.write_ldt_entry = xen_write_ldt_entry,
1158 	.write_gdt_entry = xen_write_gdt_entry,
1159 	.write_idt_entry = xen_write_idt_entry,
1160 	.load_sp0 = xen_load_sp0,
1161 
1162 	.set_iopl_mask = xen_set_iopl_mask,
1163 	.io_delay = xen_io_delay,
1164 
1165 	/* Xen takes care of %gs when switching to usermode for us */
1166 	.swapgs = paravirt_nop,
1167 
1168 	.start_context_switch = paravirt_start_context_switch,
1169 	.end_context_switch = xen_end_context_switch,
1170 };
1171 
1172 static const struct pv_apic_ops xen_apic_ops __initconst = {
1173 #ifdef CONFIG_X86_LOCAL_APIC
1174 	.startup_ipi_hook = paravirt_nop,
1175 #endif
1176 };
1177 
1178 static void xen_reboot(int reason)
1179 {
1180 	struct sched_shutdown r = { .reason = reason };
1181 
1182 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1183 		BUG();
1184 }
1185 
1186 static void xen_restart(char *msg)
1187 {
1188 	xen_reboot(SHUTDOWN_reboot);
1189 }
1190 
1191 static void xen_emergency_restart(void)
1192 {
1193 	xen_reboot(SHUTDOWN_reboot);
1194 }
1195 
1196 static void xen_machine_halt(void)
1197 {
1198 	xen_reboot(SHUTDOWN_poweroff);
1199 }
1200 
1201 static void xen_machine_power_off(void)
1202 {
1203 	if (pm_power_off)
1204 		pm_power_off();
1205 	xen_reboot(SHUTDOWN_poweroff);
1206 }
1207 
1208 static void xen_crash_shutdown(struct pt_regs *regs)
1209 {
1210 	xen_reboot(SHUTDOWN_crash);
1211 }
1212 
1213 static int
1214 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1215 {
1216 	xen_reboot(SHUTDOWN_crash);
1217 	return NOTIFY_DONE;
1218 }
1219 
1220 static struct notifier_block xen_panic_block = {
1221 	.notifier_call= xen_panic_event,
1222 };
1223 
1224 int xen_panic_handler_init(void)
1225 {
1226 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1227 	return 0;
1228 }
1229 
1230 static const struct machine_ops xen_machine_ops __initconst = {
1231 	.restart = xen_restart,
1232 	.halt = xen_machine_halt,
1233 	.power_off = xen_machine_power_off,
1234 	.shutdown = xen_machine_halt,
1235 	.crash_shutdown = xen_crash_shutdown,
1236 	.emergency_restart = xen_emergency_restart,
1237 };
1238 
1239 /*
1240  * Set up the GDT and segment registers for -fstack-protector.  Until
1241  * we do this, we have to be careful not to call any stack-protected
1242  * function, which is most of the kernel.
1243  */
1244 static void __init xen_setup_stackprotector(void)
1245 {
1246 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1247 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1248 
1249 	setup_stack_canary_segment(0);
1250 	switch_to_new_gdt(0);
1251 
1252 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1253 	pv_cpu_ops.load_gdt = xen_load_gdt;
1254 }
1255 
1256 /* First C function to be called on Xen boot */
1257 asmlinkage void __init xen_start_kernel(void)
1258 {
1259 	struct physdev_set_iopl set_iopl;
1260 	int rc;
1261 	pgd_t *pgd;
1262 
1263 	if (!xen_start_info)
1264 		return;
1265 
1266 	xen_domain_type = XEN_PV_DOMAIN;
1267 
1268 	xen_setup_machphys_mapping();
1269 
1270 	/* Install Xen paravirt ops */
1271 	pv_info = xen_info;
1272 	pv_init_ops = xen_init_ops;
1273 	pv_cpu_ops = xen_cpu_ops;
1274 	pv_apic_ops = xen_apic_ops;
1275 
1276 	x86_init.resources.memory_setup = xen_memory_setup;
1277 	x86_init.oem.arch_setup = xen_arch_setup;
1278 	x86_init.oem.banner = xen_banner;
1279 
1280 	xen_init_time_ops();
1281 
1282 	/*
1283 	 * Set up some pagetable state before starting to set any ptes.
1284 	 */
1285 
1286 	xen_init_mmu_ops();
1287 
1288 	/* Prevent unwanted bits from being set in PTEs. */
1289 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1290 #if 0
1291 	if (!xen_initial_domain())
1292 #endif
1293 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1294 
1295 	__supported_pte_mask |= _PAGE_IOMAP;
1296 
1297 	/*
1298 	 * Prevent page tables from being allocated in highmem, even
1299 	 * if CONFIG_HIGHPTE is enabled.
1300 	 */
1301 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1302 
1303 	/* Work out if we support NX */
1304 	x86_configure_nx();
1305 
1306 	xen_setup_features();
1307 
1308 	/* Get mfn list */
1309 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1310 		xen_build_dynamic_phys_to_machine();
1311 
1312 	/*
1313 	 * Set up kernel GDT and segment registers, mainly so that
1314 	 * -fstack-protector code can be executed.
1315 	 */
1316 	xen_setup_stackprotector();
1317 
1318 	xen_init_irq_ops();
1319 	xen_init_cpuid_mask();
1320 
1321 #ifdef CONFIG_X86_LOCAL_APIC
1322 	/*
1323 	 * set up the basic apic ops.
1324 	 */
1325 	set_xen_basic_apic_ops();
1326 #endif
1327 
1328 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1329 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1330 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1331 	}
1332 
1333 	machine_ops = xen_machine_ops;
1334 
1335 	/*
1336 	 * The only reliable way to retain the initial address of the
1337 	 * percpu gdt_page is to remember it here, so we can go and
1338 	 * mark it RW later, when the initial percpu area is freed.
1339 	 */
1340 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1341 
1342 	xen_smp_init();
1343 
1344 #ifdef CONFIG_ACPI_NUMA
1345 	/*
1346 	 * The pages we from Xen are not related to machine pages, so
1347 	 * any NUMA information the kernel tries to get from ACPI will
1348 	 * be meaningless.  Prevent it from trying.
1349 	 */
1350 	acpi_numa = -1;
1351 #endif
1352 
1353 	pgd = (pgd_t *)xen_start_info->pt_base;
1354 
1355 	/* Don't do the full vcpu_info placement stuff until we have a
1356 	   possible map and a non-dummy shared_info. */
1357 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1358 
1359 	local_irq_disable();
1360 	early_boot_irqs_disabled = true;
1361 
1362 	xen_raw_console_write("mapping kernel into physical memory\n");
1363 	pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1364 
1365 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1366 	xen_build_mfn_list_list();
1367 
1368 	/* keep using Xen gdt for now; no urgent need to change it */
1369 
1370 #ifdef CONFIG_X86_32
1371 	pv_info.kernel_rpl = 1;
1372 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1373 		pv_info.kernel_rpl = 0;
1374 #else
1375 	pv_info.kernel_rpl = 0;
1376 #endif
1377 	/* set the limit of our address space */
1378 	xen_reserve_top();
1379 
1380 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1381 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1382 	 * which pokes 0xcf8 port.
1383 	 */
1384 	set_iopl.iopl = 1;
1385 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1386 	if (rc != 0)
1387 		xen_raw_printk("physdev_op failed %d\n", rc);
1388 
1389 #ifdef CONFIG_X86_32
1390 	/* set up basic CPUID stuff */
1391 	cpu_detect(&new_cpu_data);
1392 	new_cpu_data.hard_math = 1;
1393 	new_cpu_data.wp_works_ok = 1;
1394 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1395 #endif
1396 
1397 	/* Poke various useful things into boot_params */
1398 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1399 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1400 		? __pa(xen_start_info->mod_start) : 0;
1401 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1402 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1403 
1404 	if (!xen_initial_domain()) {
1405 		add_preferred_console("xenboot", 0, NULL);
1406 		add_preferred_console("tty", 0, NULL);
1407 		add_preferred_console("hvc", 0, NULL);
1408 		if (pci_xen)
1409 			x86_init.pci.arch_init = pci_xen_init;
1410 	} else {
1411 		const struct dom0_vga_console_info *info =
1412 			(void *)((char *)xen_start_info +
1413 				 xen_start_info->console.dom0.info_off);
1414 
1415 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1416 		xen_start_info->console.domU.mfn = 0;
1417 		xen_start_info->console.domU.evtchn = 0;
1418 
1419 		xen_init_apic();
1420 
1421 		/* Make sure ACS will be enabled */
1422 		pci_request_acs();
1423 
1424 		xen_acpi_sleep_register();
1425 	}
1426 #ifdef CONFIG_PCI
1427 	/* PCI BIOS service won't work from a PV guest. */
1428 	pci_probe &= ~PCI_PROBE_BIOS;
1429 #endif
1430 	xen_raw_console_write("about to get started...\n");
1431 
1432 	xen_setup_runstate_info(0);
1433 
1434 	/* Start the world */
1435 #ifdef CONFIG_X86_32
1436 	i386_start_kernel();
1437 #else
1438 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1439 #endif
1440 }
1441 
1442 static int init_hvm_pv_info(int *major, int *minor)
1443 {
1444 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1445 	u64 pfn;
1446 
1447 	base = xen_cpuid_base();
1448 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1449 
1450 	*major = eax >> 16;
1451 	*minor = eax & 0xffff;
1452 	printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1453 
1454 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1455 
1456 	pfn = __pa(hypercall_page);
1457 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1458 
1459 	xen_setup_features();
1460 
1461 	pv_info.name = "Xen HVM";
1462 
1463 	xen_domain_type = XEN_HVM_DOMAIN;
1464 
1465 	return 0;
1466 }
1467 
1468 void __ref xen_hvm_init_shared_info(void)
1469 {
1470 	int cpu;
1471 	struct xen_add_to_physmap xatp;
1472 	static struct shared_info *shared_info_page = 0;
1473 
1474 	if (!shared_info_page)
1475 		shared_info_page = (struct shared_info *)
1476 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1477 	xatp.domid = DOMID_SELF;
1478 	xatp.idx = 0;
1479 	xatp.space = XENMAPSPACE_shared_info;
1480 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1481 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1482 		BUG();
1483 
1484 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1485 
1486 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1487 	 * page, we use it in the event channel upcall and in some pvclock
1488 	 * related functions. We don't need the vcpu_info placement
1489 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1490 	 * HVM.
1491 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1492 	 * online but xen_hvm_init_shared_info is run at resume time too and
1493 	 * in that case multiple vcpus might be online. */
1494 	for_each_online_cpu(cpu) {
1495 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1496 	}
1497 }
1498 
1499 #ifdef CONFIG_XEN_PVHVM
1500 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1501 				    unsigned long action, void *hcpu)
1502 {
1503 	int cpu = (long)hcpu;
1504 	switch (action) {
1505 	case CPU_UP_PREPARE:
1506 		xen_vcpu_setup(cpu);
1507 		if (xen_have_vector_callback)
1508 			xen_init_lock_cpu(cpu);
1509 		break;
1510 	default:
1511 		break;
1512 	}
1513 	return NOTIFY_OK;
1514 }
1515 
1516 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1517 	.notifier_call	= xen_hvm_cpu_notify,
1518 };
1519 
1520 static void __init xen_hvm_guest_init(void)
1521 {
1522 	int r;
1523 	int major, minor;
1524 
1525 	r = init_hvm_pv_info(&major, &minor);
1526 	if (r < 0)
1527 		return;
1528 
1529 	xen_hvm_init_shared_info();
1530 
1531 	if (xen_feature(XENFEAT_hvm_callback_vector))
1532 		xen_have_vector_callback = 1;
1533 	xen_hvm_smp_init();
1534 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1535 	xen_unplug_emulated_devices();
1536 	x86_init.irqs.intr_init = xen_init_IRQ;
1537 	xen_hvm_init_time_ops();
1538 	xen_hvm_init_mmu_ops();
1539 }
1540 
1541 static bool __init xen_hvm_platform(void)
1542 {
1543 	if (xen_pv_domain())
1544 		return false;
1545 
1546 	if (!xen_cpuid_base())
1547 		return false;
1548 
1549 	return true;
1550 }
1551 
1552 bool xen_hvm_need_lapic(void)
1553 {
1554 	if (xen_pv_domain())
1555 		return false;
1556 	if (!xen_hvm_domain())
1557 		return false;
1558 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1559 		return false;
1560 	return true;
1561 }
1562 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1563 
1564 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1565 	.name			= "Xen HVM",
1566 	.detect			= xen_hvm_platform,
1567 	.init_platform		= xen_hvm_guest_init,
1568 };
1569 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1570 #endif
1571