xref: /linux/arch/x86/xen/enlighten.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48 
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70 
71 #ifdef CONFIG_ACPI
72 #include <linux/acpi.h>
73 #include <asm/acpi.h>
74 #include <acpi/pdc_intel.h>
75 #include <acpi/processor.h>
76 #include <xen/interface/platform.h>
77 #endif
78 
79 #include "xen-ops.h"
80 #include "mmu.h"
81 #include "smp.h"
82 #include "multicalls.h"
83 
84 #include <xen/events.h>
85 
86 EXPORT_SYMBOL_GPL(hypercall_page);
87 
88 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
89 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
90 
91 enum xen_domain_type xen_domain_type = XEN_NATIVE;
92 EXPORT_SYMBOL_GPL(xen_domain_type);
93 
94 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
95 EXPORT_SYMBOL(machine_to_phys_mapping);
96 unsigned long  machine_to_phys_nr;
97 EXPORT_SYMBOL(machine_to_phys_nr);
98 
99 struct start_info *xen_start_info;
100 EXPORT_SYMBOL_GPL(xen_start_info);
101 
102 struct shared_info xen_dummy_shared_info;
103 
104 void *xen_initial_gdt;
105 
106 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
107 __read_mostly int xen_have_vector_callback;
108 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
109 
110 /*
111  * Point at some empty memory to start with. We map the real shared_info
112  * page as soon as fixmap is up and running.
113  */
114 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
115 
116 /*
117  * Flag to determine whether vcpu info placement is available on all
118  * VCPUs.  We assume it is to start with, and then set it to zero on
119  * the first failure.  This is because it can succeed on some VCPUs
120  * and not others, since it can involve hypervisor memory allocation,
121  * or because the guest failed to guarantee all the appropriate
122  * constraints on all VCPUs (ie buffer can't cross a page boundary).
123  *
124  * Note that any particular CPU may be using a placed vcpu structure,
125  * but we can only optimise if the all are.
126  *
127  * 0: not available, 1: available
128  */
129 static int have_vcpu_info_placement = 1;
130 
131 struct tls_descs {
132 	struct desc_struct desc[3];
133 };
134 
135 /*
136  * Updating the 3 TLS descriptors in the GDT on every task switch is
137  * surprisingly expensive so we avoid updating them if they haven't
138  * changed.  Since Xen writes different descriptors than the one
139  * passed in the update_descriptor hypercall we keep shadow copies to
140  * compare against.
141  */
142 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
143 
144 static void clamp_max_cpus(void)
145 {
146 #ifdef CONFIG_SMP
147 	if (setup_max_cpus > MAX_VIRT_CPUS)
148 		setup_max_cpus = MAX_VIRT_CPUS;
149 #endif
150 }
151 
152 static void xen_vcpu_setup(int cpu)
153 {
154 	struct vcpu_register_vcpu_info info;
155 	int err;
156 	struct vcpu_info *vcpup;
157 
158 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
159 
160 	if (cpu < MAX_VIRT_CPUS)
161 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
162 
163 	if (!have_vcpu_info_placement) {
164 		if (cpu >= MAX_VIRT_CPUS)
165 			clamp_max_cpus();
166 		return;
167 	}
168 
169 	vcpup = &per_cpu(xen_vcpu_info, cpu);
170 	info.mfn = arbitrary_virt_to_mfn(vcpup);
171 	info.offset = offset_in_page(vcpup);
172 
173 	/* Check to see if the hypervisor will put the vcpu_info
174 	   structure where we want it, which allows direct access via
175 	   a percpu-variable. */
176 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
177 
178 	if (err) {
179 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
180 		have_vcpu_info_placement = 0;
181 		clamp_max_cpus();
182 	} else {
183 		/* This cpu is using the registered vcpu info, even if
184 		   later ones fail to. */
185 		per_cpu(xen_vcpu, cpu) = vcpup;
186 	}
187 }
188 
189 /*
190  * On restore, set the vcpu placement up again.
191  * If it fails, then we're in a bad state, since
192  * we can't back out from using it...
193  */
194 void xen_vcpu_restore(void)
195 {
196 	int cpu;
197 
198 	for_each_online_cpu(cpu) {
199 		bool other_cpu = (cpu != smp_processor_id());
200 
201 		if (other_cpu &&
202 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
203 			BUG();
204 
205 		xen_setup_runstate_info(cpu);
206 
207 		if (have_vcpu_info_placement)
208 			xen_vcpu_setup(cpu);
209 
210 		if (other_cpu &&
211 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
212 			BUG();
213 	}
214 }
215 
216 static void __init xen_banner(void)
217 {
218 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
219 	struct xen_extraversion extra;
220 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
221 
222 	printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
223 	       pv_info.name);
224 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
225 	       version >> 16, version & 0xffff, extra.extraversion,
226 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
227 }
228 
229 #define CPUID_THERM_POWER_LEAF 6
230 #define APERFMPERF_PRESENT 0
231 
232 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
233 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
234 
235 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
236 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
237 static __read_mostly unsigned int cpuid_leaf5_edx_val;
238 
239 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
240 		      unsigned int *cx, unsigned int *dx)
241 {
242 	unsigned maskebx = ~0;
243 	unsigned maskecx = ~0;
244 	unsigned maskedx = ~0;
245 	unsigned setecx = 0;
246 	/*
247 	 * Mask out inconvenient features, to try and disable as many
248 	 * unsupported kernel subsystems as possible.
249 	 */
250 	switch (*ax) {
251 	case 1:
252 		maskecx = cpuid_leaf1_ecx_mask;
253 		setecx = cpuid_leaf1_ecx_set_mask;
254 		maskedx = cpuid_leaf1_edx_mask;
255 		break;
256 
257 	case CPUID_MWAIT_LEAF:
258 		/* Synthesize the values.. */
259 		*ax = 0;
260 		*bx = 0;
261 		*cx = cpuid_leaf5_ecx_val;
262 		*dx = cpuid_leaf5_edx_val;
263 		return;
264 
265 	case CPUID_THERM_POWER_LEAF:
266 		/* Disabling APERFMPERF for kernel usage */
267 		maskecx = ~(1 << APERFMPERF_PRESENT);
268 		break;
269 
270 	case 0xb:
271 		/* Suppress extended topology stuff */
272 		maskebx = 0;
273 		break;
274 	}
275 
276 	asm(XEN_EMULATE_PREFIX "cpuid"
277 		: "=a" (*ax),
278 		  "=b" (*bx),
279 		  "=c" (*cx),
280 		  "=d" (*dx)
281 		: "0" (*ax), "2" (*cx));
282 
283 	*bx &= maskebx;
284 	*cx &= maskecx;
285 	*cx |= setecx;
286 	*dx &= maskedx;
287 
288 }
289 
290 static bool __init xen_check_mwait(void)
291 {
292 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
293 	!defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
294 	struct xen_platform_op op = {
295 		.cmd			= XENPF_set_processor_pminfo,
296 		.u.set_pminfo.id	= -1,
297 		.u.set_pminfo.type	= XEN_PM_PDC,
298 	};
299 	uint32_t buf[3];
300 	unsigned int ax, bx, cx, dx;
301 	unsigned int mwait_mask;
302 
303 	/* We need to determine whether it is OK to expose the MWAIT
304 	 * capability to the kernel to harvest deeper than C3 states from ACPI
305 	 * _CST using the processor_harvest_xen.c module. For this to work, we
306 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
307 	 * checks against). The hypervisor won't expose the MWAIT flag because
308 	 * it would break backwards compatibility; so we will find out directly
309 	 * from the hardware and hypercall.
310 	 */
311 	if (!xen_initial_domain())
312 		return false;
313 
314 	ax = 1;
315 	cx = 0;
316 
317 	native_cpuid(&ax, &bx, &cx, &dx);
318 
319 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
320 		     (1 << (X86_FEATURE_MWAIT % 32));
321 
322 	if ((cx & mwait_mask) != mwait_mask)
323 		return false;
324 
325 	/* We need to emulate the MWAIT_LEAF and for that we need both
326 	 * ecx and edx. The hypercall provides only partial information.
327 	 */
328 
329 	ax = CPUID_MWAIT_LEAF;
330 	bx = 0;
331 	cx = 0;
332 	dx = 0;
333 
334 	native_cpuid(&ax, &bx, &cx, &dx);
335 
336 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
337 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
338 	 */
339 	buf[0] = ACPI_PDC_REVISION_ID;
340 	buf[1] = 1;
341 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
342 
343 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
344 
345 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
346 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
347 		cpuid_leaf5_ecx_val = cx;
348 		cpuid_leaf5_edx_val = dx;
349 	}
350 	return true;
351 #else
352 	return false;
353 #endif
354 }
355 static void __init xen_init_cpuid_mask(void)
356 {
357 	unsigned int ax, bx, cx, dx;
358 	unsigned int xsave_mask;
359 
360 	cpuid_leaf1_edx_mask =
361 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
362 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
363 
364 	if (!xen_initial_domain())
365 		cpuid_leaf1_edx_mask &=
366 			~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
367 			  (1 << X86_FEATURE_ACPI));  /* disable ACPI */
368 	ax = 1;
369 	cx = 0;
370 	xen_cpuid(&ax, &bx, &cx, &dx);
371 
372 	xsave_mask =
373 		(1 << (X86_FEATURE_XSAVE % 32)) |
374 		(1 << (X86_FEATURE_OSXSAVE % 32));
375 
376 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
377 	if ((cx & xsave_mask) != xsave_mask)
378 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
379 	if (xen_check_mwait())
380 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
381 }
382 
383 static void xen_set_debugreg(int reg, unsigned long val)
384 {
385 	HYPERVISOR_set_debugreg(reg, val);
386 }
387 
388 static unsigned long xen_get_debugreg(int reg)
389 {
390 	return HYPERVISOR_get_debugreg(reg);
391 }
392 
393 static void xen_end_context_switch(struct task_struct *next)
394 {
395 	xen_mc_flush();
396 	paravirt_end_context_switch(next);
397 }
398 
399 static unsigned long xen_store_tr(void)
400 {
401 	return 0;
402 }
403 
404 /*
405  * Set the page permissions for a particular virtual address.  If the
406  * address is a vmalloc mapping (or other non-linear mapping), then
407  * find the linear mapping of the page and also set its protections to
408  * match.
409  */
410 static void set_aliased_prot(void *v, pgprot_t prot)
411 {
412 	int level;
413 	pte_t *ptep;
414 	pte_t pte;
415 	unsigned long pfn;
416 	struct page *page;
417 
418 	ptep = lookup_address((unsigned long)v, &level);
419 	BUG_ON(ptep == NULL);
420 
421 	pfn = pte_pfn(*ptep);
422 	page = pfn_to_page(pfn);
423 
424 	pte = pfn_pte(pfn, prot);
425 
426 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
427 		BUG();
428 
429 	if (!PageHighMem(page)) {
430 		void *av = __va(PFN_PHYS(pfn));
431 
432 		if (av != v)
433 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
434 				BUG();
435 	} else
436 		kmap_flush_unused();
437 }
438 
439 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
440 {
441 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
442 	int i;
443 
444 	for(i = 0; i < entries; i += entries_per_page)
445 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
446 }
447 
448 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
449 {
450 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
451 	int i;
452 
453 	for(i = 0; i < entries; i += entries_per_page)
454 		set_aliased_prot(ldt + i, PAGE_KERNEL);
455 }
456 
457 static void xen_set_ldt(const void *addr, unsigned entries)
458 {
459 	struct mmuext_op *op;
460 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
461 
462 	trace_xen_cpu_set_ldt(addr, entries);
463 
464 	op = mcs.args;
465 	op->cmd = MMUEXT_SET_LDT;
466 	op->arg1.linear_addr = (unsigned long)addr;
467 	op->arg2.nr_ents = entries;
468 
469 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
470 
471 	xen_mc_issue(PARAVIRT_LAZY_CPU);
472 }
473 
474 static void xen_load_gdt(const struct desc_ptr *dtr)
475 {
476 	unsigned long va = dtr->address;
477 	unsigned int size = dtr->size + 1;
478 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
479 	unsigned long frames[pages];
480 	int f;
481 
482 	/*
483 	 * A GDT can be up to 64k in size, which corresponds to 8192
484 	 * 8-byte entries, or 16 4k pages..
485 	 */
486 
487 	BUG_ON(size > 65536);
488 	BUG_ON(va & ~PAGE_MASK);
489 
490 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
491 		int level;
492 		pte_t *ptep;
493 		unsigned long pfn, mfn;
494 		void *virt;
495 
496 		/*
497 		 * The GDT is per-cpu and is in the percpu data area.
498 		 * That can be virtually mapped, so we need to do a
499 		 * page-walk to get the underlying MFN for the
500 		 * hypercall.  The page can also be in the kernel's
501 		 * linear range, so we need to RO that mapping too.
502 		 */
503 		ptep = lookup_address(va, &level);
504 		BUG_ON(ptep == NULL);
505 
506 		pfn = pte_pfn(*ptep);
507 		mfn = pfn_to_mfn(pfn);
508 		virt = __va(PFN_PHYS(pfn));
509 
510 		frames[f] = mfn;
511 
512 		make_lowmem_page_readonly((void *)va);
513 		make_lowmem_page_readonly(virt);
514 	}
515 
516 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
517 		BUG();
518 }
519 
520 /*
521  * load_gdt for early boot, when the gdt is only mapped once
522  */
523 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
524 {
525 	unsigned long va = dtr->address;
526 	unsigned int size = dtr->size + 1;
527 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
528 	unsigned long frames[pages];
529 	int f;
530 
531 	/*
532 	 * A GDT can be up to 64k in size, which corresponds to 8192
533 	 * 8-byte entries, or 16 4k pages..
534 	 */
535 
536 	BUG_ON(size > 65536);
537 	BUG_ON(va & ~PAGE_MASK);
538 
539 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
540 		pte_t pte;
541 		unsigned long pfn, mfn;
542 
543 		pfn = virt_to_pfn(va);
544 		mfn = pfn_to_mfn(pfn);
545 
546 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
547 
548 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
549 			BUG();
550 
551 		frames[f] = mfn;
552 	}
553 
554 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
555 		BUG();
556 }
557 
558 static inline bool desc_equal(const struct desc_struct *d1,
559 			      const struct desc_struct *d2)
560 {
561 	return d1->a == d2->a && d1->b == d2->b;
562 }
563 
564 static void load_TLS_descriptor(struct thread_struct *t,
565 				unsigned int cpu, unsigned int i)
566 {
567 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
568 	struct desc_struct *gdt;
569 	xmaddr_t maddr;
570 	struct multicall_space mc;
571 
572 	if (desc_equal(shadow, &t->tls_array[i]))
573 		return;
574 
575 	*shadow = t->tls_array[i];
576 
577 	gdt = get_cpu_gdt_table(cpu);
578 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
579 	mc = __xen_mc_entry(0);
580 
581 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
582 }
583 
584 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
585 {
586 	/*
587 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
588 	 * and lazy gs handling is enabled, it means we're in a
589 	 * context switch, and %gs has just been saved.  This means we
590 	 * can zero it out to prevent faults on exit from the
591 	 * hypervisor if the next process has no %gs.  Either way, it
592 	 * has been saved, and the new value will get loaded properly.
593 	 * This will go away as soon as Xen has been modified to not
594 	 * save/restore %gs for normal hypercalls.
595 	 *
596 	 * On x86_64, this hack is not used for %gs, because gs points
597 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
598 	 * must not zero %gs on x86_64
599 	 *
600 	 * For x86_64, we need to zero %fs, otherwise we may get an
601 	 * exception between the new %fs descriptor being loaded and
602 	 * %fs being effectively cleared at __switch_to().
603 	 */
604 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
605 #ifdef CONFIG_X86_32
606 		lazy_load_gs(0);
607 #else
608 		loadsegment(fs, 0);
609 #endif
610 	}
611 
612 	xen_mc_batch();
613 
614 	load_TLS_descriptor(t, cpu, 0);
615 	load_TLS_descriptor(t, cpu, 1);
616 	load_TLS_descriptor(t, cpu, 2);
617 
618 	xen_mc_issue(PARAVIRT_LAZY_CPU);
619 }
620 
621 #ifdef CONFIG_X86_64
622 static void xen_load_gs_index(unsigned int idx)
623 {
624 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
625 		BUG();
626 }
627 #endif
628 
629 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
630 				const void *ptr)
631 {
632 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
633 	u64 entry = *(u64 *)ptr;
634 
635 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
636 
637 	preempt_disable();
638 
639 	xen_mc_flush();
640 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
641 		BUG();
642 
643 	preempt_enable();
644 }
645 
646 static int cvt_gate_to_trap(int vector, const gate_desc *val,
647 			    struct trap_info *info)
648 {
649 	unsigned long addr;
650 
651 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
652 		return 0;
653 
654 	info->vector = vector;
655 
656 	addr = gate_offset(*val);
657 #ifdef CONFIG_X86_64
658 	/*
659 	 * Look for known traps using IST, and substitute them
660 	 * appropriately.  The debugger ones are the only ones we care
661 	 * about.  Xen will handle faults like double_fault,
662 	 * so we should never see them.  Warn if
663 	 * there's an unexpected IST-using fault handler.
664 	 */
665 	if (addr == (unsigned long)debug)
666 		addr = (unsigned long)xen_debug;
667 	else if (addr == (unsigned long)int3)
668 		addr = (unsigned long)xen_int3;
669 	else if (addr == (unsigned long)stack_segment)
670 		addr = (unsigned long)xen_stack_segment;
671 	else if (addr == (unsigned long)double_fault ||
672 		 addr == (unsigned long)nmi) {
673 		/* Don't need to handle these */
674 		return 0;
675 #ifdef CONFIG_X86_MCE
676 	} else if (addr == (unsigned long)machine_check) {
677 		/*
678 		 * when xen hypervisor inject vMCE to guest,
679 		 * use native mce handler to handle it
680 		 */
681 		;
682 #endif
683 	} else {
684 		/* Some other trap using IST? */
685 		if (WARN_ON(val->ist != 0))
686 			return 0;
687 	}
688 #endif	/* CONFIG_X86_64 */
689 	info->address = addr;
690 
691 	info->cs = gate_segment(*val);
692 	info->flags = val->dpl;
693 	/* interrupt gates clear IF */
694 	if (val->type == GATE_INTERRUPT)
695 		info->flags |= 1 << 2;
696 
697 	return 1;
698 }
699 
700 /* Locations of each CPU's IDT */
701 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
702 
703 /* Set an IDT entry.  If the entry is part of the current IDT, then
704    also update Xen. */
705 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
706 {
707 	unsigned long p = (unsigned long)&dt[entrynum];
708 	unsigned long start, end;
709 
710 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
711 
712 	preempt_disable();
713 
714 	start = __this_cpu_read(idt_desc.address);
715 	end = start + __this_cpu_read(idt_desc.size) + 1;
716 
717 	xen_mc_flush();
718 
719 	native_write_idt_entry(dt, entrynum, g);
720 
721 	if (p >= start && (p + 8) <= end) {
722 		struct trap_info info[2];
723 
724 		info[1].address = 0;
725 
726 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
727 			if (HYPERVISOR_set_trap_table(info))
728 				BUG();
729 	}
730 
731 	preempt_enable();
732 }
733 
734 static void xen_convert_trap_info(const struct desc_ptr *desc,
735 				  struct trap_info *traps)
736 {
737 	unsigned in, out, count;
738 
739 	count = (desc->size+1) / sizeof(gate_desc);
740 	BUG_ON(count > 256);
741 
742 	for (in = out = 0; in < count; in++) {
743 		gate_desc *entry = (gate_desc*)(desc->address) + in;
744 
745 		if (cvt_gate_to_trap(in, entry, &traps[out]))
746 			out++;
747 	}
748 	traps[out].address = 0;
749 }
750 
751 void xen_copy_trap_info(struct trap_info *traps)
752 {
753 	const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
754 
755 	xen_convert_trap_info(desc, traps);
756 }
757 
758 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
759    hold a spinlock to protect the static traps[] array (static because
760    it avoids allocation, and saves stack space). */
761 static void xen_load_idt(const struct desc_ptr *desc)
762 {
763 	static DEFINE_SPINLOCK(lock);
764 	static struct trap_info traps[257];
765 
766 	trace_xen_cpu_load_idt(desc);
767 
768 	spin_lock(&lock);
769 
770 	__get_cpu_var(idt_desc) = *desc;
771 
772 	xen_convert_trap_info(desc, traps);
773 
774 	xen_mc_flush();
775 	if (HYPERVISOR_set_trap_table(traps))
776 		BUG();
777 
778 	spin_unlock(&lock);
779 }
780 
781 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
782    they're handled differently. */
783 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
784 				const void *desc, int type)
785 {
786 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
787 
788 	preempt_disable();
789 
790 	switch (type) {
791 	case DESC_LDT:
792 	case DESC_TSS:
793 		/* ignore */
794 		break;
795 
796 	default: {
797 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
798 
799 		xen_mc_flush();
800 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
801 			BUG();
802 	}
803 
804 	}
805 
806 	preempt_enable();
807 }
808 
809 /*
810  * Version of write_gdt_entry for use at early boot-time needed to
811  * update an entry as simply as possible.
812  */
813 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
814 					    const void *desc, int type)
815 {
816 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
817 
818 	switch (type) {
819 	case DESC_LDT:
820 	case DESC_TSS:
821 		/* ignore */
822 		break;
823 
824 	default: {
825 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
826 
827 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
828 			dt[entry] = *(struct desc_struct *)desc;
829 	}
830 
831 	}
832 }
833 
834 static void xen_load_sp0(struct tss_struct *tss,
835 			 struct thread_struct *thread)
836 {
837 	struct multicall_space mcs;
838 
839 	mcs = xen_mc_entry(0);
840 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
841 	xen_mc_issue(PARAVIRT_LAZY_CPU);
842 }
843 
844 static void xen_set_iopl_mask(unsigned mask)
845 {
846 	struct physdev_set_iopl set_iopl;
847 
848 	/* Force the change at ring 0. */
849 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
850 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
851 }
852 
853 static void xen_io_delay(void)
854 {
855 }
856 
857 #ifdef CONFIG_X86_LOCAL_APIC
858 static unsigned long xen_set_apic_id(unsigned int x)
859 {
860 	WARN_ON(1);
861 	return x;
862 }
863 static unsigned int xen_get_apic_id(unsigned long x)
864 {
865 	return ((x)>>24) & 0xFFu;
866 }
867 static u32 xen_apic_read(u32 reg)
868 {
869 	struct xen_platform_op op = {
870 		.cmd = XENPF_get_cpuinfo,
871 		.interface_version = XENPF_INTERFACE_VERSION,
872 		.u.pcpu_info.xen_cpuid = 0,
873 	};
874 	int ret = 0;
875 
876 	/* Shouldn't need this as APIC is turned off for PV, and we only
877 	 * get called on the bootup processor. But just in case. */
878 	if (!xen_initial_domain() || smp_processor_id())
879 		return 0;
880 
881 	if (reg == APIC_LVR)
882 		return 0x10;
883 
884 	if (reg != APIC_ID)
885 		return 0;
886 
887 	ret = HYPERVISOR_dom0_op(&op);
888 	if (ret)
889 		return 0;
890 
891 	return op.u.pcpu_info.apic_id << 24;
892 }
893 
894 static void xen_apic_write(u32 reg, u32 val)
895 {
896 	/* Warn to see if there's any stray references */
897 	WARN_ON(1);
898 }
899 
900 static u64 xen_apic_icr_read(void)
901 {
902 	return 0;
903 }
904 
905 static void xen_apic_icr_write(u32 low, u32 id)
906 {
907 	/* Warn to see if there's any stray references */
908 	WARN_ON(1);
909 }
910 
911 static void xen_apic_wait_icr_idle(void)
912 {
913         return;
914 }
915 
916 static u32 xen_safe_apic_wait_icr_idle(void)
917 {
918         return 0;
919 }
920 
921 static void set_xen_basic_apic_ops(void)
922 {
923 	apic->read = xen_apic_read;
924 	apic->write = xen_apic_write;
925 	apic->icr_read = xen_apic_icr_read;
926 	apic->icr_write = xen_apic_icr_write;
927 	apic->wait_icr_idle = xen_apic_wait_icr_idle;
928 	apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
929 	apic->set_apic_id = xen_set_apic_id;
930 	apic->get_apic_id = xen_get_apic_id;
931 
932 #ifdef CONFIG_SMP
933 	apic->send_IPI_allbutself = xen_send_IPI_allbutself;
934 	apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
935 	apic->send_IPI_mask = xen_send_IPI_mask;
936 	apic->send_IPI_all = xen_send_IPI_all;
937 	apic->send_IPI_self = xen_send_IPI_self;
938 #endif
939 }
940 
941 #endif
942 
943 static void xen_clts(void)
944 {
945 	struct multicall_space mcs;
946 
947 	mcs = xen_mc_entry(0);
948 
949 	MULTI_fpu_taskswitch(mcs.mc, 0);
950 
951 	xen_mc_issue(PARAVIRT_LAZY_CPU);
952 }
953 
954 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
955 
956 static unsigned long xen_read_cr0(void)
957 {
958 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
959 
960 	if (unlikely(cr0 == 0)) {
961 		cr0 = native_read_cr0();
962 		this_cpu_write(xen_cr0_value, cr0);
963 	}
964 
965 	return cr0;
966 }
967 
968 static void xen_write_cr0(unsigned long cr0)
969 {
970 	struct multicall_space mcs;
971 
972 	this_cpu_write(xen_cr0_value, cr0);
973 
974 	/* Only pay attention to cr0.TS; everything else is
975 	   ignored. */
976 	mcs = xen_mc_entry(0);
977 
978 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
979 
980 	xen_mc_issue(PARAVIRT_LAZY_CPU);
981 }
982 
983 static void xen_write_cr4(unsigned long cr4)
984 {
985 	cr4 &= ~X86_CR4_PGE;
986 	cr4 &= ~X86_CR4_PSE;
987 
988 	native_write_cr4(cr4);
989 }
990 #ifdef CONFIG_X86_64
991 static inline unsigned long xen_read_cr8(void)
992 {
993 	return 0;
994 }
995 static inline void xen_write_cr8(unsigned long val)
996 {
997 	BUG_ON(val);
998 }
999 #endif
1000 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1001 {
1002 	int ret;
1003 
1004 	ret = 0;
1005 
1006 	switch (msr) {
1007 #ifdef CONFIG_X86_64
1008 		unsigned which;
1009 		u64 base;
1010 
1011 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1012 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1013 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1014 
1015 	set:
1016 		base = ((u64)high << 32) | low;
1017 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1018 			ret = -EIO;
1019 		break;
1020 #endif
1021 
1022 	case MSR_STAR:
1023 	case MSR_CSTAR:
1024 	case MSR_LSTAR:
1025 	case MSR_SYSCALL_MASK:
1026 	case MSR_IA32_SYSENTER_CS:
1027 	case MSR_IA32_SYSENTER_ESP:
1028 	case MSR_IA32_SYSENTER_EIP:
1029 		/* Fast syscall setup is all done in hypercalls, so
1030 		   these are all ignored.  Stub them out here to stop
1031 		   Xen console noise. */
1032 		break;
1033 
1034 	case MSR_IA32_CR_PAT:
1035 		if (smp_processor_id() == 0)
1036 			xen_set_pat(((u64)high << 32) | low);
1037 		break;
1038 
1039 	default:
1040 		ret = native_write_msr_safe(msr, low, high);
1041 	}
1042 
1043 	return ret;
1044 }
1045 
1046 void xen_setup_shared_info(void)
1047 {
1048 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1049 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1050 			   xen_start_info->shared_info);
1051 
1052 		HYPERVISOR_shared_info =
1053 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1054 	} else
1055 		HYPERVISOR_shared_info =
1056 			(struct shared_info *)__va(xen_start_info->shared_info);
1057 
1058 #ifndef CONFIG_SMP
1059 	/* In UP this is as good a place as any to set up shared info */
1060 	xen_setup_vcpu_info_placement();
1061 #endif
1062 
1063 	xen_setup_mfn_list_list();
1064 }
1065 
1066 /* This is called once we have the cpu_possible_mask */
1067 void xen_setup_vcpu_info_placement(void)
1068 {
1069 	int cpu;
1070 
1071 	for_each_possible_cpu(cpu)
1072 		xen_vcpu_setup(cpu);
1073 
1074 	/* xen_vcpu_setup managed to place the vcpu_info within the
1075 	   percpu area for all cpus, so make use of it */
1076 	if (have_vcpu_info_placement) {
1077 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1078 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1079 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1080 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1081 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1082 	}
1083 }
1084 
1085 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1086 			  unsigned long addr, unsigned len)
1087 {
1088 	char *start, *end, *reloc;
1089 	unsigned ret;
1090 
1091 	start = end = reloc = NULL;
1092 
1093 #define SITE(op, x)							\
1094 	case PARAVIRT_PATCH(op.x):					\
1095 	if (have_vcpu_info_placement) {					\
1096 		start = (char *)xen_##x##_direct;			\
1097 		end = xen_##x##_direct_end;				\
1098 		reloc = xen_##x##_direct_reloc;				\
1099 	}								\
1100 	goto patch_site
1101 
1102 	switch (type) {
1103 		SITE(pv_irq_ops, irq_enable);
1104 		SITE(pv_irq_ops, irq_disable);
1105 		SITE(pv_irq_ops, save_fl);
1106 		SITE(pv_irq_ops, restore_fl);
1107 #undef SITE
1108 
1109 	patch_site:
1110 		if (start == NULL || (end-start) > len)
1111 			goto default_patch;
1112 
1113 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1114 
1115 		/* Note: because reloc is assigned from something that
1116 		   appears to be an array, gcc assumes it's non-null,
1117 		   but doesn't know its relationship with start and
1118 		   end. */
1119 		if (reloc > start && reloc < end) {
1120 			int reloc_off = reloc - start;
1121 			long *relocp = (long *)(insnbuf + reloc_off);
1122 			long delta = start - (char *)addr;
1123 
1124 			*relocp += delta;
1125 		}
1126 		break;
1127 
1128 	default_patch:
1129 	default:
1130 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1131 					     addr, len);
1132 		break;
1133 	}
1134 
1135 	return ret;
1136 }
1137 
1138 static const struct pv_info xen_info __initconst = {
1139 	.paravirt_enabled = 1,
1140 	.shared_kernel_pmd = 0,
1141 
1142 #ifdef CONFIG_X86_64
1143 	.extra_user_64bit_cs = FLAT_USER_CS64,
1144 #endif
1145 
1146 	.name = "Xen",
1147 };
1148 
1149 static const struct pv_init_ops xen_init_ops __initconst = {
1150 	.patch = xen_patch,
1151 };
1152 
1153 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1154 	.cpuid = xen_cpuid,
1155 
1156 	.set_debugreg = xen_set_debugreg,
1157 	.get_debugreg = xen_get_debugreg,
1158 
1159 	.clts = xen_clts,
1160 
1161 	.read_cr0 = xen_read_cr0,
1162 	.write_cr0 = xen_write_cr0,
1163 
1164 	.read_cr4 = native_read_cr4,
1165 	.read_cr4_safe = native_read_cr4_safe,
1166 	.write_cr4 = xen_write_cr4,
1167 
1168 #ifdef CONFIG_X86_64
1169 	.read_cr8 = xen_read_cr8,
1170 	.write_cr8 = xen_write_cr8,
1171 #endif
1172 
1173 	.wbinvd = native_wbinvd,
1174 
1175 	.read_msr = native_read_msr_safe,
1176 	.write_msr = xen_write_msr_safe,
1177 
1178 	.read_tsc = native_read_tsc,
1179 	.read_pmc = native_read_pmc,
1180 
1181 	.read_tscp = native_read_tscp,
1182 
1183 	.iret = xen_iret,
1184 	.irq_enable_sysexit = xen_sysexit,
1185 #ifdef CONFIG_X86_64
1186 	.usergs_sysret32 = xen_sysret32,
1187 	.usergs_sysret64 = xen_sysret64,
1188 #endif
1189 
1190 	.load_tr_desc = paravirt_nop,
1191 	.set_ldt = xen_set_ldt,
1192 	.load_gdt = xen_load_gdt,
1193 	.load_idt = xen_load_idt,
1194 	.load_tls = xen_load_tls,
1195 #ifdef CONFIG_X86_64
1196 	.load_gs_index = xen_load_gs_index,
1197 #endif
1198 
1199 	.alloc_ldt = xen_alloc_ldt,
1200 	.free_ldt = xen_free_ldt,
1201 
1202 	.store_gdt = native_store_gdt,
1203 	.store_idt = native_store_idt,
1204 	.store_tr = xen_store_tr,
1205 
1206 	.write_ldt_entry = xen_write_ldt_entry,
1207 	.write_gdt_entry = xen_write_gdt_entry,
1208 	.write_idt_entry = xen_write_idt_entry,
1209 	.load_sp0 = xen_load_sp0,
1210 
1211 	.set_iopl_mask = xen_set_iopl_mask,
1212 	.io_delay = xen_io_delay,
1213 
1214 	/* Xen takes care of %gs when switching to usermode for us */
1215 	.swapgs = paravirt_nop,
1216 
1217 	.start_context_switch = paravirt_start_context_switch,
1218 	.end_context_switch = xen_end_context_switch,
1219 };
1220 
1221 static const struct pv_apic_ops xen_apic_ops __initconst = {
1222 #ifdef CONFIG_X86_LOCAL_APIC
1223 	.startup_ipi_hook = paravirt_nop,
1224 #endif
1225 };
1226 
1227 static void xen_reboot(int reason)
1228 {
1229 	struct sched_shutdown r = { .reason = reason };
1230 
1231 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1232 		BUG();
1233 }
1234 
1235 static void xen_restart(char *msg)
1236 {
1237 	xen_reboot(SHUTDOWN_reboot);
1238 }
1239 
1240 static void xen_emergency_restart(void)
1241 {
1242 	xen_reboot(SHUTDOWN_reboot);
1243 }
1244 
1245 static void xen_machine_halt(void)
1246 {
1247 	xen_reboot(SHUTDOWN_poweroff);
1248 }
1249 
1250 static void xen_machine_power_off(void)
1251 {
1252 	if (pm_power_off)
1253 		pm_power_off();
1254 	xen_reboot(SHUTDOWN_poweroff);
1255 }
1256 
1257 static void xen_crash_shutdown(struct pt_regs *regs)
1258 {
1259 	xen_reboot(SHUTDOWN_crash);
1260 }
1261 
1262 static int
1263 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1264 {
1265 	xen_reboot(SHUTDOWN_crash);
1266 	return NOTIFY_DONE;
1267 }
1268 
1269 static struct notifier_block xen_panic_block = {
1270 	.notifier_call= xen_panic_event,
1271 };
1272 
1273 int xen_panic_handler_init(void)
1274 {
1275 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1276 	return 0;
1277 }
1278 
1279 static const struct machine_ops xen_machine_ops __initconst = {
1280 	.restart = xen_restart,
1281 	.halt = xen_machine_halt,
1282 	.power_off = xen_machine_power_off,
1283 	.shutdown = xen_machine_halt,
1284 	.crash_shutdown = xen_crash_shutdown,
1285 	.emergency_restart = xen_emergency_restart,
1286 };
1287 
1288 /*
1289  * Set up the GDT and segment registers for -fstack-protector.  Until
1290  * we do this, we have to be careful not to call any stack-protected
1291  * function, which is most of the kernel.
1292  */
1293 static void __init xen_setup_stackprotector(void)
1294 {
1295 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1296 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1297 
1298 	setup_stack_canary_segment(0);
1299 	switch_to_new_gdt(0);
1300 
1301 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1302 	pv_cpu_ops.load_gdt = xen_load_gdt;
1303 }
1304 
1305 /* First C function to be called on Xen boot */
1306 asmlinkage void __init xen_start_kernel(void)
1307 {
1308 	struct physdev_set_iopl set_iopl;
1309 	int rc;
1310 
1311 	if (!xen_start_info)
1312 		return;
1313 
1314 	xen_domain_type = XEN_PV_DOMAIN;
1315 
1316 	xen_setup_machphys_mapping();
1317 
1318 	/* Install Xen paravirt ops */
1319 	pv_info = xen_info;
1320 	pv_init_ops = xen_init_ops;
1321 	pv_cpu_ops = xen_cpu_ops;
1322 	pv_apic_ops = xen_apic_ops;
1323 
1324 	x86_init.resources.memory_setup = xen_memory_setup;
1325 	x86_init.oem.arch_setup = xen_arch_setup;
1326 	x86_init.oem.banner = xen_banner;
1327 
1328 	xen_init_time_ops();
1329 
1330 	/*
1331 	 * Set up some pagetable state before starting to set any ptes.
1332 	 */
1333 
1334 	xen_init_mmu_ops();
1335 
1336 	/* Prevent unwanted bits from being set in PTEs. */
1337 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1338 #if 0
1339 	if (!xen_initial_domain())
1340 #endif
1341 		__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1342 
1343 	__supported_pte_mask |= _PAGE_IOMAP;
1344 
1345 	/*
1346 	 * Prevent page tables from being allocated in highmem, even
1347 	 * if CONFIG_HIGHPTE is enabled.
1348 	 */
1349 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1350 
1351 	/* Work out if we support NX */
1352 	x86_configure_nx();
1353 
1354 	xen_setup_features();
1355 
1356 	/* Get mfn list */
1357 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1358 		xen_build_dynamic_phys_to_machine();
1359 
1360 	/*
1361 	 * Set up kernel GDT and segment registers, mainly so that
1362 	 * -fstack-protector code can be executed.
1363 	 */
1364 	xen_setup_stackprotector();
1365 
1366 	xen_init_irq_ops();
1367 	xen_init_cpuid_mask();
1368 
1369 #ifdef CONFIG_X86_LOCAL_APIC
1370 	/*
1371 	 * set up the basic apic ops.
1372 	 */
1373 	set_xen_basic_apic_ops();
1374 #endif
1375 
1376 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1377 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1378 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1379 	}
1380 
1381 	machine_ops = xen_machine_ops;
1382 
1383 	/*
1384 	 * The only reliable way to retain the initial address of the
1385 	 * percpu gdt_page is to remember it here, so we can go and
1386 	 * mark it RW later, when the initial percpu area is freed.
1387 	 */
1388 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1389 
1390 	xen_smp_init();
1391 
1392 #ifdef CONFIG_ACPI_NUMA
1393 	/*
1394 	 * The pages we from Xen are not related to machine pages, so
1395 	 * any NUMA information the kernel tries to get from ACPI will
1396 	 * be meaningless.  Prevent it from trying.
1397 	 */
1398 	acpi_numa = -1;
1399 #endif
1400 
1401 	/* Don't do the full vcpu_info placement stuff until we have a
1402 	   possible map and a non-dummy shared_info. */
1403 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1404 
1405 	local_irq_disable();
1406 	early_boot_irqs_disabled = true;
1407 
1408 	xen_raw_console_write("mapping kernel into physical memory\n");
1409 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1410 
1411 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1412 	xen_build_mfn_list_list();
1413 
1414 	/* keep using Xen gdt for now; no urgent need to change it */
1415 
1416 #ifdef CONFIG_X86_32
1417 	pv_info.kernel_rpl = 1;
1418 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1419 		pv_info.kernel_rpl = 0;
1420 #else
1421 	pv_info.kernel_rpl = 0;
1422 #endif
1423 	/* set the limit of our address space */
1424 	xen_reserve_top();
1425 
1426 	/* We used to do this in xen_arch_setup, but that is too late on AMD
1427 	 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1428 	 * which pokes 0xcf8 port.
1429 	 */
1430 	set_iopl.iopl = 1;
1431 	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1432 	if (rc != 0)
1433 		xen_raw_printk("physdev_op failed %d\n", rc);
1434 
1435 #ifdef CONFIG_X86_32
1436 	/* set up basic CPUID stuff */
1437 	cpu_detect(&new_cpu_data);
1438 	new_cpu_data.hard_math = 1;
1439 	new_cpu_data.wp_works_ok = 1;
1440 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1441 #endif
1442 
1443 	/* Poke various useful things into boot_params */
1444 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1445 	boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1446 		? __pa(xen_start_info->mod_start) : 0;
1447 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1448 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1449 
1450 	if (!xen_initial_domain()) {
1451 		add_preferred_console("xenboot", 0, NULL);
1452 		add_preferred_console("tty", 0, NULL);
1453 		add_preferred_console("hvc", 0, NULL);
1454 		if (pci_xen)
1455 			x86_init.pci.arch_init = pci_xen_init;
1456 	} else {
1457 		const struct dom0_vga_console_info *info =
1458 			(void *)((char *)xen_start_info +
1459 				 xen_start_info->console.dom0.info_off);
1460 		struct xen_platform_op op = {
1461 			.cmd = XENPF_firmware_info,
1462 			.interface_version = XENPF_INTERFACE_VERSION,
1463 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1464 		};
1465 
1466 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1467 		xen_start_info->console.domU.mfn = 0;
1468 		xen_start_info->console.domU.evtchn = 0;
1469 
1470 		if (HYPERVISOR_dom0_op(&op) == 0)
1471 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1472 
1473 		xen_init_apic();
1474 
1475 		/* Make sure ACS will be enabled */
1476 		pci_request_acs();
1477 
1478 		xen_acpi_sleep_register();
1479 
1480 		/* Avoid searching for BIOS MP tables */
1481 		x86_init.mpparse.find_smp_config = x86_init_noop;
1482 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1483 	}
1484 #ifdef CONFIG_PCI
1485 	/* PCI BIOS service won't work from a PV guest. */
1486 	pci_probe &= ~PCI_PROBE_BIOS;
1487 #endif
1488 	xen_raw_console_write("about to get started...\n");
1489 
1490 	xen_setup_runstate_info(0);
1491 
1492 	/* Start the world */
1493 #ifdef CONFIG_X86_32
1494 	i386_start_kernel();
1495 #else
1496 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1497 #endif
1498 }
1499 
1500 void __ref xen_hvm_init_shared_info(void)
1501 {
1502 	int cpu;
1503 	struct xen_add_to_physmap xatp;
1504 	static struct shared_info *shared_info_page = 0;
1505 
1506 	if (!shared_info_page)
1507 		shared_info_page = (struct shared_info *)
1508 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1509 	xatp.domid = DOMID_SELF;
1510 	xatp.idx = 0;
1511 	xatp.space = XENMAPSPACE_shared_info;
1512 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1513 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1514 		BUG();
1515 
1516 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1517 
1518 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1519 	 * page, we use it in the event channel upcall and in some pvclock
1520 	 * related functions. We don't need the vcpu_info placement
1521 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1522 	 * HVM.
1523 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1524 	 * online but xen_hvm_init_shared_info is run at resume time too and
1525 	 * in that case multiple vcpus might be online. */
1526 	for_each_online_cpu(cpu) {
1527 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1528 	}
1529 }
1530 
1531 #ifdef CONFIG_XEN_PVHVM
1532 static void __init init_hvm_pv_info(void)
1533 {
1534 	int major, minor;
1535 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1536 	u64 pfn;
1537 
1538 	base = xen_cpuid_base();
1539 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1540 
1541 	major = eax >> 16;
1542 	minor = eax & 0xffff;
1543 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1544 
1545 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1546 
1547 	pfn = __pa(hypercall_page);
1548 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1549 
1550 	xen_setup_features();
1551 
1552 	pv_info.name = "Xen HVM";
1553 
1554 	xen_domain_type = XEN_HVM_DOMAIN;
1555 }
1556 
1557 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1558 				    unsigned long action, void *hcpu)
1559 {
1560 	int cpu = (long)hcpu;
1561 	switch (action) {
1562 	case CPU_UP_PREPARE:
1563 		xen_vcpu_setup(cpu);
1564 		if (xen_have_vector_callback)
1565 			xen_init_lock_cpu(cpu);
1566 		break;
1567 	default:
1568 		break;
1569 	}
1570 	return NOTIFY_OK;
1571 }
1572 
1573 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1574 	.notifier_call	= xen_hvm_cpu_notify,
1575 };
1576 
1577 static void __init xen_hvm_guest_init(void)
1578 {
1579 	init_hvm_pv_info();
1580 
1581 	xen_hvm_init_shared_info();
1582 
1583 	if (xen_feature(XENFEAT_hvm_callback_vector))
1584 		xen_have_vector_callback = 1;
1585 	xen_hvm_smp_init();
1586 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1587 	xen_unplug_emulated_devices();
1588 	x86_init.irqs.intr_init = xen_init_IRQ;
1589 	xen_hvm_init_time_ops();
1590 	xen_hvm_init_mmu_ops();
1591 }
1592 
1593 static bool __init xen_hvm_platform(void)
1594 {
1595 	if (xen_pv_domain())
1596 		return false;
1597 
1598 	if (!xen_cpuid_base())
1599 		return false;
1600 
1601 	return true;
1602 }
1603 
1604 bool xen_hvm_need_lapic(void)
1605 {
1606 	if (xen_pv_domain())
1607 		return false;
1608 	if (!xen_hvm_domain())
1609 		return false;
1610 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1611 		return false;
1612 	return true;
1613 }
1614 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1615 
1616 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1617 	.name			= "Xen HVM",
1618 	.detect			= xen_hvm_platform,
1619 	.init_platform		= xen_hvm_guest_init,
1620 };
1621 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1622 #endif
1623