1 /* 2 * Core of Xen paravirt_ops implementation. 3 * 4 * This file contains the xen_paravirt_ops structure itself, and the 5 * implementations for: 6 * - privileged instructions 7 * - interrupt flags 8 * - segment operations 9 * - booting and setup 10 * 11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/smp.h> 18 #include <linux/preempt.h> 19 #include <linux/hardirq.h> 20 #include <linux/percpu.h> 21 #include <linux/delay.h> 22 #include <linux/start_kernel.h> 23 #include <linux/sched.h> 24 #include <linux/kprobes.h> 25 #include <linux/bootmem.h> 26 #include <linux/module.h> 27 #include <linux/mm.h> 28 #include <linux/page-flags.h> 29 #include <linux/highmem.h> 30 #include <linux/console.h> 31 #include <linux/pci.h> 32 #include <linux/gfp.h> 33 #include <linux/memblock.h> 34 35 #include <xen/xen.h> 36 #include <xen/events.h> 37 #include <xen/interface/xen.h> 38 #include <xen/interface/version.h> 39 #include <xen/interface/physdev.h> 40 #include <xen/interface/vcpu.h> 41 #include <xen/interface/memory.h> 42 #include <xen/interface/xen-mca.h> 43 #include <xen/features.h> 44 #include <xen/page.h> 45 #include <xen/hvm.h> 46 #include <xen/hvc-console.h> 47 #include <xen/acpi.h> 48 49 #include <asm/paravirt.h> 50 #include <asm/apic.h> 51 #include <asm/page.h> 52 #include <asm/xen/pci.h> 53 #include <asm/xen/hypercall.h> 54 #include <asm/xen/hypervisor.h> 55 #include <asm/fixmap.h> 56 #include <asm/processor.h> 57 #include <asm/proto.h> 58 #include <asm/msr-index.h> 59 #include <asm/traps.h> 60 #include <asm/setup.h> 61 #include <asm/desc.h> 62 #include <asm/pgalloc.h> 63 #include <asm/pgtable.h> 64 #include <asm/tlbflush.h> 65 #include <asm/reboot.h> 66 #include <asm/stackprotector.h> 67 #include <asm/hypervisor.h> 68 #include <asm/mwait.h> 69 #include <asm/pci_x86.h> 70 71 #ifdef CONFIG_ACPI 72 #include <linux/acpi.h> 73 #include <asm/acpi.h> 74 #include <acpi/pdc_intel.h> 75 #include <acpi/processor.h> 76 #include <xen/interface/platform.h> 77 #endif 78 79 #include "xen-ops.h" 80 #include "mmu.h" 81 #include "smp.h" 82 #include "multicalls.h" 83 84 #include <xen/events.h> 85 86 EXPORT_SYMBOL_GPL(hypercall_page); 87 88 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); 89 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); 90 91 enum xen_domain_type xen_domain_type = XEN_NATIVE; 92 EXPORT_SYMBOL_GPL(xen_domain_type); 93 94 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START; 95 EXPORT_SYMBOL(machine_to_phys_mapping); 96 unsigned long machine_to_phys_nr; 97 EXPORT_SYMBOL(machine_to_phys_nr); 98 99 struct start_info *xen_start_info; 100 EXPORT_SYMBOL_GPL(xen_start_info); 101 102 struct shared_info xen_dummy_shared_info; 103 104 void *xen_initial_gdt; 105 106 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE); 107 __read_mostly int xen_have_vector_callback; 108 EXPORT_SYMBOL_GPL(xen_have_vector_callback); 109 110 /* 111 * Point at some empty memory to start with. We map the real shared_info 112 * page as soon as fixmap is up and running. 113 */ 114 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info; 115 116 /* 117 * Flag to determine whether vcpu info placement is available on all 118 * VCPUs. We assume it is to start with, and then set it to zero on 119 * the first failure. This is because it can succeed on some VCPUs 120 * and not others, since it can involve hypervisor memory allocation, 121 * or because the guest failed to guarantee all the appropriate 122 * constraints on all VCPUs (ie buffer can't cross a page boundary). 123 * 124 * Note that any particular CPU may be using a placed vcpu structure, 125 * but we can only optimise if the all are. 126 * 127 * 0: not available, 1: available 128 */ 129 static int have_vcpu_info_placement = 1; 130 131 struct tls_descs { 132 struct desc_struct desc[3]; 133 }; 134 135 /* 136 * Updating the 3 TLS descriptors in the GDT on every task switch is 137 * surprisingly expensive so we avoid updating them if they haven't 138 * changed. Since Xen writes different descriptors than the one 139 * passed in the update_descriptor hypercall we keep shadow copies to 140 * compare against. 141 */ 142 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc); 143 144 static void clamp_max_cpus(void) 145 { 146 #ifdef CONFIG_SMP 147 if (setup_max_cpus > MAX_VIRT_CPUS) 148 setup_max_cpus = MAX_VIRT_CPUS; 149 #endif 150 } 151 152 static void xen_vcpu_setup(int cpu) 153 { 154 struct vcpu_register_vcpu_info info; 155 int err; 156 struct vcpu_info *vcpup; 157 158 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 159 160 if (cpu < MAX_VIRT_CPUS) 161 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 162 163 if (!have_vcpu_info_placement) { 164 if (cpu >= MAX_VIRT_CPUS) 165 clamp_max_cpus(); 166 return; 167 } 168 169 vcpup = &per_cpu(xen_vcpu_info, cpu); 170 info.mfn = arbitrary_virt_to_mfn(vcpup); 171 info.offset = offset_in_page(vcpup); 172 173 /* Check to see if the hypervisor will put the vcpu_info 174 structure where we want it, which allows direct access via 175 a percpu-variable. */ 176 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); 177 178 if (err) { 179 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); 180 have_vcpu_info_placement = 0; 181 clamp_max_cpus(); 182 } else { 183 /* This cpu is using the registered vcpu info, even if 184 later ones fail to. */ 185 per_cpu(xen_vcpu, cpu) = vcpup; 186 } 187 } 188 189 /* 190 * On restore, set the vcpu placement up again. 191 * If it fails, then we're in a bad state, since 192 * we can't back out from using it... 193 */ 194 void xen_vcpu_restore(void) 195 { 196 int cpu; 197 198 for_each_online_cpu(cpu) { 199 bool other_cpu = (cpu != smp_processor_id()); 200 201 if (other_cpu && 202 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) 203 BUG(); 204 205 xen_setup_runstate_info(cpu); 206 207 if (have_vcpu_info_placement) 208 xen_vcpu_setup(cpu); 209 210 if (other_cpu && 211 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) 212 BUG(); 213 } 214 } 215 216 static void __init xen_banner(void) 217 { 218 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); 219 struct xen_extraversion extra; 220 HYPERVISOR_xen_version(XENVER_extraversion, &extra); 221 222 printk(KERN_INFO "Booting paravirtualized kernel on %s\n", 223 pv_info.name); 224 printk(KERN_INFO "Xen version: %d.%d%s%s\n", 225 version >> 16, version & 0xffff, extra.extraversion, 226 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); 227 } 228 229 #define CPUID_THERM_POWER_LEAF 6 230 #define APERFMPERF_PRESENT 0 231 232 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0; 233 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0; 234 235 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask; 236 static __read_mostly unsigned int cpuid_leaf5_ecx_val; 237 static __read_mostly unsigned int cpuid_leaf5_edx_val; 238 239 static void xen_cpuid(unsigned int *ax, unsigned int *bx, 240 unsigned int *cx, unsigned int *dx) 241 { 242 unsigned maskebx = ~0; 243 unsigned maskecx = ~0; 244 unsigned maskedx = ~0; 245 unsigned setecx = 0; 246 /* 247 * Mask out inconvenient features, to try and disable as many 248 * unsupported kernel subsystems as possible. 249 */ 250 switch (*ax) { 251 case 1: 252 maskecx = cpuid_leaf1_ecx_mask; 253 setecx = cpuid_leaf1_ecx_set_mask; 254 maskedx = cpuid_leaf1_edx_mask; 255 break; 256 257 case CPUID_MWAIT_LEAF: 258 /* Synthesize the values.. */ 259 *ax = 0; 260 *bx = 0; 261 *cx = cpuid_leaf5_ecx_val; 262 *dx = cpuid_leaf5_edx_val; 263 return; 264 265 case CPUID_THERM_POWER_LEAF: 266 /* Disabling APERFMPERF for kernel usage */ 267 maskecx = ~(1 << APERFMPERF_PRESENT); 268 break; 269 270 case 0xb: 271 /* Suppress extended topology stuff */ 272 maskebx = 0; 273 break; 274 } 275 276 asm(XEN_EMULATE_PREFIX "cpuid" 277 : "=a" (*ax), 278 "=b" (*bx), 279 "=c" (*cx), 280 "=d" (*dx) 281 : "0" (*ax), "2" (*cx)); 282 283 *bx &= maskebx; 284 *cx &= maskecx; 285 *cx |= setecx; 286 *dx &= maskedx; 287 288 } 289 290 static bool __init xen_check_mwait(void) 291 { 292 #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \ 293 !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE) 294 struct xen_platform_op op = { 295 .cmd = XENPF_set_processor_pminfo, 296 .u.set_pminfo.id = -1, 297 .u.set_pminfo.type = XEN_PM_PDC, 298 }; 299 uint32_t buf[3]; 300 unsigned int ax, bx, cx, dx; 301 unsigned int mwait_mask; 302 303 /* We need to determine whether it is OK to expose the MWAIT 304 * capability to the kernel to harvest deeper than C3 states from ACPI 305 * _CST using the processor_harvest_xen.c module. For this to work, we 306 * need to gather the MWAIT_LEAF values (which the cstate.c code 307 * checks against). The hypervisor won't expose the MWAIT flag because 308 * it would break backwards compatibility; so we will find out directly 309 * from the hardware and hypercall. 310 */ 311 if (!xen_initial_domain()) 312 return false; 313 314 ax = 1; 315 cx = 0; 316 317 native_cpuid(&ax, &bx, &cx, &dx); 318 319 mwait_mask = (1 << (X86_FEATURE_EST % 32)) | 320 (1 << (X86_FEATURE_MWAIT % 32)); 321 322 if ((cx & mwait_mask) != mwait_mask) 323 return false; 324 325 /* We need to emulate the MWAIT_LEAF and for that we need both 326 * ecx and edx. The hypercall provides only partial information. 327 */ 328 329 ax = CPUID_MWAIT_LEAF; 330 bx = 0; 331 cx = 0; 332 dx = 0; 333 334 native_cpuid(&ax, &bx, &cx, &dx); 335 336 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so, 337 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3. 338 */ 339 buf[0] = ACPI_PDC_REVISION_ID; 340 buf[1] = 1; 341 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP); 342 343 set_xen_guest_handle(op.u.set_pminfo.pdc, buf); 344 345 if ((HYPERVISOR_dom0_op(&op) == 0) && 346 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) { 347 cpuid_leaf5_ecx_val = cx; 348 cpuid_leaf5_edx_val = dx; 349 } 350 return true; 351 #else 352 return false; 353 #endif 354 } 355 static void __init xen_init_cpuid_mask(void) 356 { 357 unsigned int ax, bx, cx, dx; 358 unsigned int xsave_mask; 359 360 cpuid_leaf1_edx_mask = 361 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */ 362 (1 << X86_FEATURE_ACC)); /* thermal monitoring */ 363 364 if (!xen_initial_domain()) 365 cpuid_leaf1_edx_mask &= 366 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */ 367 (1 << X86_FEATURE_ACPI)); /* disable ACPI */ 368 ax = 1; 369 cx = 0; 370 xen_cpuid(&ax, &bx, &cx, &dx); 371 372 xsave_mask = 373 (1 << (X86_FEATURE_XSAVE % 32)) | 374 (1 << (X86_FEATURE_OSXSAVE % 32)); 375 376 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */ 377 if ((cx & xsave_mask) != xsave_mask) 378 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */ 379 if (xen_check_mwait()) 380 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32)); 381 } 382 383 static void xen_set_debugreg(int reg, unsigned long val) 384 { 385 HYPERVISOR_set_debugreg(reg, val); 386 } 387 388 static unsigned long xen_get_debugreg(int reg) 389 { 390 return HYPERVISOR_get_debugreg(reg); 391 } 392 393 static void xen_end_context_switch(struct task_struct *next) 394 { 395 xen_mc_flush(); 396 paravirt_end_context_switch(next); 397 } 398 399 static unsigned long xen_store_tr(void) 400 { 401 return 0; 402 } 403 404 /* 405 * Set the page permissions for a particular virtual address. If the 406 * address is a vmalloc mapping (or other non-linear mapping), then 407 * find the linear mapping of the page and also set its protections to 408 * match. 409 */ 410 static void set_aliased_prot(void *v, pgprot_t prot) 411 { 412 int level; 413 pte_t *ptep; 414 pte_t pte; 415 unsigned long pfn; 416 struct page *page; 417 418 ptep = lookup_address((unsigned long)v, &level); 419 BUG_ON(ptep == NULL); 420 421 pfn = pte_pfn(*ptep); 422 page = pfn_to_page(pfn); 423 424 pte = pfn_pte(pfn, prot); 425 426 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) 427 BUG(); 428 429 if (!PageHighMem(page)) { 430 void *av = __va(PFN_PHYS(pfn)); 431 432 if (av != v) 433 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) 434 BUG(); 435 } else 436 kmap_flush_unused(); 437 } 438 439 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) 440 { 441 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 442 int i; 443 444 for(i = 0; i < entries; i += entries_per_page) 445 set_aliased_prot(ldt + i, PAGE_KERNEL_RO); 446 } 447 448 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) 449 { 450 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; 451 int i; 452 453 for(i = 0; i < entries; i += entries_per_page) 454 set_aliased_prot(ldt + i, PAGE_KERNEL); 455 } 456 457 static void xen_set_ldt(const void *addr, unsigned entries) 458 { 459 struct mmuext_op *op; 460 struct multicall_space mcs = xen_mc_entry(sizeof(*op)); 461 462 trace_xen_cpu_set_ldt(addr, entries); 463 464 op = mcs.args; 465 op->cmd = MMUEXT_SET_LDT; 466 op->arg1.linear_addr = (unsigned long)addr; 467 op->arg2.nr_ents = entries; 468 469 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 470 471 xen_mc_issue(PARAVIRT_LAZY_CPU); 472 } 473 474 static void xen_load_gdt(const struct desc_ptr *dtr) 475 { 476 unsigned long va = dtr->address; 477 unsigned int size = dtr->size + 1; 478 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 479 unsigned long frames[pages]; 480 int f; 481 482 /* 483 * A GDT can be up to 64k in size, which corresponds to 8192 484 * 8-byte entries, or 16 4k pages.. 485 */ 486 487 BUG_ON(size > 65536); 488 BUG_ON(va & ~PAGE_MASK); 489 490 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 491 int level; 492 pte_t *ptep; 493 unsigned long pfn, mfn; 494 void *virt; 495 496 /* 497 * The GDT is per-cpu and is in the percpu data area. 498 * That can be virtually mapped, so we need to do a 499 * page-walk to get the underlying MFN for the 500 * hypercall. The page can also be in the kernel's 501 * linear range, so we need to RO that mapping too. 502 */ 503 ptep = lookup_address(va, &level); 504 BUG_ON(ptep == NULL); 505 506 pfn = pte_pfn(*ptep); 507 mfn = pfn_to_mfn(pfn); 508 virt = __va(PFN_PHYS(pfn)); 509 510 frames[f] = mfn; 511 512 make_lowmem_page_readonly((void *)va); 513 make_lowmem_page_readonly(virt); 514 } 515 516 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 517 BUG(); 518 } 519 520 /* 521 * load_gdt for early boot, when the gdt is only mapped once 522 */ 523 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr) 524 { 525 unsigned long va = dtr->address; 526 unsigned int size = dtr->size + 1; 527 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; 528 unsigned long frames[pages]; 529 int f; 530 531 /* 532 * A GDT can be up to 64k in size, which corresponds to 8192 533 * 8-byte entries, or 16 4k pages.. 534 */ 535 536 BUG_ON(size > 65536); 537 BUG_ON(va & ~PAGE_MASK); 538 539 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { 540 pte_t pte; 541 unsigned long pfn, mfn; 542 543 pfn = virt_to_pfn(va); 544 mfn = pfn_to_mfn(pfn); 545 546 pte = pfn_pte(pfn, PAGE_KERNEL_RO); 547 548 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0)) 549 BUG(); 550 551 frames[f] = mfn; 552 } 553 554 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct))) 555 BUG(); 556 } 557 558 static inline bool desc_equal(const struct desc_struct *d1, 559 const struct desc_struct *d2) 560 { 561 return d1->a == d2->a && d1->b == d2->b; 562 } 563 564 static void load_TLS_descriptor(struct thread_struct *t, 565 unsigned int cpu, unsigned int i) 566 { 567 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i]; 568 struct desc_struct *gdt; 569 xmaddr_t maddr; 570 struct multicall_space mc; 571 572 if (desc_equal(shadow, &t->tls_array[i])) 573 return; 574 575 *shadow = t->tls_array[i]; 576 577 gdt = get_cpu_gdt_table(cpu); 578 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); 579 mc = __xen_mc_entry(0); 580 581 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); 582 } 583 584 static void xen_load_tls(struct thread_struct *t, unsigned int cpu) 585 { 586 /* 587 * XXX sleazy hack: If we're being called in a lazy-cpu zone 588 * and lazy gs handling is enabled, it means we're in a 589 * context switch, and %gs has just been saved. This means we 590 * can zero it out to prevent faults on exit from the 591 * hypervisor if the next process has no %gs. Either way, it 592 * has been saved, and the new value will get loaded properly. 593 * This will go away as soon as Xen has been modified to not 594 * save/restore %gs for normal hypercalls. 595 * 596 * On x86_64, this hack is not used for %gs, because gs points 597 * to KERNEL_GS_BASE (and uses it for PDA references), so we 598 * must not zero %gs on x86_64 599 * 600 * For x86_64, we need to zero %fs, otherwise we may get an 601 * exception between the new %fs descriptor being loaded and 602 * %fs being effectively cleared at __switch_to(). 603 */ 604 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { 605 #ifdef CONFIG_X86_32 606 lazy_load_gs(0); 607 #else 608 loadsegment(fs, 0); 609 #endif 610 } 611 612 xen_mc_batch(); 613 614 load_TLS_descriptor(t, cpu, 0); 615 load_TLS_descriptor(t, cpu, 1); 616 load_TLS_descriptor(t, cpu, 2); 617 618 xen_mc_issue(PARAVIRT_LAZY_CPU); 619 } 620 621 #ifdef CONFIG_X86_64 622 static void xen_load_gs_index(unsigned int idx) 623 { 624 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) 625 BUG(); 626 } 627 #endif 628 629 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, 630 const void *ptr) 631 { 632 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); 633 u64 entry = *(u64 *)ptr; 634 635 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry); 636 637 preempt_disable(); 638 639 xen_mc_flush(); 640 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) 641 BUG(); 642 643 preempt_enable(); 644 } 645 646 static int cvt_gate_to_trap(int vector, const gate_desc *val, 647 struct trap_info *info) 648 { 649 unsigned long addr; 650 651 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT) 652 return 0; 653 654 info->vector = vector; 655 656 addr = gate_offset(*val); 657 #ifdef CONFIG_X86_64 658 /* 659 * Look for known traps using IST, and substitute them 660 * appropriately. The debugger ones are the only ones we care 661 * about. Xen will handle faults like double_fault, 662 * so we should never see them. Warn if 663 * there's an unexpected IST-using fault handler. 664 */ 665 if (addr == (unsigned long)debug) 666 addr = (unsigned long)xen_debug; 667 else if (addr == (unsigned long)int3) 668 addr = (unsigned long)xen_int3; 669 else if (addr == (unsigned long)stack_segment) 670 addr = (unsigned long)xen_stack_segment; 671 else if (addr == (unsigned long)double_fault || 672 addr == (unsigned long)nmi) { 673 /* Don't need to handle these */ 674 return 0; 675 #ifdef CONFIG_X86_MCE 676 } else if (addr == (unsigned long)machine_check) { 677 /* 678 * when xen hypervisor inject vMCE to guest, 679 * use native mce handler to handle it 680 */ 681 ; 682 #endif 683 } else { 684 /* Some other trap using IST? */ 685 if (WARN_ON(val->ist != 0)) 686 return 0; 687 } 688 #endif /* CONFIG_X86_64 */ 689 info->address = addr; 690 691 info->cs = gate_segment(*val); 692 info->flags = val->dpl; 693 /* interrupt gates clear IF */ 694 if (val->type == GATE_INTERRUPT) 695 info->flags |= 1 << 2; 696 697 return 1; 698 } 699 700 /* Locations of each CPU's IDT */ 701 static DEFINE_PER_CPU(struct desc_ptr, idt_desc); 702 703 /* Set an IDT entry. If the entry is part of the current IDT, then 704 also update Xen. */ 705 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) 706 { 707 unsigned long p = (unsigned long)&dt[entrynum]; 708 unsigned long start, end; 709 710 trace_xen_cpu_write_idt_entry(dt, entrynum, g); 711 712 preempt_disable(); 713 714 start = __this_cpu_read(idt_desc.address); 715 end = start + __this_cpu_read(idt_desc.size) + 1; 716 717 xen_mc_flush(); 718 719 native_write_idt_entry(dt, entrynum, g); 720 721 if (p >= start && (p + 8) <= end) { 722 struct trap_info info[2]; 723 724 info[1].address = 0; 725 726 if (cvt_gate_to_trap(entrynum, g, &info[0])) 727 if (HYPERVISOR_set_trap_table(info)) 728 BUG(); 729 } 730 731 preempt_enable(); 732 } 733 734 static void xen_convert_trap_info(const struct desc_ptr *desc, 735 struct trap_info *traps) 736 { 737 unsigned in, out, count; 738 739 count = (desc->size+1) / sizeof(gate_desc); 740 BUG_ON(count > 256); 741 742 for (in = out = 0; in < count; in++) { 743 gate_desc *entry = (gate_desc*)(desc->address) + in; 744 745 if (cvt_gate_to_trap(in, entry, &traps[out])) 746 out++; 747 } 748 traps[out].address = 0; 749 } 750 751 void xen_copy_trap_info(struct trap_info *traps) 752 { 753 const struct desc_ptr *desc = &__get_cpu_var(idt_desc); 754 755 xen_convert_trap_info(desc, traps); 756 } 757 758 /* Load a new IDT into Xen. In principle this can be per-CPU, so we 759 hold a spinlock to protect the static traps[] array (static because 760 it avoids allocation, and saves stack space). */ 761 static void xen_load_idt(const struct desc_ptr *desc) 762 { 763 static DEFINE_SPINLOCK(lock); 764 static struct trap_info traps[257]; 765 766 trace_xen_cpu_load_idt(desc); 767 768 spin_lock(&lock); 769 770 __get_cpu_var(idt_desc) = *desc; 771 772 xen_convert_trap_info(desc, traps); 773 774 xen_mc_flush(); 775 if (HYPERVISOR_set_trap_table(traps)) 776 BUG(); 777 778 spin_unlock(&lock); 779 } 780 781 /* Write a GDT descriptor entry. Ignore LDT descriptors, since 782 they're handled differently. */ 783 static void xen_write_gdt_entry(struct desc_struct *dt, int entry, 784 const void *desc, int type) 785 { 786 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 787 788 preempt_disable(); 789 790 switch (type) { 791 case DESC_LDT: 792 case DESC_TSS: 793 /* ignore */ 794 break; 795 796 default: { 797 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]); 798 799 xen_mc_flush(); 800 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 801 BUG(); 802 } 803 804 } 805 806 preempt_enable(); 807 } 808 809 /* 810 * Version of write_gdt_entry for use at early boot-time needed to 811 * update an entry as simply as possible. 812 */ 813 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry, 814 const void *desc, int type) 815 { 816 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type); 817 818 switch (type) { 819 case DESC_LDT: 820 case DESC_TSS: 821 /* ignore */ 822 break; 823 824 default: { 825 xmaddr_t maddr = virt_to_machine(&dt[entry]); 826 827 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) 828 dt[entry] = *(struct desc_struct *)desc; 829 } 830 831 } 832 } 833 834 static void xen_load_sp0(struct tss_struct *tss, 835 struct thread_struct *thread) 836 { 837 struct multicall_space mcs; 838 839 mcs = xen_mc_entry(0); 840 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); 841 xen_mc_issue(PARAVIRT_LAZY_CPU); 842 } 843 844 static void xen_set_iopl_mask(unsigned mask) 845 { 846 struct physdev_set_iopl set_iopl; 847 848 /* Force the change at ring 0. */ 849 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; 850 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 851 } 852 853 static void xen_io_delay(void) 854 { 855 } 856 857 #ifdef CONFIG_X86_LOCAL_APIC 858 static unsigned long xen_set_apic_id(unsigned int x) 859 { 860 WARN_ON(1); 861 return x; 862 } 863 static unsigned int xen_get_apic_id(unsigned long x) 864 { 865 return ((x)>>24) & 0xFFu; 866 } 867 static u32 xen_apic_read(u32 reg) 868 { 869 struct xen_platform_op op = { 870 .cmd = XENPF_get_cpuinfo, 871 .interface_version = XENPF_INTERFACE_VERSION, 872 .u.pcpu_info.xen_cpuid = 0, 873 }; 874 int ret = 0; 875 876 /* Shouldn't need this as APIC is turned off for PV, and we only 877 * get called on the bootup processor. But just in case. */ 878 if (!xen_initial_domain() || smp_processor_id()) 879 return 0; 880 881 if (reg == APIC_LVR) 882 return 0x10; 883 884 if (reg != APIC_ID) 885 return 0; 886 887 ret = HYPERVISOR_dom0_op(&op); 888 if (ret) 889 return 0; 890 891 return op.u.pcpu_info.apic_id << 24; 892 } 893 894 static void xen_apic_write(u32 reg, u32 val) 895 { 896 /* Warn to see if there's any stray references */ 897 WARN_ON(1); 898 } 899 900 static u64 xen_apic_icr_read(void) 901 { 902 return 0; 903 } 904 905 static void xen_apic_icr_write(u32 low, u32 id) 906 { 907 /* Warn to see if there's any stray references */ 908 WARN_ON(1); 909 } 910 911 static void xen_apic_wait_icr_idle(void) 912 { 913 return; 914 } 915 916 static u32 xen_safe_apic_wait_icr_idle(void) 917 { 918 return 0; 919 } 920 921 static void set_xen_basic_apic_ops(void) 922 { 923 apic->read = xen_apic_read; 924 apic->write = xen_apic_write; 925 apic->icr_read = xen_apic_icr_read; 926 apic->icr_write = xen_apic_icr_write; 927 apic->wait_icr_idle = xen_apic_wait_icr_idle; 928 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle; 929 apic->set_apic_id = xen_set_apic_id; 930 apic->get_apic_id = xen_get_apic_id; 931 932 #ifdef CONFIG_SMP 933 apic->send_IPI_allbutself = xen_send_IPI_allbutself; 934 apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself; 935 apic->send_IPI_mask = xen_send_IPI_mask; 936 apic->send_IPI_all = xen_send_IPI_all; 937 apic->send_IPI_self = xen_send_IPI_self; 938 #endif 939 } 940 941 #endif 942 943 static void xen_clts(void) 944 { 945 struct multicall_space mcs; 946 947 mcs = xen_mc_entry(0); 948 949 MULTI_fpu_taskswitch(mcs.mc, 0); 950 951 xen_mc_issue(PARAVIRT_LAZY_CPU); 952 } 953 954 static DEFINE_PER_CPU(unsigned long, xen_cr0_value); 955 956 static unsigned long xen_read_cr0(void) 957 { 958 unsigned long cr0 = this_cpu_read(xen_cr0_value); 959 960 if (unlikely(cr0 == 0)) { 961 cr0 = native_read_cr0(); 962 this_cpu_write(xen_cr0_value, cr0); 963 } 964 965 return cr0; 966 } 967 968 static void xen_write_cr0(unsigned long cr0) 969 { 970 struct multicall_space mcs; 971 972 this_cpu_write(xen_cr0_value, cr0); 973 974 /* Only pay attention to cr0.TS; everything else is 975 ignored. */ 976 mcs = xen_mc_entry(0); 977 978 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); 979 980 xen_mc_issue(PARAVIRT_LAZY_CPU); 981 } 982 983 static void xen_write_cr4(unsigned long cr4) 984 { 985 cr4 &= ~X86_CR4_PGE; 986 cr4 &= ~X86_CR4_PSE; 987 988 native_write_cr4(cr4); 989 } 990 #ifdef CONFIG_X86_64 991 static inline unsigned long xen_read_cr8(void) 992 { 993 return 0; 994 } 995 static inline void xen_write_cr8(unsigned long val) 996 { 997 BUG_ON(val); 998 } 999 #endif 1000 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) 1001 { 1002 int ret; 1003 1004 ret = 0; 1005 1006 switch (msr) { 1007 #ifdef CONFIG_X86_64 1008 unsigned which; 1009 u64 base; 1010 1011 case MSR_FS_BASE: which = SEGBASE_FS; goto set; 1012 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set; 1013 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set; 1014 1015 set: 1016 base = ((u64)high << 32) | low; 1017 if (HYPERVISOR_set_segment_base(which, base) != 0) 1018 ret = -EIO; 1019 break; 1020 #endif 1021 1022 case MSR_STAR: 1023 case MSR_CSTAR: 1024 case MSR_LSTAR: 1025 case MSR_SYSCALL_MASK: 1026 case MSR_IA32_SYSENTER_CS: 1027 case MSR_IA32_SYSENTER_ESP: 1028 case MSR_IA32_SYSENTER_EIP: 1029 /* Fast syscall setup is all done in hypercalls, so 1030 these are all ignored. Stub them out here to stop 1031 Xen console noise. */ 1032 break; 1033 1034 case MSR_IA32_CR_PAT: 1035 if (smp_processor_id() == 0) 1036 xen_set_pat(((u64)high << 32) | low); 1037 break; 1038 1039 default: 1040 ret = native_write_msr_safe(msr, low, high); 1041 } 1042 1043 return ret; 1044 } 1045 1046 void xen_setup_shared_info(void) 1047 { 1048 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1049 set_fixmap(FIX_PARAVIRT_BOOTMAP, 1050 xen_start_info->shared_info); 1051 1052 HYPERVISOR_shared_info = 1053 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); 1054 } else 1055 HYPERVISOR_shared_info = 1056 (struct shared_info *)__va(xen_start_info->shared_info); 1057 1058 #ifndef CONFIG_SMP 1059 /* In UP this is as good a place as any to set up shared info */ 1060 xen_setup_vcpu_info_placement(); 1061 #endif 1062 1063 xen_setup_mfn_list_list(); 1064 } 1065 1066 /* This is called once we have the cpu_possible_mask */ 1067 void xen_setup_vcpu_info_placement(void) 1068 { 1069 int cpu; 1070 1071 for_each_possible_cpu(cpu) 1072 xen_vcpu_setup(cpu); 1073 1074 /* xen_vcpu_setup managed to place the vcpu_info within the 1075 percpu area for all cpus, so make use of it */ 1076 if (have_vcpu_info_placement) { 1077 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct); 1078 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct); 1079 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct); 1080 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct); 1081 pv_mmu_ops.read_cr2 = xen_read_cr2_direct; 1082 } 1083 } 1084 1085 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, 1086 unsigned long addr, unsigned len) 1087 { 1088 char *start, *end, *reloc; 1089 unsigned ret; 1090 1091 start = end = reloc = NULL; 1092 1093 #define SITE(op, x) \ 1094 case PARAVIRT_PATCH(op.x): \ 1095 if (have_vcpu_info_placement) { \ 1096 start = (char *)xen_##x##_direct; \ 1097 end = xen_##x##_direct_end; \ 1098 reloc = xen_##x##_direct_reloc; \ 1099 } \ 1100 goto patch_site 1101 1102 switch (type) { 1103 SITE(pv_irq_ops, irq_enable); 1104 SITE(pv_irq_ops, irq_disable); 1105 SITE(pv_irq_ops, save_fl); 1106 SITE(pv_irq_ops, restore_fl); 1107 #undef SITE 1108 1109 patch_site: 1110 if (start == NULL || (end-start) > len) 1111 goto default_patch; 1112 1113 ret = paravirt_patch_insns(insnbuf, len, start, end); 1114 1115 /* Note: because reloc is assigned from something that 1116 appears to be an array, gcc assumes it's non-null, 1117 but doesn't know its relationship with start and 1118 end. */ 1119 if (reloc > start && reloc < end) { 1120 int reloc_off = reloc - start; 1121 long *relocp = (long *)(insnbuf + reloc_off); 1122 long delta = start - (char *)addr; 1123 1124 *relocp += delta; 1125 } 1126 break; 1127 1128 default_patch: 1129 default: 1130 ret = paravirt_patch_default(type, clobbers, insnbuf, 1131 addr, len); 1132 break; 1133 } 1134 1135 return ret; 1136 } 1137 1138 static const struct pv_info xen_info __initconst = { 1139 .paravirt_enabled = 1, 1140 .shared_kernel_pmd = 0, 1141 1142 #ifdef CONFIG_X86_64 1143 .extra_user_64bit_cs = FLAT_USER_CS64, 1144 #endif 1145 1146 .name = "Xen", 1147 }; 1148 1149 static const struct pv_init_ops xen_init_ops __initconst = { 1150 .patch = xen_patch, 1151 }; 1152 1153 static const struct pv_cpu_ops xen_cpu_ops __initconst = { 1154 .cpuid = xen_cpuid, 1155 1156 .set_debugreg = xen_set_debugreg, 1157 .get_debugreg = xen_get_debugreg, 1158 1159 .clts = xen_clts, 1160 1161 .read_cr0 = xen_read_cr0, 1162 .write_cr0 = xen_write_cr0, 1163 1164 .read_cr4 = native_read_cr4, 1165 .read_cr4_safe = native_read_cr4_safe, 1166 .write_cr4 = xen_write_cr4, 1167 1168 #ifdef CONFIG_X86_64 1169 .read_cr8 = xen_read_cr8, 1170 .write_cr8 = xen_write_cr8, 1171 #endif 1172 1173 .wbinvd = native_wbinvd, 1174 1175 .read_msr = native_read_msr_safe, 1176 .write_msr = xen_write_msr_safe, 1177 1178 .read_tsc = native_read_tsc, 1179 .read_pmc = native_read_pmc, 1180 1181 .read_tscp = native_read_tscp, 1182 1183 .iret = xen_iret, 1184 .irq_enable_sysexit = xen_sysexit, 1185 #ifdef CONFIG_X86_64 1186 .usergs_sysret32 = xen_sysret32, 1187 .usergs_sysret64 = xen_sysret64, 1188 #endif 1189 1190 .load_tr_desc = paravirt_nop, 1191 .set_ldt = xen_set_ldt, 1192 .load_gdt = xen_load_gdt, 1193 .load_idt = xen_load_idt, 1194 .load_tls = xen_load_tls, 1195 #ifdef CONFIG_X86_64 1196 .load_gs_index = xen_load_gs_index, 1197 #endif 1198 1199 .alloc_ldt = xen_alloc_ldt, 1200 .free_ldt = xen_free_ldt, 1201 1202 .store_gdt = native_store_gdt, 1203 .store_idt = native_store_idt, 1204 .store_tr = xen_store_tr, 1205 1206 .write_ldt_entry = xen_write_ldt_entry, 1207 .write_gdt_entry = xen_write_gdt_entry, 1208 .write_idt_entry = xen_write_idt_entry, 1209 .load_sp0 = xen_load_sp0, 1210 1211 .set_iopl_mask = xen_set_iopl_mask, 1212 .io_delay = xen_io_delay, 1213 1214 /* Xen takes care of %gs when switching to usermode for us */ 1215 .swapgs = paravirt_nop, 1216 1217 .start_context_switch = paravirt_start_context_switch, 1218 .end_context_switch = xen_end_context_switch, 1219 }; 1220 1221 static const struct pv_apic_ops xen_apic_ops __initconst = { 1222 #ifdef CONFIG_X86_LOCAL_APIC 1223 .startup_ipi_hook = paravirt_nop, 1224 #endif 1225 }; 1226 1227 static void xen_reboot(int reason) 1228 { 1229 struct sched_shutdown r = { .reason = reason }; 1230 1231 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) 1232 BUG(); 1233 } 1234 1235 static void xen_restart(char *msg) 1236 { 1237 xen_reboot(SHUTDOWN_reboot); 1238 } 1239 1240 static void xen_emergency_restart(void) 1241 { 1242 xen_reboot(SHUTDOWN_reboot); 1243 } 1244 1245 static void xen_machine_halt(void) 1246 { 1247 xen_reboot(SHUTDOWN_poweroff); 1248 } 1249 1250 static void xen_machine_power_off(void) 1251 { 1252 if (pm_power_off) 1253 pm_power_off(); 1254 xen_reboot(SHUTDOWN_poweroff); 1255 } 1256 1257 static void xen_crash_shutdown(struct pt_regs *regs) 1258 { 1259 xen_reboot(SHUTDOWN_crash); 1260 } 1261 1262 static int 1263 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr) 1264 { 1265 xen_reboot(SHUTDOWN_crash); 1266 return NOTIFY_DONE; 1267 } 1268 1269 static struct notifier_block xen_panic_block = { 1270 .notifier_call= xen_panic_event, 1271 }; 1272 1273 int xen_panic_handler_init(void) 1274 { 1275 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block); 1276 return 0; 1277 } 1278 1279 static const struct machine_ops xen_machine_ops __initconst = { 1280 .restart = xen_restart, 1281 .halt = xen_machine_halt, 1282 .power_off = xen_machine_power_off, 1283 .shutdown = xen_machine_halt, 1284 .crash_shutdown = xen_crash_shutdown, 1285 .emergency_restart = xen_emergency_restart, 1286 }; 1287 1288 /* 1289 * Set up the GDT and segment registers for -fstack-protector. Until 1290 * we do this, we have to be careful not to call any stack-protected 1291 * function, which is most of the kernel. 1292 */ 1293 static void __init xen_setup_stackprotector(void) 1294 { 1295 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot; 1296 pv_cpu_ops.load_gdt = xen_load_gdt_boot; 1297 1298 setup_stack_canary_segment(0); 1299 switch_to_new_gdt(0); 1300 1301 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry; 1302 pv_cpu_ops.load_gdt = xen_load_gdt; 1303 } 1304 1305 /* First C function to be called on Xen boot */ 1306 asmlinkage void __init xen_start_kernel(void) 1307 { 1308 struct physdev_set_iopl set_iopl; 1309 int rc; 1310 1311 if (!xen_start_info) 1312 return; 1313 1314 xen_domain_type = XEN_PV_DOMAIN; 1315 1316 xen_setup_machphys_mapping(); 1317 1318 /* Install Xen paravirt ops */ 1319 pv_info = xen_info; 1320 pv_init_ops = xen_init_ops; 1321 pv_cpu_ops = xen_cpu_ops; 1322 pv_apic_ops = xen_apic_ops; 1323 1324 x86_init.resources.memory_setup = xen_memory_setup; 1325 x86_init.oem.arch_setup = xen_arch_setup; 1326 x86_init.oem.banner = xen_banner; 1327 1328 xen_init_time_ops(); 1329 1330 /* 1331 * Set up some pagetable state before starting to set any ptes. 1332 */ 1333 1334 xen_init_mmu_ops(); 1335 1336 /* Prevent unwanted bits from being set in PTEs. */ 1337 __supported_pte_mask &= ~_PAGE_GLOBAL; 1338 #if 0 1339 if (!xen_initial_domain()) 1340 #endif 1341 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); 1342 1343 __supported_pte_mask |= _PAGE_IOMAP; 1344 1345 /* 1346 * Prevent page tables from being allocated in highmem, even 1347 * if CONFIG_HIGHPTE is enabled. 1348 */ 1349 __userpte_alloc_gfp &= ~__GFP_HIGHMEM; 1350 1351 /* Work out if we support NX */ 1352 x86_configure_nx(); 1353 1354 xen_setup_features(); 1355 1356 /* Get mfn list */ 1357 if (!xen_feature(XENFEAT_auto_translated_physmap)) 1358 xen_build_dynamic_phys_to_machine(); 1359 1360 /* 1361 * Set up kernel GDT and segment registers, mainly so that 1362 * -fstack-protector code can be executed. 1363 */ 1364 xen_setup_stackprotector(); 1365 1366 xen_init_irq_ops(); 1367 xen_init_cpuid_mask(); 1368 1369 #ifdef CONFIG_X86_LOCAL_APIC 1370 /* 1371 * set up the basic apic ops. 1372 */ 1373 set_xen_basic_apic_ops(); 1374 #endif 1375 1376 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { 1377 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; 1378 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; 1379 } 1380 1381 machine_ops = xen_machine_ops; 1382 1383 /* 1384 * The only reliable way to retain the initial address of the 1385 * percpu gdt_page is to remember it here, so we can go and 1386 * mark it RW later, when the initial percpu area is freed. 1387 */ 1388 xen_initial_gdt = &per_cpu(gdt_page, 0); 1389 1390 xen_smp_init(); 1391 1392 #ifdef CONFIG_ACPI_NUMA 1393 /* 1394 * The pages we from Xen are not related to machine pages, so 1395 * any NUMA information the kernel tries to get from ACPI will 1396 * be meaningless. Prevent it from trying. 1397 */ 1398 acpi_numa = -1; 1399 #endif 1400 1401 /* Don't do the full vcpu_info placement stuff until we have a 1402 possible map and a non-dummy shared_info. */ 1403 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; 1404 1405 local_irq_disable(); 1406 early_boot_irqs_disabled = true; 1407 1408 xen_raw_console_write("mapping kernel into physical memory\n"); 1409 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages); 1410 1411 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1412 xen_build_mfn_list_list(); 1413 1414 /* keep using Xen gdt for now; no urgent need to change it */ 1415 1416 #ifdef CONFIG_X86_32 1417 pv_info.kernel_rpl = 1; 1418 if (xen_feature(XENFEAT_supervisor_mode_kernel)) 1419 pv_info.kernel_rpl = 0; 1420 #else 1421 pv_info.kernel_rpl = 0; 1422 #endif 1423 /* set the limit of our address space */ 1424 xen_reserve_top(); 1425 1426 /* We used to do this in xen_arch_setup, but that is too late on AMD 1427 * were early_cpu_init (run before ->arch_setup()) calls early_amd_init 1428 * which pokes 0xcf8 port. 1429 */ 1430 set_iopl.iopl = 1; 1431 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); 1432 if (rc != 0) 1433 xen_raw_printk("physdev_op failed %d\n", rc); 1434 1435 #ifdef CONFIG_X86_32 1436 /* set up basic CPUID stuff */ 1437 cpu_detect(&new_cpu_data); 1438 new_cpu_data.hard_math = 1; 1439 new_cpu_data.wp_works_ok = 1; 1440 new_cpu_data.x86_capability[0] = cpuid_edx(1); 1441 #endif 1442 1443 /* Poke various useful things into boot_params */ 1444 boot_params.hdr.type_of_loader = (9 << 4) | 0; 1445 boot_params.hdr.ramdisk_image = xen_start_info->mod_start 1446 ? __pa(xen_start_info->mod_start) : 0; 1447 boot_params.hdr.ramdisk_size = xen_start_info->mod_len; 1448 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); 1449 1450 if (!xen_initial_domain()) { 1451 add_preferred_console("xenboot", 0, NULL); 1452 add_preferred_console("tty", 0, NULL); 1453 add_preferred_console("hvc", 0, NULL); 1454 if (pci_xen) 1455 x86_init.pci.arch_init = pci_xen_init; 1456 } else { 1457 const struct dom0_vga_console_info *info = 1458 (void *)((char *)xen_start_info + 1459 xen_start_info->console.dom0.info_off); 1460 struct xen_platform_op op = { 1461 .cmd = XENPF_firmware_info, 1462 .interface_version = XENPF_INTERFACE_VERSION, 1463 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS, 1464 }; 1465 1466 xen_init_vga(info, xen_start_info->console.dom0.info_size); 1467 xen_start_info->console.domU.mfn = 0; 1468 xen_start_info->console.domU.evtchn = 0; 1469 1470 if (HYPERVISOR_dom0_op(&op) == 0) 1471 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags; 1472 1473 xen_init_apic(); 1474 1475 /* Make sure ACS will be enabled */ 1476 pci_request_acs(); 1477 1478 xen_acpi_sleep_register(); 1479 1480 /* Avoid searching for BIOS MP tables */ 1481 x86_init.mpparse.find_smp_config = x86_init_noop; 1482 x86_init.mpparse.get_smp_config = x86_init_uint_noop; 1483 } 1484 #ifdef CONFIG_PCI 1485 /* PCI BIOS service won't work from a PV guest. */ 1486 pci_probe &= ~PCI_PROBE_BIOS; 1487 #endif 1488 xen_raw_console_write("about to get started...\n"); 1489 1490 xen_setup_runstate_info(0); 1491 1492 /* Start the world */ 1493 #ifdef CONFIG_X86_32 1494 i386_start_kernel(); 1495 #else 1496 x86_64_start_reservations((char *)__pa_symbol(&boot_params)); 1497 #endif 1498 } 1499 1500 void __ref xen_hvm_init_shared_info(void) 1501 { 1502 int cpu; 1503 struct xen_add_to_physmap xatp; 1504 static struct shared_info *shared_info_page = 0; 1505 1506 if (!shared_info_page) 1507 shared_info_page = (struct shared_info *) 1508 extend_brk(PAGE_SIZE, PAGE_SIZE); 1509 xatp.domid = DOMID_SELF; 1510 xatp.idx = 0; 1511 xatp.space = XENMAPSPACE_shared_info; 1512 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT; 1513 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) 1514 BUG(); 1515 1516 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page; 1517 1518 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info 1519 * page, we use it in the event channel upcall and in some pvclock 1520 * related functions. We don't need the vcpu_info placement 1521 * optimizations because we don't use any pv_mmu or pv_irq op on 1522 * HVM. 1523 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is 1524 * online but xen_hvm_init_shared_info is run at resume time too and 1525 * in that case multiple vcpus might be online. */ 1526 for_each_online_cpu(cpu) { 1527 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; 1528 } 1529 } 1530 1531 #ifdef CONFIG_XEN_PVHVM 1532 static void __init init_hvm_pv_info(void) 1533 { 1534 int major, minor; 1535 uint32_t eax, ebx, ecx, edx, pages, msr, base; 1536 u64 pfn; 1537 1538 base = xen_cpuid_base(); 1539 cpuid(base + 1, &eax, &ebx, &ecx, &edx); 1540 1541 major = eax >> 16; 1542 minor = eax & 0xffff; 1543 printk(KERN_INFO "Xen version %d.%d.\n", major, minor); 1544 1545 cpuid(base + 2, &pages, &msr, &ecx, &edx); 1546 1547 pfn = __pa(hypercall_page); 1548 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32)); 1549 1550 xen_setup_features(); 1551 1552 pv_info.name = "Xen HVM"; 1553 1554 xen_domain_type = XEN_HVM_DOMAIN; 1555 } 1556 1557 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self, 1558 unsigned long action, void *hcpu) 1559 { 1560 int cpu = (long)hcpu; 1561 switch (action) { 1562 case CPU_UP_PREPARE: 1563 xen_vcpu_setup(cpu); 1564 if (xen_have_vector_callback) 1565 xen_init_lock_cpu(cpu); 1566 break; 1567 default: 1568 break; 1569 } 1570 return NOTIFY_OK; 1571 } 1572 1573 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = { 1574 .notifier_call = xen_hvm_cpu_notify, 1575 }; 1576 1577 static void __init xen_hvm_guest_init(void) 1578 { 1579 init_hvm_pv_info(); 1580 1581 xen_hvm_init_shared_info(); 1582 1583 if (xen_feature(XENFEAT_hvm_callback_vector)) 1584 xen_have_vector_callback = 1; 1585 xen_hvm_smp_init(); 1586 register_cpu_notifier(&xen_hvm_cpu_notifier); 1587 xen_unplug_emulated_devices(); 1588 x86_init.irqs.intr_init = xen_init_IRQ; 1589 xen_hvm_init_time_ops(); 1590 xen_hvm_init_mmu_ops(); 1591 } 1592 1593 static bool __init xen_hvm_platform(void) 1594 { 1595 if (xen_pv_domain()) 1596 return false; 1597 1598 if (!xen_cpuid_base()) 1599 return false; 1600 1601 return true; 1602 } 1603 1604 bool xen_hvm_need_lapic(void) 1605 { 1606 if (xen_pv_domain()) 1607 return false; 1608 if (!xen_hvm_domain()) 1609 return false; 1610 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback) 1611 return false; 1612 return true; 1613 } 1614 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic); 1615 1616 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = { 1617 .name = "Xen HVM", 1618 .detect = xen_hvm_platform, 1619 .init_platform = xen_hvm_guest_init, 1620 }; 1621 EXPORT_SYMBOL(x86_hyper_xen_hvm); 1622 #endif 1623