xref: /linux/arch/x86/xen/enlighten.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36 
37 #include <linux/kexec.h>
38 
39 #include <xen/xen.h>
40 #include <xen/events.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/version.h>
43 #include <xen/interface/physdev.h>
44 #include <xen/interface/vcpu.h>
45 #include <xen/interface/memory.h>
46 #include <xen/interface/nmi.h>
47 #include <xen/interface/xen-mca.h>
48 #include <xen/features.h>
49 #include <xen/page.h>
50 #include <xen/hvm.h>
51 #include <xen/hvc-console.h>
52 #include <xen/acpi.h>
53 
54 #include <asm/paravirt.h>
55 #include <asm/apic.h>
56 #include <asm/page.h>
57 #include <asm/xen/pci.h>
58 #include <asm/xen/hypercall.h>
59 #include <asm/xen/hypervisor.h>
60 #include <asm/xen/cpuid.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/cpu.h>
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 EXPORT_SYMBOL_GPL(hypercall_page);
94 
95 /*
96  * Pointer to the xen_vcpu_info structure or
97  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101  * acknowledge pending events.
102  * Also more subtly it is used by the patched version of irq enable/disable
103  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104  *
105  * The desire to be able to do those mask/unmask operations as a single
106  * instruction by using the per-cpu offset held in %gs is the real reason
107  * vcpu info is in a per-cpu pointer and the original reason for this
108  * hypercall.
109  *
110  */
111 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
112 
113 /*
114  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115  * hypercall. This can be used both in PV and PVHVM mode. The structure
116  * overrides the default per_cpu(xen_vcpu, cpu) value.
117  */
118 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119 
120 /* Linux <-> Xen vCPU id mapping */
121 DEFINE_PER_CPU(int, xen_vcpu_id) = -1;
122 EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
123 
124 enum xen_domain_type xen_domain_type = XEN_NATIVE;
125 EXPORT_SYMBOL_GPL(xen_domain_type);
126 
127 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
128 EXPORT_SYMBOL(machine_to_phys_mapping);
129 unsigned long  machine_to_phys_nr;
130 EXPORT_SYMBOL(machine_to_phys_nr);
131 
132 struct start_info *xen_start_info;
133 EXPORT_SYMBOL_GPL(xen_start_info);
134 
135 struct shared_info xen_dummy_shared_info;
136 
137 void *xen_initial_gdt;
138 
139 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
140 __read_mostly int xen_have_vector_callback;
141 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
142 
143 /*
144  * Point at some empty memory to start with. We map the real shared_info
145  * page as soon as fixmap is up and running.
146  */
147 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
148 
149 /*
150  * Flag to determine whether vcpu info placement is available on all
151  * VCPUs.  We assume it is to start with, and then set it to zero on
152  * the first failure.  This is because it can succeed on some VCPUs
153  * and not others, since it can involve hypervisor memory allocation,
154  * or because the guest failed to guarantee all the appropriate
155  * constraints on all VCPUs (ie buffer can't cross a page boundary).
156  *
157  * Note that any particular CPU may be using a placed vcpu structure,
158  * but we can only optimise if the all are.
159  *
160  * 0: not available, 1: available
161  */
162 static int have_vcpu_info_placement = 1;
163 
164 struct tls_descs {
165 	struct desc_struct desc[3];
166 };
167 
168 /*
169  * Updating the 3 TLS descriptors in the GDT on every task switch is
170  * surprisingly expensive so we avoid updating them if they haven't
171  * changed.  Since Xen writes different descriptors than the one
172  * passed in the update_descriptor hypercall we keep shadow copies to
173  * compare against.
174  */
175 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
176 
177 static void clamp_max_cpus(void)
178 {
179 #ifdef CONFIG_SMP
180 	if (setup_max_cpus > MAX_VIRT_CPUS)
181 		setup_max_cpus = MAX_VIRT_CPUS;
182 #endif
183 }
184 
185 void xen_vcpu_setup(int cpu)
186 {
187 	struct vcpu_register_vcpu_info info;
188 	int err;
189 	struct vcpu_info *vcpup;
190 
191 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
192 
193 	/*
194 	 * This path is called twice on PVHVM - first during bootup via
195 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
196 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
197 	 * As we can only do the VCPUOP_register_vcpu_info once lets
198 	 * not over-write its result.
199 	 *
200 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
201 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
202 	 * use this function.
203 	 */
204 	if (xen_hvm_domain()) {
205 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
206 			return;
207 	}
208 	if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
209 		per_cpu(xen_vcpu, cpu) =
210 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
211 
212 	if (!have_vcpu_info_placement) {
213 		if (cpu >= MAX_VIRT_CPUS)
214 			clamp_max_cpus();
215 		return;
216 	}
217 
218 	vcpup = &per_cpu(xen_vcpu_info, cpu);
219 	info.mfn = arbitrary_virt_to_mfn(vcpup);
220 	info.offset = offset_in_page(vcpup);
221 
222 	/* Check to see if the hypervisor will put the vcpu_info
223 	   structure where we want it, which allows direct access via
224 	   a percpu-variable.
225 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
226 	   calls will error out with -EINVAL. This is due to the fact that
227 	   hypervisor has no unregister variant and this hypercall does not
228 	   allow to over-write info.mfn and info.offset.
229 	 */
230 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
231 				 &info);
232 
233 	if (err) {
234 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
235 		have_vcpu_info_placement = 0;
236 		clamp_max_cpus();
237 	} else {
238 		/* This cpu is using the registered vcpu info, even if
239 		   later ones fail to. */
240 		per_cpu(xen_vcpu, cpu) = vcpup;
241 	}
242 }
243 
244 /*
245  * On restore, set the vcpu placement up again.
246  * If it fails, then we're in a bad state, since
247  * we can't back out from using it...
248  */
249 void xen_vcpu_restore(void)
250 {
251 	int cpu;
252 
253 	for_each_possible_cpu(cpu) {
254 		bool other_cpu = (cpu != smp_processor_id());
255 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
256 						NULL);
257 
258 		if (other_cpu && is_up &&
259 		    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
260 			BUG();
261 
262 		xen_setup_runstate_info(cpu);
263 
264 		if (have_vcpu_info_placement)
265 			xen_vcpu_setup(cpu);
266 
267 		if (other_cpu && is_up &&
268 		    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
269 			BUG();
270 	}
271 }
272 
273 static void __init xen_banner(void)
274 {
275 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
276 	struct xen_extraversion extra;
277 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
278 
279 	pr_info("Booting paravirtualized kernel %son %s\n",
280 		xen_feature(XENFEAT_auto_translated_physmap) ?
281 			"with PVH extensions " : "", pv_info.name);
282 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
283 	       version >> 16, version & 0xffff, extra.extraversion,
284 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
285 }
286 /* Check if running on Xen version (major, minor) or later */
287 bool
288 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
289 {
290 	unsigned int version;
291 
292 	if (!xen_domain())
293 		return false;
294 
295 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
296 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
297 		((version >> 16) > major))
298 		return true;
299 	return false;
300 }
301 
302 #define CPUID_THERM_POWER_LEAF 6
303 #define APERFMPERF_PRESENT 0
304 
305 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
306 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
307 
308 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
309 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
310 static __read_mostly unsigned int cpuid_leaf5_edx_val;
311 
312 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
313 		      unsigned int *cx, unsigned int *dx)
314 {
315 	unsigned maskebx = ~0;
316 	unsigned maskecx = ~0;
317 	unsigned maskedx = ~0;
318 	unsigned setecx = 0;
319 	/*
320 	 * Mask out inconvenient features, to try and disable as many
321 	 * unsupported kernel subsystems as possible.
322 	 */
323 	switch (*ax) {
324 	case 1:
325 		maskecx = cpuid_leaf1_ecx_mask;
326 		setecx = cpuid_leaf1_ecx_set_mask;
327 		maskedx = cpuid_leaf1_edx_mask;
328 		break;
329 
330 	case CPUID_MWAIT_LEAF:
331 		/* Synthesize the values.. */
332 		*ax = 0;
333 		*bx = 0;
334 		*cx = cpuid_leaf5_ecx_val;
335 		*dx = cpuid_leaf5_edx_val;
336 		return;
337 
338 	case CPUID_THERM_POWER_LEAF:
339 		/* Disabling APERFMPERF for kernel usage */
340 		maskecx = ~(1 << APERFMPERF_PRESENT);
341 		break;
342 
343 	case 0xb:
344 		/* Suppress extended topology stuff */
345 		maskebx = 0;
346 		break;
347 	}
348 
349 	asm(XEN_EMULATE_PREFIX "cpuid"
350 		: "=a" (*ax),
351 		  "=b" (*bx),
352 		  "=c" (*cx),
353 		  "=d" (*dx)
354 		: "0" (*ax), "2" (*cx));
355 
356 	*bx &= maskebx;
357 	*cx &= maskecx;
358 	*cx |= setecx;
359 	*dx &= maskedx;
360 }
361 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
362 
363 static bool __init xen_check_mwait(void)
364 {
365 #ifdef CONFIG_ACPI
366 	struct xen_platform_op op = {
367 		.cmd			= XENPF_set_processor_pminfo,
368 		.u.set_pminfo.id	= -1,
369 		.u.set_pminfo.type	= XEN_PM_PDC,
370 	};
371 	uint32_t buf[3];
372 	unsigned int ax, bx, cx, dx;
373 	unsigned int mwait_mask;
374 
375 	/* We need to determine whether it is OK to expose the MWAIT
376 	 * capability to the kernel to harvest deeper than C3 states from ACPI
377 	 * _CST using the processor_harvest_xen.c module. For this to work, we
378 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
379 	 * checks against). The hypervisor won't expose the MWAIT flag because
380 	 * it would break backwards compatibility; so we will find out directly
381 	 * from the hardware and hypercall.
382 	 */
383 	if (!xen_initial_domain())
384 		return false;
385 
386 	/*
387 	 * When running under platform earlier than Xen4.2, do not expose
388 	 * mwait, to avoid the risk of loading native acpi pad driver
389 	 */
390 	if (!xen_running_on_version_or_later(4, 2))
391 		return false;
392 
393 	ax = 1;
394 	cx = 0;
395 
396 	native_cpuid(&ax, &bx, &cx, &dx);
397 
398 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
399 		     (1 << (X86_FEATURE_MWAIT % 32));
400 
401 	if ((cx & mwait_mask) != mwait_mask)
402 		return false;
403 
404 	/* We need to emulate the MWAIT_LEAF and for that we need both
405 	 * ecx and edx. The hypercall provides only partial information.
406 	 */
407 
408 	ax = CPUID_MWAIT_LEAF;
409 	bx = 0;
410 	cx = 0;
411 	dx = 0;
412 
413 	native_cpuid(&ax, &bx, &cx, &dx);
414 
415 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
416 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
417 	 */
418 	buf[0] = ACPI_PDC_REVISION_ID;
419 	buf[1] = 1;
420 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
421 
422 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
423 
424 	if ((HYPERVISOR_platform_op(&op) == 0) &&
425 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
426 		cpuid_leaf5_ecx_val = cx;
427 		cpuid_leaf5_edx_val = dx;
428 	}
429 	return true;
430 #else
431 	return false;
432 #endif
433 }
434 static void __init xen_init_cpuid_mask(void)
435 {
436 	unsigned int ax, bx, cx, dx;
437 	unsigned int xsave_mask;
438 
439 	cpuid_leaf1_edx_mask =
440 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
441 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
442 
443 	if (!xen_initial_domain())
444 		cpuid_leaf1_edx_mask &=
445 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
446 
447 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
448 
449 	ax = 1;
450 	cx = 0;
451 	cpuid(1, &ax, &bx, &cx, &dx);
452 
453 	xsave_mask =
454 		(1 << (X86_FEATURE_XSAVE % 32)) |
455 		(1 << (X86_FEATURE_OSXSAVE % 32));
456 
457 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
458 	if ((cx & xsave_mask) != xsave_mask)
459 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
460 	if (xen_check_mwait())
461 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
462 }
463 
464 static void xen_set_debugreg(int reg, unsigned long val)
465 {
466 	HYPERVISOR_set_debugreg(reg, val);
467 }
468 
469 static unsigned long xen_get_debugreg(int reg)
470 {
471 	return HYPERVISOR_get_debugreg(reg);
472 }
473 
474 static void xen_end_context_switch(struct task_struct *next)
475 {
476 	xen_mc_flush();
477 	paravirt_end_context_switch(next);
478 }
479 
480 static unsigned long xen_store_tr(void)
481 {
482 	return 0;
483 }
484 
485 /*
486  * Set the page permissions for a particular virtual address.  If the
487  * address is a vmalloc mapping (or other non-linear mapping), then
488  * find the linear mapping of the page and also set its protections to
489  * match.
490  */
491 static void set_aliased_prot(void *v, pgprot_t prot)
492 {
493 	int level;
494 	pte_t *ptep;
495 	pte_t pte;
496 	unsigned long pfn;
497 	struct page *page;
498 	unsigned char dummy;
499 
500 	ptep = lookup_address((unsigned long)v, &level);
501 	BUG_ON(ptep == NULL);
502 
503 	pfn = pte_pfn(*ptep);
504 	page = pfn_to_page(pfn);
505 
506 	pte = pfn_pte(pfn, prot);
507 
508 	/*
509 	 * Careful: update_va_mapping() will fail if the virtual address
510 	 * we're poking isn't populated in the page tables.  We don't
511 	 * need to worry about the direct map (that's always in the page
512 	 * tables), but we need to be careful about vmap space.  In
513 	 * particular, the top level page table can lazily propagate
514 	 * entries between processes, so if we've switched mms since we
515 	 * vmapped the target in the first place, we might not have the
516 	 * top-level page table entry populated.
517 	 *
518 	 * We disable preemption because we want the same mm active when
519 	 * we probe the target and when we issue the hypercall.  We'll
520 	 * have the same nominal mm, but if we're a kernel thread, lazy
521 	 * mm dropping could change our pgd.
522 	 *
523 	 * Out of an abundance of caution, this uses __get_user() to fault
524 	 * in the target address just in case there's some obscure case
525 	 * in which the target address isn't readable.
526 	 */
527 
528 	preempt_disable();
529 
530 	probe_kernel_read(&dummy, v, 1);
531 
532 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
533 		BUG();
534 
535 	if (!PageHighMem(page)) {
536 		void *av = __va(PFN_PHYS(pfn));
537 
538 		if (av != v)
539 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
540 				BUG();
541 	} else
542 		kmap_flush_unused();
543 
544 	preempt_enable();
545 }
546 
547 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
548 {
549 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
550 	int i;
551 
552 	/*
553 	 * We need to mark the all aliases of the LDT pages RO.  We
554 	 * don't need to call vm_flush_aliases(), though, since that's
555 	 * only responsible for flushing aliases out the TLBs, not the
556 	 * page tables, and Xen will flush the TLB for us if needed.
557 	 *
558 	 * To avoid confusing future readers: none of this is necessary
559 	 * to load the LDT.  The hypervisor only checks this when the
560 	 * LDT is faulted in due to subsequent descriptor access.
561 	 */
562 
563 	for(i = 0; i < entries; i += entries_per_page)
564 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
565 }
566 
567 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
568 {
569 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
570 	int i;
571 
572 	for(i = 0; i < entries; i += entries_per_page)
573 		set_aliased_prot(ldt + i, PAGE_KERNEL);
574 }
575 
576 static void xen_set_ldt(const void *addr, unsigned entries)
577 {
578 	struct mmuext_op *op;
579 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
580 
581 	trace_xen_cpu_set_ldt(addr, entries);
582 
583 	op = mcs.args;
584 	op->cmd = MMUEXT_SET_LDT;
585 	op->arg1.linear_addr = (unsigned long)addr;
586 	op->arg2.nr_ents = entries;
587 
588 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
589 
590 	xen_mc_issue(PARAVIRT_LAZY_CPU);
591 }
592 
593 static void xen_load_gdt(const struct desc_ptr *dtr)
594 {
595 	unsigned long va = dtr->address;
596 	unsigned int size = dtr->size + 1;
597 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
598 	unsigned long frames[pages];
599 	int f;
600 
601 	/*
602 	 * A GDT can be up to 64k in size, which corresponds to 8192
603 	 * 8-byte entries, or 16 4k pages..
604 	 */
605 
606 	BUG_ON(size > 65536);
607 	BUG_ON(va & ~PAGE_MASK);
608 
609 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
610 		int level;
611 		pte_t *ptep;
612 		unsigned long pfn, mfn;
613 		void *virt;
614 
615 		/*
616 		 * The GDT is per-cpu and is in the percpu data area.
617 		 * That can be virtually mapped, so we need to do a
618 		 * page-walk to get the underlying MFN for the
619 		 * hypercall.  The page can also be in the kernel's
620 		 * linear range, so we need to RO that mapping too.
621 		 */
622 		ptep = lookup_address(va, &level);
623 		BUG_ON(ptep == NULL);
624 
625 		pfn = pte_pfn(*ptep);
626 		mfn = pfn_to_mfn(pfn);
627 		virt = __va(PFN_PHYS(pfn));
628 
629 		frames[f] = mfn;
630 
631 		make_lowmem_page_readonly((void *)va);
632 		make_lowmem_page_readonly(virt);
633 	}
634 
635 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
636 		BUG();
637 }
638 
639 /*
640  * load_gdt for early boot, when the gdt is only mapped once
641  */
642 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
643 {
644 	unsigned long va = dtr->address;
645 	unsigned int size = dtr->size + 1;
646 	unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
647 	unsigned long frames[pages];
648 	int f;
649 
650 	/*
651 	 * A GDT can be up to 64k in size, which corresponds to 8192
652 	 * 8-byte entries, or 16 4k pages..
653 	 */
654 
655 	BUG_ON(size > 65536);
656 	BUG_ON(va & ~PAGE_MASK);
657 
658 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
659 		pte_t pte;
660 		unsigned long pfn, mfn;
661 
662 		pfn = virt_to_pfn(va);
663 		mfn = pfn_to_mfn(pfn);
664 
665 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
666 
667 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
668 			BUG();
669 
670 		frames[f] = mfn;
671 	}
672 
673 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
674 		BUG();
675 }
676 
677 static inline bool desc_equal(const struct desc_struct *d1,
678 			      const struct desc_struct *d2)
679 {
680 	return d1->a == d2->a && d1->b == d2->b;
681 }
682 
683 static void load_TLS_descriptor(struct thread_struct *t,
684 				unsigned int cpu, unsigned int i)
685 {
686 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
687 	struct desc_struct *gdt;
688 	xmaddr_t maddr;
689 	struct multicall_space mc;
690 
691 	if (desc_equal(shadow, &t->tls_array[i]))
692 		return;
693 
694 	*shadow = t->tls_array[i];
695 
696 	gdt = get_cpu_gdt_table(cpu);
697 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
698 	mc = __xen_mc_entry(0);
699 
700 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
701 }
702 
703 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
704 {
705 	/*
706 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
707 	 * and lazy gs handling is enabled, it means we're in a
708 	 * context switch, and %gs has just been saved.  This means we
709 	 * can zero it out to prevent faults on exit from the
710 	 * hypervisor if the next process has no %gs.  Either way, it
711 	 * has been saved, and the new value will get loaded properly.
712 	 * This will go away as soon as Xen has been modified to not
713 	 * save/restore %gs for normal hypercalls.
714 	 *
715 	 * On x86_64, this hack is not used for %gs, because gs points
716 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
717 	 * must not zero %gs on x86_64
718 	 *
719 	 * For x86_64, we need to zero %fs, otherwise we may get an
720 	 * exception between the new %fs descriptor being loaded and
721 	 * %fs being effectively cleared at __switch_to().
722 	 */
723 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
724 #ifdef CONFIG_X86_32
725 		lazy_load_gs(0);
726 #else
727 		loadsegment(fs, 0);
728 #endif
729 	}
730 
731 	xen_mc_batch();
732 
733 	load_TLS_descriptor(t, cpu, 0);
734 	load_TLS_descriptor(t, cpu, 1);
735 	load_TLS_descriptor(t, cpu, 2);
736 
737 	xen_mc_issue(PARAVIRT_LAZY_CPU);
738 }
739 
740 #ifdef CONFIG_X86_64
741 static void xen_load_gs_index(unsigned int idx)
742 {
743 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
744 		BUG();
745 }
746 #endif
747 
748 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
749 				const void *ptr)
750 {
751 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
752 	u64 entry = *(u64 *)ptr;
753 
754 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
755 
756 	preempt_disable();
757 
758 	xen_mc_flush();
759 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
760 		BUG();
761 
762 	preempt_enable();
763 }
764 
765 static int cvt_gate_to_trap(int vector, const gate_desc *val,
766 			    struct trap_info *info)
767 {
768 	unsigned long addr;
769 
770 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
771 		return 0;
772 
773 	info->vector = vector;
774 
775 	addr = gate_offset(*val);
776 #ifdef CONFIG_X86_64
777 	/*
778 	 * Look for known traps using IST, and substitute them
779 	 * appropriately.  The debugger ones are the only ones we care
780 	 * about.  Xen will handle faults like double_fault,
781 	 * so we should never see them.  Warn if
782 	 * there's an unexpected IST-using fault handler.
783 	 */
784 	if (addr == (unsigned long)debug)
785 		addr = (unsigned long)xen_debug;
786 	else if (addr == (unsigned long)int3)
787 		addr = (unsigned long)xen_int3;
788 	else if (addr == (unsigned long)stack_segment)
789 		addr = (unsigned long)xen_stack_segment;
790 	else if (addr == (unsigned long)double_fault) {
791 		/* Don't need to handle these */
792 		return 0;
793 #ifdef CONFIG_X86_MCE
794 	} else if (addr == (unsigned long)machine_check) {
795 		/*
796 		 * when xen hypervisor inject vMCE to guest,
797 		 * use native mce handler to handle it
798 		 */
799 		;
800 #endif
801 	} else if (addr == (unsigned long)nmi)
802 		/*
803 		 * Use the native version as well.
804 		 */
805 		;
806 	else {
807 		/* Some other trap using IST? */
808 		if (WARN_ON(val->ist != 0))
809 			return 0;
810 	}
811 #endif	/* CONFIG_X86_64 */
812 	info->address = addr;
813 
814 	info->cs = gate_segment(*val);
815 	info->flags = val->dpl;
816 	/* interrupt gates clear IF */
817 	if (val->type == GATE_INTERRUPT)
818 		info->flags |= 1 << 2;
819 
820 	return 1;
821 }
822 
823 /* Locations of each CPU's IDT */
824 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
825 
826 /* Set an IDT entry.  If the entry is part of the current IDT, then
827    also update Xen. */
828 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
829 {
830 	unsigned long p = (unsigned long)&dt[entrynum];
831 	unsigned long start, end;
832 
833 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
834 
835 	preempt_disable();
836 
837 	start = __this_cpu_read(idt_desc.address);
838 	end = start + __this_cpu_read(idt_desc.size) + 1;
839 
840 	xen_mc_flush();
841 
842 	native_write_idt_entry(dt, entrynum, g);
843 
844 	if (p >= start && (p + 8) <= end) {
845 		struct trap_info info[2];
846 
847 		info[1].address = 0;
848 
849 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
850 			if (HYPERVISOR_set_trap_table(info))
851 				BUG();
852 	}
853 
854 	preempt_enable();
855 }
856 
857 static void xen_convert_trap_info(const struct desc_ptr *desc,
858 				  struct trap_info *traps)
859 {
860 	unsigned in, out, count;
861 
862 	count = (desc->size+1) / sizeof(gate_desc);
863 	BUG_ON(count > 256);
864 
865 	for (in = out = 0; in < count; in++) {
866 		gate_desc *entry = (gate_desc*)(desc->address) + in;
867 
868 		if (cvt_gate_to_trap(in, entry, &traps[out]))
869 			out++;
870 	}
871 	traps[out].address = 0;
872 }
873 
874 void xen_copy_trap_info(struct trap_info *traps)
875 {
876 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
877 
878 	xen_convert_trap_info(desc, traps);
879 }
880 
881 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
882    hold a spinlock to protect the static traps[] array (static because
883    it avoids allocation, and saves stack space). */
884 static void xen_load_idt(const struct desc_ptr *desc)
885 {
886 	static DEFINE_SPINLOCK(lock);
887 	static struct trap_info traps[257];
888 
889 	trace_xen_cpu_load_idt(desc);
890 
891 	spin_lock(&lock);
892 
893 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
894 
895 	xen_convert_trap_info(desc, traps);
896 
897 	xen_mc_flush();
898 	if (HYPERVISOR_set_trap_table(traps))
899 		BUG();
900 
901 	spin_unlock(&lock);
902 }
903 
904 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
905    they're handled differently. */
906 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
907 				const void *desc, int type)
908 {
909 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
910 
911 	preempt_disable();
912 
913 	switch (type) {
914 	case DESC_LDT:
915 	case DESC_TSS:
916 		/* ignore */
917 		break;
918 
919 	default: {
920 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
921 
922 		xen_mc_flush();
923 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
924 			BUG();
925 	}
926 
927 	}
928 
929 	preempt_enable();
930 }
931 
932 /*
933  * Version of write_gdt_entry for use at early boot-time needed to
934  * update an entry as simply as possible.
935  */
936 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
937 					    const void *desc, int type)
938 {
939 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
940 
941 	switch (type) {
942 	case DESC_LDT:
943 	case DESC_TSS:
944 		/* ignore */
945 		break;
946 
947 	default: {
948 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
949 
950 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
951 			dt[entry] = *(struct desc_struct *)desc;
952 	}
953 
954 	}
955 }
956 
957 static void xen_load_sp0(struct tss_struct *tss,
958 			 struct thread_struct *thread)
959 {
960 	struct multicall_space mcs;
961 
962 	mcs = xen_mc_entry(0);
963 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
964 	xen_mc_issue(PARAVIRT_LAZY_CPU);
965 	tss->x86_tss.sp0 = thread->sp0;
966 }
967 
968 void xen_set_iopl_mask(unsigned mask)
969 {
970 	struct physdev_set_iopl set_iopl;
971 
972 	/* Force the change at ring 0. */
973 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
974 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
975 }
976 
977 static void xen_io_delay(void)
978 {
979 }
980 
981 static void xen_clts(void)
982 {
983 	struct multicall_space mcs;
984 
985 	mcs = xen_mc_entry(0);
986 
987 	MULTI_fpu_taskswitch(mcs.mc, 0);
988 
989 	xen_mc_issue(PARAVIRT_LAZY_CPU);
990 }
991 
992 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
993 
994 static unsigned long xen_read_cr0(void)
995 {
996 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
997 
998 	if (unlikely(cr0 == 0)) {
999 		cr0 = native_read_cr0();
1000 		this_cpu_write(xen_cr0_value, cr0);
1001 	}
1002 
1003 	return cr0;
1004 }
1005 
1006 static void xen_write_cr0(unsigned long cr0)
1007 {
1008 	struct multicall_space mcs;
1009 
1010 	this_cpu_write(xen_cr0_value, cr0);
1011 
1012 	/* Only pay attention to cr0.TS; everything else is
1013 	   ignored. */
1014 	mcs = xen_mc_entry(0);
1015 
1016 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1017 
1018 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1019 }
1020 
1021 static void xen_write_cr4(unsigned long cr4)
1022 {
1023 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1024 
1025 	native_write_cr4(cr4);
1026 }
1027 #ifdef CONFIG_X86_64
1028 static inline unsigned long xen_read_cr8(void)
1029 {
1030 	return 0;
1031 }
1032 static inline void xen_write_cr8(unsigned long val)
1033 {
1034 	BUG_ON(val);
1035 }
1036 #endif
1037 
1038 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1039 {
1040 	u64 val;
1041 
1042 	if (pmu_msr_read(msr, &val, err))
1043 		return val;
1044 
1045 	val = native_read_msr_safe(msr, err);
1046 	switch (msr) {
1047 	case MSR_IA32_APICBASE:
1048 #ifdef CONFIG_X86_X2APIC
1049 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1050 #endif
1051 			val &= ~X2APIC_ENABLE;
1052 		break;
1053 	}
1054 	return val;
1055 }
1056 
1057 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1058 {
1059 	int ret;
1060 
1061 	ret = 0;
1062 
1063 	switch (msr) {
1064 #ifdef CONFIG_X86_64
1065 		unsigned which;
1066 		u64 base;
1067 
1068 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1069 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1070 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1071 
1072 	set:
1073 		base = ((u64)high << 32) | low;
1074 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1075 			ret = -EIO;
1076 		break;
1077 #endif
1078 
1079 	case MSR_STAR:
1080 	case MSR_CSTAR:
1081 	case MSR_LSTAR:
1082 	case MSR_SYSCALL_MASK:
1083 	case MSR_IA32_SYSENTER_CS:
1084 	case MSR_IA32_SYSENTER_ESP:
1085 	case MSR_IA32_SYSENTER_EIP:
1086 		/* Fast syscall setup is all done in hypercalls, so
1087 		   these are all ignored.  Stub them out here to stop
1088 		   Xen console noise. */
1089 		break;
1090 
1091 	default:
1092 		if (!pmu_msr_write(msr, low, high, &ret))
1093 			ret = native_write_msr_safe(msr, low, high);
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static u64 xen_read_msr(unsigned int msr)
1100 {
1101 	/*
1102 	 * This will silently swallow a #GP from RDMSR.  It may be worth
1103 	 * changing that.
1104 	 */
1105 	int err;
1106 
1107 	return xen_read_msr_safe(msr, &err);
1108 }
1109 
1110 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1111 {
1112 	/*
1113 	 * This will silently swallow a #GP from WRMSR.  It may be worth
1114 	 * changing that.
1115 	 */
1116 	xen_write_msr_safe(msr, low, high);
1117 }
1118 
1119 void xen_setup_shared_info(void)
1120 {
1121 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1122 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1123 			   xen_start_info->shared_info);
1124 
1125 		HYPERVISOR_shared_info =
1126 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1127 	} else
1128 		HYPERVISOR_shared_info =
1129 			(struct shared_info *)__va(xen_start_info->shared_info);
1130 
1131 #ifndef CONFIG_SMP
1132 	/* In UP this is as good a place as any to set up shared info */
1133 	xen_setup_vcpu_info_placement();
1134 #endif
1135 
1136 	xen_setup_mfn_list_list();
1137 }
1138 
1139 /* This is called once we have the cpu_possible_mask */
1140 void xen_setup_vcpu_info_placement(void)
1141 {
1142 	int cpu;
1143 
1144 	for_each_possible_cpu(cpu) {
1145 		/* Set up direct vCPU id mapping for PV guests. */
1146 		per_cpu(xen_vcpu_id, cpu) = cpu;
1147 		xen_vcpu_setup(cpu);
1148 	}
1149 
1150 	/* xen_vcpu_setup managed to place the vcpu_info within the
1151 	 * percpu area for all cpus, so make use of it. Note that for
1152 	 * PVH we want to use native IRQ mechanism. */
1153 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1154 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1155 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1156 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1157 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1158 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1159 	}
1160 }
1161 
1162 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1163 			  unsigned long addr, unsigned len)
1164 {
1165 	char *start, *end, *reloc;
1166 	unsigned ret;
1167 
1168 	start = end = reloc = NULL;
1169 
1170 #define SITE(op, x)							\
1171 	case PARAVIRT_PATCH(op.x):					\
1172 	if (have_vcpu_info_placement) {					\
1173 		start = (char *)xen_##x##_direct;			\
1174 		end = xen_##x##_direct_end;				\
1175 		reloc = xen_##x##_direct_reloc;				\
1176 	}								\
1177 	goto patch_site
1178 
1179 	switch (type) {
1180 		SITE(pv_irq_ops, irq_enable);
1181 		SITE(pv_irq_ops, irq_disable);
1182 		SITE(pv_irq_ops, save_fl);
1183 		SITE(pv_irq_ops, restore_fl);
1184 #undef SITE
1185 
1186 	patch_site:
1187 		if (start == NULL || (end-start) > len)
1188 			goto default_patch;
1189 
1190 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1191 
1192 		/* Note: because reloc is assigned from something that
1193 		   appears to be an array, gcc assumes it's non-null,
1194 		   but doesn't know its relationship with start and
1195 		   end. */
1196 		if (reloc > start && reloc < end) {
1197 			int reloc_off = reloc - start;
1198 			long *relocp = (long *)(insnbuf + reloc_off);
1199 			long delta = start - (char *)addr;
1200 
1201 			*relocp += delta;
1202 		}
1203 		break;
1204 
1205 	default_patch:
1206 	default:
1207 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1208 					     addr, len);
1209 		break;
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 static const struct pv_info xen_info __initconst = {
1216 	.shared_kernel_pmd = 0,
1217 
1218 #ifdef CONFIG_X86_64
1219 	.extra_user_64bit_cs = FLAT_USER_CS64,
1220 #endif
1221 	.name = "Xen",
1222 };
1223 
1224 static const struct pv_init_ops xen_init_ops __initconst = {
1225 	.patch = xen_patch,
1226 };
1227 
1228 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1229 	.cpuid = xen_cpuid,
1230 
1231 	.set_debugreg = xen_set_debugreg,
1232 	.get_debugreg = xen_get_debugreg,
1233 
1234 	.clts = xen_clts,
1235 
1236 	.read_cr0 = xen_read_cr0,
1237 	.write_cr0 = xen_write_cr0,
1238 
1239 	.read_cr4 = native_read_cr4,
1240 	.read_cr4_safe = native_read_cr4_safe,
1241 	.write_cr4 = xen_write_cr4,
1242 
1243 #ifdef CONFIG_X86_64
1244 	.read_cr8 = xen_read_cr8,
1245 	.write_cr8 = xen_write_cr8,
1246 #endif
1247 
1248 	.wbinvd = native_wbinvd,
1249 
1250 	.read_msr = xen_read_msr,
1251 	.write_msr = xen_write_msr,
1252 
1253 	.read_msr_safe = xen_read_msr_safe,
1254 	.write_msr_safe = xen_write_msr_safe,
1255 
1256 	.read_pmc = xen_read_pmc,
1257 
1258 	.iret = xen_iret,
1259 #ifdef CONFIG_X86_64
1260 	.usergs_sysret64 = xen_sysret64,
1261 #endif
1262 
1263 	.load_tr_desc = paravirt_nop,
1264 	.set_ldt = xen_set_ldt,
1265 	.load_gdt = xen_load_gdt,
1266 	.load_idt = xen_load_idt,
1267 	.load_tls = xen_load_tls,
1268 #ifdef CONFIG_X86_64
1269 	.load_gs_index = xen_load_gs_index,
1270 #endif
1271 
1272 	.alloc_ldt = xen_alloc_ldt,
1273 	.free_ldt = xen_free_ldt,
1274 
1275 	.store_idt = native_store_idt,
1276 	.store_tr = xen_store_tr,
1277 
1278 	.write_ldt_entry = xen_write_ldt_entry,
1279 	.write_gdt_entry = xen_write_gdt_entry,
1280 	.write_idt_entry = xen_write_idt_entry,
1281 	.load_sp0 = xen_load_sp0,
1282 
1283 	.set_iopl_mask = xen_set_iopl_mask,
1284 	.io_delay = xen_io_delay,
1285 
1286 	/* Xen takes care of %gs when switching to usermode for us */
1287 	.swapgs = paravirt_nop,
1288 
1289 	.start_context_switch = paravirt_start_context_switch,
1290 	.end_context_switch = xen_end_context_switch,
1291 };
1292 
1293 static void xen_reboot(int reason)
1294 {
1295 	struct sched_shutdown r = { .reason = reason };
1296 	int cpu;
1297 
1298 	for_each_online_cpu(cpu)
1299 		xen_pmu_finish(cpu);
1300 
1301 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1302 		BUG();
1303 }
1304 
1305 static void xen_restart(char *msg)
1306 {
1307 	xen_reboot(SHUTDOWN_reboot);
1308 }
1309 
1310 static void xen_emergency_restart(void)
1311 {
1312 	xen_reboot(SHUTDOWN_reboot);
1313 }
1314 
1315 static void xen_machine_halt(void)
1316 {
1317 	xen_reboot(SHUTDOWN_poweroff);
1318 }
1319 
1320 static void xen_machine_power_off(void)
1321 {
1322 	if (pm_power_off)
1323 		pm_power_off();
1324 	xen_reboot(SHUTDOWN_poweroff);
1325 }
1326 
1327 static void xen_crash_shutdown(struct pt_regs *regs)
1328 {
1329 	xen_reboot(SHUTDOWN_crash);
1330 }
1331 
1332 static int
1333 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1334 {
1335 	if (!kexec_crash_loaded())
1336 		xen_reboot(SHUTDOWN_crash);
1337 	return NOTIFY_DONE;
1338 }
1339 
1340 static struct notifier_block xen_panic_block = {
1341 	.notifier_call= xen_panic_event,
1342 	.priority = INT_MIN
1343 };
1344 
1345 int xen_panic_handler_init(void)
1346 {
1347 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1348 	return 0;
1349 }
1350 
1351 static const struct machine_ops xen_machine_ops __initconst = {
1352 	.restart = xen_restart,
1353 	.halt = xen_machine_halt,
1354 	.power_off = xen_machine_power_off,
1355 	.shutdown = xen_machine_halt,
1356 	.crash_shutdown = xen_crash_shutdown,
1357 	.emergency_restart = xen_emergency_restart,
1358 };
1359 
1360 static unsigned char xen_get_nmi_reason(void)
1361 {
1362 	unsigned char reason = 0;
1363 
1364 	/* Construct a value which looks like it came from port 0x61. */
1365 	if (test_bit(_XEN_NMIREASON_io_error,
1366 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1367 		reason |= NMI_REASON_IOCHK;
1368 	if (test_bit(_XEN_NMIREASON_pci_serr,
1369 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1370 		reason |= NMI_REASON_SERR;
1371 
1372 	return reason;
1373 }
1374 
1375 static void __init xen_boot_params_init_edd(void)
1376 {
1377 #if IS_ENABLED(CONFIG_EDD)
1378 	struct xen_platform_op op;
1379 	struct edd_info *edd_info;
1380 	u32 *mbr_signature;
1381 	unsigned nr;
1382 	int ret;
1383 
1384 	edd_info = boot_params.eddbuf;
1385 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1386 
1387 	op.cmd = XENPF_firmware_info;
1388 
1389 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1390 	for (nr = 0; nr < EDDMAXNR; nr++) {
1391 		struct edd_info *info = edd_info + nr;
1392 
1393 		op.u.firmware_info.index = nr;
1394 		info->params.length = sizeof(info->params);
1395 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1396 				     &info->params);
1397 		ret = HYPERVISOR_platform_op(&op);
1398 		if (ret)
1399 			break;
1400 
1401 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1402 		C(device);
1403 		C(version);
1404 		C(interface_support);
1405 		C(legacy_max_cylinder);
1406 		C(legacy_max_head);
1407 		C(legacy_sectors_per_track);
1408 #undef C
1409 	}
1410 	boot_params.eddbuf_entries = nr;
1411 
1412 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1413 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1414 		op.u.firmware_info.index = nr;
1415 		ret = HYPERVISOR_platform_op(&op);
1416 		if (ret)
1417 			break;
1418 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1419 	}
1420 	boot_params.edd_mbr_sig_buf_entries = nr;
1421 #endif
1422 }
1423 
1424 /*
1425  * Set up the GDT and segment registers for -fstack-protector.  Until
1426  * we do this, we have to be careful not to call any stack-protected
1427  * function, which is most of the kernel.
1428  *
1429  * Note, that it is __ref because the only caller of this after init
1430  * is PVH which is not going to use xen_load_gdt_boot or other
1431  * __init functions.
1432  */
1433 static void __ref xen_setup_gdt(int cpu)
1434 {
1435 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1436 #ifdef CONFIG_X86_64
1437 		unsigned long dummy;
1438 
1439 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1440 		switch_to_new_gdt(cpu); /* GDT and GS set */
1441 
1442 		/* We are switching of the Xen provided GDT to our HVM mode
1443 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1444 		 * and we are jumping to reload it.
1445 		 */
1446 		asm volatile ("pushq %0\n"
1447 			      "leaq 1f(%%rip),%0\n"
1448 			      "pushq %0\n"
1449 			      "lretq\n"
1450 			      "1:\n"
1451 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1452 
1453 		/*
1454 		 * While not needed, we also set the %es, %ds, and %fs
1455 		 * to zero. We don't care about %ss as it is NULL.
1456 		 * Strictly speaking this is not needed as Xen zeros those
1457 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1458 		 *
1459 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1460 		 * (for BSP).
1461 		 */
1462 		loadsegment(es, 0);
1463 		loadsegment(ds, 0);
1464 		loadsegment(fs, 0);
1465 #else
1466 		/* PVH: TODO Implement. */
1467 		BUG();
1468 #endif
1469 		return; /* PVH does not need any PV GDT ops. */
1470 	}
1471 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1472 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1473 
1474 	setup_stack_canary_segment(0);
1475 	switch_to_new_gdt(0);
1476 
1477 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1478 	pv_cpu_ops.load_gdt = xen_load_gdt;
1479 }
1480 
1481 #ifdef CONFIG_XEN_PVH
1482 /*
1483  * A PV guest starts with default flags that are not set for PVH, set them
1484  * here asap.
1485  */
1486 static void xen_pvh_set_cr_flags(int cpu)
1487 {
1488 
1489 	/* Some of these are setup in 'secondary_startup_64'. The others:
1490 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1491 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1492 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1493 
1494 	if (!cpu)
1495 		return;
1496 	/*
1497 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1498 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1499 	*/
1500 	if (boot_cpu_has(X86_FEATURE_PSE))
1501 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1502 
1503 	if (boot_cpu_has(X86_FEATURE_PGE))
1504 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1505 }
1506 
1507 /*
1508  * Note, that it is ref - because the only caller of this after init
1509  * is PVH which is not going to use xen_load_gdt_boot or other
1510  * __init functions.
1511  */
1512 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1513 {
1514 	xen_setup_gdt(cpu);
1515 	xen_pvh_set_cr_flags(cpu);
1516 }
1517 
1518 static void __init xen_pvh_early_guest_init(void)
1519 {
1520 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1521 		return;
1522 
1523 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1524 		return;
1525 
1526 	xen_have_vector_callback = 1;
1527 
1528 	xen_pvh_early_cpu_init(0, false);
1529 	xen_pvh_set_cr_flags(0);
1530 
1531 #ifdef CONFIG_X86_32
1532 	BUG(); /* PVH: Implement proper support. */
1533 #endif
1534 }
1535 #endif    /* CONFIG_XEN_PVH */
1536 
1537 static void __init xen_dom0_set_legacy_features(void)
1538 {
1539 	x86_platform.legacy.rtc = 1;
1540 }
1541 
1542 /* First C function to be called on Xen boot */
1543 asmlinkage __visible void __init xen_start_kernel(void)
1544 {
1545 	struct physdev_set_iopl set_iopl;
1546 	unsigned long initrd_start = 0;
1547 	int rc;
1548 
1549 	if (!xen_start_info)
1550 		return;
1551 
1552 	xen_domain_type = XEN_PV_DOMAIN;
1553 
1554 	xen_setup_features();
1555 #ifdef CONFIG_XEN_PVH
1556 	xen_pvh_early_guest_init();
1557 #endif
1558 	xen_setup_machphys_mapping();
1559 
1560 	/* Install Xen paravirt ops */
1561 	pv_info = xen_info;
1562 	pv_init_ops = xen_init_ops;
1563 	if (!xen_pvh_domain()) {
1564 		pv_cpu_ops = xen_cpu_ops;
1565 
1566 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1567 	}
1568 
1569 	if (xen_feature(XENFEAT_auto_translated_physmap))
1570 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1571 	else
1572 		x86_init.resources.memory_setup = xen_memory_setup;
1573 	x86_init.oem.arch_setup = xen_arch_setup;
1574 	x86_init.oem.banner = xen_banner;
1575 
1576 	xen_init_time_ops();
1577 
1578 	/*
1579 	 * Set up some pagetable state before starting to set any ptes.
1580 	 */
1581 
1582 	xen_init_mmu_ops();
1583 
1584 	/* Prevent unwanted bits from being set in PTEs. */
1585 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1586 
1587 	/*
1588 	 * Prevent page tables from being allocated in highmem, even
1589 	 * if CONFIG_HIGHPTE is enabled.
1590 	 */
1591 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1592 
1593 	/* Work out if we support NX */
1594 	x86_configure_nx();
1595 
1596 	/* Get mfn list */
1597 	xen_build_dynamic_phys_to_machine();
1598 
1599 	/*
1600 	 * Set up kernel GDT and segment registers, mainly so that
1601 	 * -fstack-protector code can be executed.
1602 	 */
1603 	xen_setup_gdt(0);
1604 
1605 	xen_init_irq_ops();
1606 	xen_init_cpuid_mask();
1607 
1608 #ifdef CONFIG_X86_LOCAL_APIC
1609 	/*
1610 	 * set up the basic apic ops.
1611 	 */
1612 	xen_init_apic();
1613 #endif
1614 
1615 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1616 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1617 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1618 	}
1619 
1620 	machine_ops = xen_machine_ops;
1621 
1622 	/*
1623 	 * The only reliable way to retain the initial address of the
1624 	 * percpu gdt_page is to remember it here, so we can go and
1625 	 * mark it RW later, when the initial percpu area is freed.
1626 	 */
1627 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1628 
1629 	xen_smp_init();
1630 
1631 #ifdef CONFIG_ACPI_NUMA
1632 	/*
1633 	 * The pages we from Xen are not related to machine pages, so
1634 	 * any NUMA information the kernel tries to get from ACPI will
1635 	 * be meaningless.  Prevent it from trying.
1636 	 */
1637 	acpi_numa = -1;
1638 #endif
1639 	/* Don't do the full vcpu_info placement stuff until we have a
1640 	   possible map and a non-dummy shared_info. */
1641 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1642 
1643 	local_irq_disable();
1644 	early_boot_irqs_disabled = true;
1645 
1646 	xen_raw_console_write("mapping kernel into physical memory\n");
1647 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1648 				   xen_start_info->nr_pages);
1649 	xen_reserve_special_pages();
1650 
1651 	/* keep using Xen gdt for now; no urgent need to change it */
1652 
1653 #ifdef CONFIG_X86_32
1654 	pv_info.kernel_rpl = 1;
1655 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1656 		pv_info.kernel_rpl = 0;
1657 #else
1658 	pv_info.kernel_rpl = 0;
1659 #endif
1660 	/* set the limit of our address space */
1661 	xen_reserve_top();
1662 
1663 	/* PVH: runs at default kernel iopl of 0 */
1664 	if (!xen_pvh_domain()) {
1665 		/*
1666 		 * We used to do this in xen_arch_setup, but that is too late
1667 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1668 		 * early_amd_init which pokes 0xcf8 port.
1669 		 */
1670 		set_iopl.iopl = 1;
1671 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1672 		if (rc != 0)
1673 			xen_raw_printk("physdev_op failed %d\n", rc);
1674 	}
1675 
1676 #ifdef CONFIG_X86_32
1677 	/* set up basic CPUID stuff */
1678 	cpu_detect(&new_cpu_data);
1679 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1680 	new_cpu_data.wp_works_ok = 1;
1681 	new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1682 #endif
1683 
1684 	if (xen_start_info->mod_start) {
1685 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1686 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1687 	    else
1688 		initrd_start = __pa(xen_start_info->mod_start);
1689 	}
1690 
1691 	/* Poke various useful things into boot_params */
1692 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1693 	boot_params.hdr.ramdisk_image = initrd_start;
1694 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1695 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1696 	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1697 
1698 	if (!xen_initial_domain()) {
1699 		add_preferred_console("xenboot", 0, NULL);
1700 		add_preferred_console("tty", 0, NULL);
1701 		add_preferred_console("hvc", 0, NULL);
1702 		if (pci_xen)
1703 			x86_init.pci.arch_init = pci_xen_init;
1704 	} else {
1705 		const struct dom0_vga_console_info *info =
1706 			(void *)((char *)xen_start_info +
1707 				 xen_start_info->console.dom0.info_off);
1708 		struct xen_platform_op op = {
1709 			.cmd = XENPF_firmware_info,
1710 			.interface_version = XENPF_INTERFACE_VERSION,
1711 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1712 		};
1713 
1714 		x86_platform.set_legacy_features =
1715 				xen_dom0_set_legacy_features;
1716 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1717 		xen_start_info->console.domU.mfn = 0;
1718 		xen_start_info->console.domU.evtchn = 0;
1719 
1720 		if (HYPERVISOR_platform_op(&op) == 0)
1721 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1722 
1723 		/* Make sure ACS will be enabled */
1724 		pci_request_acs();
1725 
1726 		xen_acpi_sleep_register();
1727 
1728 		/* Avoid searching for BIOS MP tables */
1729 		x86_init.mpparse.find_smp_config = x86_init_noop;
1730 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1731 
1732 		xen_boot_params_init_edd();
1733 	}
1734 #ifdef CONFIG_PCI
1735 	/* PCI BIOS service won't work from a PV guest. */
1736 	pci_probe &= ~PCI_PROBE_BIOS;
1737 #endif
1738 	xen_raw_console_write("about to get started...\n");
1739 
1740 	/* Let's presume PV guests always boot on vCPU with id 0. */
1741 	per_cpu(xen_vcpu_id, 0) = 0;
1742 
1743 	xen_setup_runstate_info(0);
1744 
1745 	xen_efi_init();
1746 
1747 	/* Start the world */
1748 #ifdef CONFIG_X86_32
1749 	i386_start_kernel();
1750 #else
1751 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1752 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1753 #endif
1754 }
1755 
1756 void __ref xen_hvm_init_shared_info(void)
1757 {
1758 	int cpu;
1759 	struct xen_add_to_physmap xatp;
1760 	static struct shared_info *shared_info_page = 0;
1761 
1762 	if (!shared_info_page)
1763 		shared_info_page = (struct shared_info *)
1764 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1765 	xatp.domid = DOMID_SELF;
1766 	xatp.idx = 0;
1767 	xatp.space = XENMAPSPACE_shared_info;
1768 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1769 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1770 		BUG();
1771 
1772 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1773 
1774 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1775 	 * page, we use it in the event channel upcall and in some pvclock
1776 	 * related functions. We don't need the vcpu_info placement
1777 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1778 	 * HVM.
1779 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1780 	 * online but xen_hvm_init_shared_info is run at resume time too and
1781 	 * in that case multiple vcpus might be online. */
1782 	for_each_online_cpu(cpu) {
1783 		/* Leave it to be NULL. */
1784 		if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1785 			continue;
1786 		per_cpu(xen_vcpu, cpu) =
1787 			&HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1788 	}
1789 }
1790 
1791 #ifdef CONFIG_XEN_PVHVM
1792 static void __init init_hvm_pv_info(void)
1793 {
1794 	int major, minor;
1795 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1796 	u64 pfn;
1797 
1798 	base = xen_cpuid_base();
1799 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1800 
1801 	major = eax >> 16;
1802 	minor = eax & 0xffff;
1803 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1804 
1805 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1806 
1807 	pfn = __pa(hypercall_page);
1808 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1809 
1810 	xen_setup_features();
1811 
1812 	cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1813 	if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1814 		this_cpu_write(xen_vcpu_id, ebx);
1815 	else
1816 		this_cpu_write(xen_vcpu_id, smp_processor_id());
1817 
1818 	pv_info.name = "Xen HVM";
1819 
1820 	xen_domain_type = XEN_HVM_DOMAIN;
1821 }
1822 
1823 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1824 			      void *hcpu)
1825 {
1826 	int cpu = (long)hcpu;
1827 	switch (action) {
1828 	case CPU_UP_PREPARE:
1829 		if (cpu_acpi_id(cpu) != U32_MAX)
1830 			per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1831 		else
1832 			per_cpu(xen_vcpu_id, cpu) = cpu;
1833 		xen_vcpu_setup(cpu);
1834 		if (xen_have_vector_callback) {
1835 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1836 				xen_setup_timer(cpu);
1837 		}
1838 		break;
1839 	default:
1840 		break;
1841 	}
1842 	return NOTIFY_OK;
1843 }
1844 
1845 static struct notifier_block xen_hvm_cpu_notifier = {
1846 	.notifier_call	= xen_hvm_cpu_notify,
1847 };
1848 
1849 #ifdef CONFIG_KEXEC_CORE
1850 static void xen_hvm_shutdown(void)
1851 {
1852 	native_machine_shutdown();
1853 	if (kexec_in_progress)
1854 		xen_reboot(SHUTDOWN_soft_reset);
1855 }
1856 
1857 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1858 {
1859 	native_machine_crash_shutdown(regs);
1860 	xen_reboot(SHUTDOWN_soft_reset);
1861 }
1862 #endif
1863 
1864 static void __init xen_hvm_guest_init(void)
1865 {
1866 	if (xen_pv_domain())
1867 		return;
1868 
1869 	init_hvm_pv_info();
1870 
1871 	xen_hvm_init_shared_info();
1872 
1873 	xen_panic_handler_init();
1874 
1875 	if (xen_feature(XENFEAT_hvm_callback_vector))
1876 		xen_have_vector_callback = 1;
1877 	xen_hvm_smp_init();
1878 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1879 	xen_unplug_emulated_devices();
1880 	x86_init.irqs.intr_init = xen_init_IRQ;
1881 	xen_hvm_init_time_ops();
1882 	xen_hvm_init_mmu_ops();
1883 #ifdef CONFIG_KEXEC_CORE
1884 	machine_ops.shutdown = xen_hvm_shutdown;
1885 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1886 #endif
1887 }
1888 #endif
1889 
1890 static bool xen_nopv = false;
1891 static __init int xen_parse_nopv(char *arg)
1892 {
1893        xen_nopv = true;
1894        return 0;
1895 }
1896 early_param("xen_nopv", xen_parse_nopv);
1897 
1898 static uint32_t __init xen_platform(void)
1899 {
1900 	if (xen_nopv)
1901 		return 0;
1902 
1903 	return xen_cpuid_base();
1904 }
1905 
1906 bool xen_hvm_need_lapic(void)
1907 {
1908 	if (xen_nopv)
1909 		return false;
1910 	if (xen_pv_domain())
1911 		return false;
1912 	if (!xen_hvm_domain())
1913 		return false;
1914 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1915 		return false;
1916 	return true;
1917 }
1918 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1919 
1920 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1921 {
1922 	if (xen_pv_domain()) {
1923 		clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1924 		set_cpu_cap(c, X86_FEATURE_XENPV);
1925 	}
1926 }
1927 
1928 const struct hypervisor_x86 x86_hyper_xen = {
1929 	.name			= "Xen",
1930 	.detect			= xen_platform,
1931 #ifdef CONFIG_XEN_PVHVM
1932 	.init_platform		= xen_hvm_guest_init,
1933 #endif
1934 	.x2apic_available	= xen_x2apic_para_available,
1935 	.set_cpu_features       = xen_set_cpu_features,
1936 };
1937 EXPORT_SYMBOL(x86_hyper_xen);
1938 
1939 #ifdef CONFIG_HOTPLUG_CPU
1940 void xen_arch_register_cpu(int num)
1941 {
1942 	arch_register_cpu(num);
1943 }
1944 EXPORT_SYMBOL(xen_arch_register_cpu);
1945 
1946 void xen_arch_unregister_cpu(int num)
1947 {
1948 	arch_unregister_cpu(num);
1949 }
1950 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1951 #endif
1952