xref: /linux/arch/x86/virt/svm/sev.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD SVM-SEV Host Support.
4  *
5  * Copyright (C) 2023 Advanced Micro Devices, Inc.
6  *
7  * Author: Ashish Kalra <ashish.kalra@amd.com>
8  *
9  */
10 
11 #include <linux/cc_platform.h>
12 #include <linux/printk.h>
13 #include <linux/mm_types.h>
14 #include <linux/set_memory.h>
15 #include <linux/memblock.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/cpumask.h>
19 #include <linux/iommu.h>
20 #include <linux/amd-iommu.h>
21 
22 #include <asm/sev.h>
23 #include <asm/processor.h>
24 #include <asm/setup.h>
25 #include <asm/svm.h>
26 #include <asm/smp.h>
27 #include <asm/cpu.h>
28 #include <asm/apic.h>
29 #include <asm/cpuid.h>
30 #include <asm/cmdline.h>
31 #include <asm/iommu.h>
32 
33 /*
34  * The RMP entry format is not architectural. The format is defined in PPR
35  * Family 19h Model 01h, Rev B1 processor.
36  */
37 struct rmpentry {
38 	union {
39 		struct {
40 			u64 assigned	: 1,
41 			    pagesize	: 1,
42 			    immutable	: 1,
43 			    rsvd1	: 9,
44 			    gpa		: 39,
45 			    asid	: 10,
46 			    vmsa	: 1,
47 			    validated	: 1,
48 			    rsvd2	: 1;
49 		};
50 		u64 lo;
51 	};
52 	u64 hi;
53 } __packed;
54 
55 /*
56  * The first 16KB from the RMP_BASE is used by the processor for the
57  * bookkeeping, the range needs to be added during the RMP entry lookup.
58  */
59 #define RMPTABLE_CPU_BOOKKEEPING_SZ	0x4000
60 
61 /* Mask to apply to a PFN to get the first PFN of a 2MB page */
62 #define PFN_PMD_MASK	GENMASK_ULL(63, PMD_SHIFT - PAGE_SHIFT)
63 
64 static u64 probed_rmp_base, probed_rmp_size;
65 static struct rmpentry *rmptable __ro_after_init;
66 static u64 rmptable_max_pfn __ro_after_init;
67 
68 static LIST_HEAD(snp_leaked_pages_list);
69 static DEFINE_SPINLOCK(snp_leaked_pages_list_lock);
70 
71 static unsigned long snp_nr_leaked_pages;
72 
73 #undef pr_fmt
74 #define pr_fmt(fmt)	"SEV-SNP: " fmt
75 
76 static int __mfd_enable(unsigned int cpu)
77 {
78 	u64 val;
79 
80 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
81 		return 0;
82 
83 	rdmsrl(MSR_AMD64_SYSCFG, val);
84 
85 	val |= MSR_AMD64_SYSCFG_MFDM;
86 
87 	wrmsrl(MSR_AMD64_SYSCFG, val);
88 
89 	return 0;
90 }
91 
92 static __init void mfd_enable(void *arg)
93 {
94 	__mfd_enable(smp_processor_id());
95 }
96 
97 static int __snp_enable(unsigned int cpu)
98 {
99 	u64 val;
100 
101 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
102 		return 0;
103 
104 	rdmsrl(MSR_AMD64_SYSCFG, val);
105 
106 	val |= MSR_AMD64_SYSCFG_SNP_EN;
107 	val |= MSR_AMD64_SYSCFG_SNP_VMPL_EN;
108 
109 	wrmsrl(MSR_AMD64_SYSCFG, val);
110 
111 	return 0;
112 }
113 
114 static __init void snp_enable(void *arg)
115 {
116 	__snp_enable(smp_processor_id());
117 }
118 
119 #define RMP_ADDR_MASK GENMASK_ULL(51, 13)
120 
121 bool snp_probe_rmptable_info(void)
122 {
123 	u64 max_rmp_pfn, calc_rmp_sz, rmp_sz, rmp_base, rmp_end;
124 
125 	rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
126 	rdmsrl(MSR_AMD64_RMP_END, rmp_end);
127 
128 	if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) {
129 		pr_err("Memory for the RMP table has not been reserved by BIOS\n");
130 		return false;
131 	}
132 
133 	if (rmp_base > rmp_end) {
134 		pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end);
135 		return false;
136 	}
137 
138 	rmp_sz = rmp_end - rmp_base + 1;
139 
140 	/*
141 	 * Calculate the amount the memory that must be reserved by the BIOS to
142 	 * address the whole RAM, including the bookkeeping area. The RMP itself
143 	 * must also be covered.
144 	 */
145 	max_rmp_pfn = max_pfn;
146 	if (PHYS_PFN(rmp_end) > max_pfn)
147 		max_rmp_pfn = PHYS_PFN(rmp_end);
148 
149 	calc_rmp_sz = (max_rmp_pfn << 4) + RMPTABLE_CPU_BOOKKEEPING_SZ;
150 
151 	if (calc_rmp_sz > rmp_sz) {
152 		pr_err("Memory reserved for the RMP table does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
153 		       calc_rmp_sz, rmp_sz);
154 		return false;
155 	}
156 
157 	probed_rmp_base = rmp_base;
158 	probed_rmp_size = rmp_sz;
159 
160 	pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n",
161 		probed_rmp_base, probed_rmp_base + probed_rmp_size - 1);
162 
163 	return true;
164 }
165 
166 /*
167  * Do the necessary preparations which are verified by the firmware as
168  * described in the SNP_INIT_EX firmware command description in the SNP
169  * firmware ABI spec.
170  */
171 static int __init snp_rmptable_init(void)
172 {
173 	void *rmptable_start;
174 	u64 rmptable_size;
175 	u64 val;
176 
177 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
178 		return 0;
179 
180 	if (!amd_iommu_snp_en)
181 		return 0;
182 
183 	if (!probed_rmp_size)
184 		goto nosnp;
185 
186 	rmptable_start = memremap(probed_rmp_base, probed_rmp_size, MEMREMAP_WB);
187 	if (!rmptable_start) {
188 		pr_err("Failed to map RMP table\n");
189 		return 1;
190 	}
191 
192 	/*
193 	 * Check if SEV-SNP is already enabled, this can happen in case of
194 	 * kexec boot.
195 	 */
196 	rdmsrl(MSR_AMD64_SYSCFG, val);
197 	if (val & MSR_AMD64_SYSCFG_SNP_EN)
198 		goto skip_enable;
199 
200 	memset(rmptable_start, 0, probed_rmp_size);
201 
202 	/* Flush the caches to ensure that data is written before SNP is enabled. */
203 	wbinvd_on_all_cpus();
204 
205 	/* MtrrFixDramModEn must be enabled on all the CPUs prior to enabling SNP. */
206 	on_each_cpu(mfd_enable, NULL, 1);
207 
208 	on_each_cpu(snp_enable, NULL, 1);
209 
210 skip_enable:
211 	rmptable_start += RMPTABLE_CPU_BOOKKEEPING_SZ;
212 	rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ;
213 
214 	rmptable = (struct rmpentry *)rmptable_start;
215 	rmptable_max_pfn = rmptable_size / sizeof(struct rmpentry) - 1;
216 
217 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rmptable_init:online", __snp_enable, NULL);
218 
219 	/*
220 	 * Setting crash_kexec_post_notifiers to 'true' to ensure that SNP panic
221 	 * notifier is invoked to do SNP IOMMU shutdown before kdump.
222 	 */
223 	crash_kexec_post_notifiers = true;
224 
225 	return 0;
226 
227 nosnp:
228 	setup_clear_cpu_cap(X86_FEATURE_SEV_SNP);
229 	return -ENOSYS;
230 }
231 
232 /*
233  * This must be called after the IOMMU has been initialized.
234  */
235 device_initcall(snp_rmptable_init);
236 
237 static struct rmpentry *get_rmpentry(u64 pfn)
238 {
239 	if (WARN_ON_ONCE(pfn > rmptable_max_pfn))
240 		return ERR_PTR(-EFAULT);
241 
242 	return &rmptable[pfn];
243 }
244 
245 static struct rmpentry *__snp_lookup_rmpentry(u64 pfn, int *level)
246 {
247 	struct rmpentry *large_entry, *entry;
248 
249 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
250 		return ERR_PTR(-ENODEV);
251 
252 	entry = get_rmpentry(pfn);
253 	if (IS_ERR(entry))
254 		return entry;
255 
256 	/*
257 	 * Find the authoritative RMP entry for a PFN. This can be either a 4K
258 	 * RMP entry or a special large RMP entry that is authoritative for a
259 	 * whole 2M area.
260 	 */
261 	large_entry = get_rmpentry(pfn & PFN_PMD_MASK);
262 	if (IS_ERR(large_entry))
263 		return large_entry;
264 
265 	*level = RMP_TO_PG_LEVEL(large_entry->pagesize);
266 
267 	return entry;
268 }
269 
270 int snp_lookup_rmpentry(u64 pfn, bool *assigned, int *level)
271 {
272 	struct rmpentry *e;
273 
274 	e = __snp_lookup_rmpentry(pfn, level);
275 	if (IS_ERR(e))
276 		return PTR_ERR(e);
277 
278 	*assigned = !!e->assigned;
279 	return 0;
280 }
281 EXPORT_SYMBOL_GPL(snp_lookup_rmpentry);
282 
283 /*
284  * Dump the raw RMP entry for a particular PFN. These bits are documented in the
285  * PPR for a particular CPU model and provide useful information about how a
286  * particular PFN is being utilized by the kernel/firmware at the time certain
287  * unexpected events occur, such as RMP faults.
288  */
289 static void dump_rmpentry(u64 pfn)
290 {
291 	u64 pfn_i, pfn_end;
292 	struct rmpentry *e;
293 	int level;
294 
295 	e = __snp_lookup_rmpentry(pfn, &level);
296 	if (IS_ERR(e)) {
297 		pr_err("Failed to read RMP entry for PFN 0x%llx, error %ld\n",
298 		       pfn, PTR_ERR(e));
299 		return;
300 	}
301 
302 	if (e->assigned) {
303 		pr_info("PFN 0x%llx, RMP entry: [0x%016llx - 0x%016llx]\n",
304 			pfn, e->lo, e->hi);
305 		return;
306 	}
307 
308 	/*
309 	 * If the RMP entry for a particular PFN is not in an assigned state,
310 	 * then it is sometimes useful to get an idea of whether or not any RMP
311 	 * entries for other PFNs within the same 2MB region are assigned, since
312 	 * those too can affect the ability to access a particular PFN in
313 	 * certain situations, such as when the PFN is being accessed via a 2MB
314 	 * mapping in the host page table.
315 	 */
316 	pfn_i = ALIGN_DOWN(pfn, PTRS_PER_PMD);
317 	pfn_end = pfn_i + PTRS_PER_PMD;
318 
319 	pr_info("PFN 0x%llx unassigned, dumping non-zero entries in 2M PFN region: [0x%llx - 0x%llx]\n",
320 		pfn, pfn_i, pfn_end);
321 
322 	while (pfn_i < pfn_end) {
323 		e = __snp_lookup_rmpentry(pfn_i, &level);
324 		if (IS_ERR(e)) {
325 			pr_err("Error %ld reading RMP entry for PFN 0x%llx\n",
326 			       PTR_ERR(e), pfn_i);
327 			pfn_i++;
328 			continue;
329 		}
330 
331 		if (e->lo || e->hi)
332 			pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e->lo, e->hi);
333 		pfn_i++;
334 	}
335 }
336 
337 void snp_dump_hva_rmpentry(unsigned long hva)
338 {
339 	unsigned long paddr;
340 	unsigned int level;
341 	pgd_t *pgd;
342 	pte_t *pte;
343 
344 	pgd = __va(read_cr3_pa());
345 	pgd += pgd_index(hva);
346 	pte = lookup_address_in_pgd(pgd, hva, &level);
347 
348 	if (!pte) {
349 		pr_err("Can't dump RMP entry for HVA %lx: no PTE/PFN found\n", hva);
350 		return;
351 	}
352 
353 	paddr = PFN_PHYS(pte_pfn(*pte)) | (hva & ~page_level_mask(level));
354 	dump_rmpentry(PHYS_PFN(paddr));
355 }
356 
357 /*
358  * PSMASH a 2MB aligned page into 4K pages in the RMP table while preserving the
359  * Validated bit.
360  */
361 int psmash(u64 pfn)
362 {
363 	unsigned long paddr = pfn << PAGE_SHIFT;
364 	int ret;
365 
366 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
367 		return -ENODEV;
368 
369 	if (!pfn_valid(pfn))
370 		return -EINVAL;
371 
372 	/* Binutils version 2.36 supports the PSMASH mnemonic. */
373 	asm volatile(".byte 0xF3, 0x0F, 0x01, 0xFF"
374 		      : "=a" (ret)
375 		      : "a" (paddr)
376 		      : "memory", "cc");
377 
378 	return ret;
379 }
380 EXPORT_SYMBOL_GPL(psmash);
381 
382 /*
383  * If the kernel uses a 2MB or larger directmap mapping to write to an address,
384  * and that mapping contains any 4KB pages that are set to private in the RMP
385  * table, an RMP #PF will trigger and cause a host crash. Hypervisor code that
386  * owns the PFNs being transitioned will never attempt such a write, but other
387  * kernel tasks writing to other PFNs in the range may trigger these checks
388  * inadvertently due a large directmap mapping that happens to overlap such a
389  * PFN.
390  *
391  * Prevent this by splitting any 2MB+ mappings that might end up containing a
392  * mix of private/shared PFNs as a result of a subsequent RMPUPDATE for the
393  * PFN/rmp_level passed in.
394  *
395  * Note that there is no attempt here to scan all the RMP entries for the 2MB
396  * physical range, since it would only be worthwhile in determining if a
397  * subsequent RMPUPDATE for a 4KB PFN would result in all the entries being of
398  * the same shared/private state, thus avoiding the need to split the mapping.
399  * But that would mean the entries are currently in a mixed state, and so the
400  * mapping would have already been split as a result of prior transitions.
401  * And since the 4K split is only done if the mapping is 2MB+, and there isn't
402  * currently a mechanism in place to restore 2MB+ mappings, such a check would
403  * not provide any usable benefit.
404  *
405  * More specifics on how these checks are carried out can be found in APM
406  * Volume 2, "RMP and VMPL Access Checks".
407  */
408 static int adjust_direct_map(u64 pfn, int rmp_level)
409 {
410 	unsigned long vaddr;
411 	unsigned int level;
412 	int npages, ret;
413 	pte_t *pte;
414 
415 	/*
416 	 * pfn_to_kaddr() will return a vaddr only within the direct
417 	 * map range.
418 	 */
419 	vaddr = (unsigned long)pfn_to_kaddr(pfn);
420 
421 	/* Only 4KB/2MB RMP entries are supported by current hardware. */
422 	if (WARN_ON_ONCE(rmp_level > PG_LEVEL_2M))
423 		return -EINVAL;
424 
425 	if (!pfn_valid(pfn))
426 		return -EINVAL;
427 
428 	if (rmp_level == PG_LEVEL_2M &&
429 	    (!IS_ALIGNED(pfn, PTRS_PER_PMD) || !pfn_valid(pfn + PTRS_PER_PMD - 1)))
430 		return -EINVAL;
431 
432 	/*
433 	 * If an entire 2MB physical range is being transitioned, then there is
434 	 * no risk of RMP #PFs due to write accesses from overlapping mappings,
435 	 * since even accesses from 1GB mappings will be treated as 2MB accesses
436 	 * as far as RMP table checks are concerned.
437 	 */
438 	if (rmp_level == PG_LEVEL_2M)
439 		return 0;
440 
441 	pte = lookup_address(vaddr, &level);
442 	if (!pte || pte_none(*pte))
443 		return 0;
444 
445 	if (level == PG_LEVEL_4K)
446 		return 0;
447 
448 	npages = page_level_size(rmp_level) / PAGE_SIZE;
449 	ret = set_memory_4k(vaddr, npages);
450 	if (ret)
451 		pr_warn("Failed to split direct map for PFN 0x%llx, ret: %d\n",
452 			pfn, ret);
453 
454 	return ret;
455 }
456 
457 /*
458  * It is expected that those operations are seldom enough so that no mutual
459  * exclusion of updaters is needed and thus the overlap error condition below
460  * should happen very rarely and would get resolved relatively quickly by
461  * the firmware.
462  *
463  * If not, one could consider introducing a mutex or so here to sync concurrent
464  * RMP updates and thus diminish the amount of cases where firmware needs to
465  * lock 2M ranges to protect against concurrent updates.
466  *
467  * The optimal solution would be range locking to avoid locking disjoint
468  * regions unnecessarily but there's no support for that yet.
469  */
470 static int rmpupdate(u64 pfn, struct rmp_state *state)
471 {
472 	unsigned long paddr = pfn << PAGE_SHIFT;
473 	int ret, level;
474 
475 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
476 		return -ENODEV;
477 
478 	level = RMP_TO_PG_LEVEL(state->pagesize);
479 
480 	if (adjust_direct_map(pfn, level))
481 		return -EFAULT;
482 
483 	do {
484 		/* Binutils version 2.36 supports the RMPUPDATE mnemonic. */
485 		asm volatile(".byte 0xF2, 0x0F, 0x01, 0xFE"
486 			     : "=a" (ret)
487 			     : "a" (paddr), "c" ((unsigned long)state)
488 			     : "memory", "cc");
489 	} while (ret == RMPUPDATE_FAIL_OVERLAP);
490 
491 	if (ret) {
492 		pr_err("RMPUPDATE failed for PFN %llx, pg_level: %d, ret: %d\n",
493 		       pfn, level, ret);
494 		dump_rmpentry(pfn);
495 		dump_stack();
496 		return -EFAULT;
497 	}
498 
499 	return 0;
500 }
501 
502 /* Transition a page to guest-owned/private state in the RMP table. */
503 int rmp_make_private(u64 pfn, u64 gpa, enum pg_level level, u32 asid, bool immutable)
504 {
505 	struct rmp_state state;
506 
507 	memset(&state, 0, sizeof(state));
508 	state.assigned = 1;
509 	state.asid = asid;
510 	state.immutable = immutable;
511 	state.gpa = gpa;
512 	state.pagesize = PG_LEVEL_TO_RMP(level);
513 
514 	return rmpupdate(pfn, &state);
515 }
516 EXPORT_SYMBOL_GPL(rmp_make_private);
517 
518 /* Transition a page to hypervisor-owned/shared state in the RMP table. */
519 int rmp_make_shared(u64 pfn, enum pg_level level)
520 {
521 	struct rmp_state state;
522 
523 	memset(&state, 0, sizeof(state));
524 	state.pagesize = PG_LEVEL_TO_RMP(level);
525 
526 	return rmpupdate(pfn, &state);
527 }
528 EXPORT_SYMBOL_GPL(rmp_make_shared);
529 
530 void snp_leak_pages(u64 pfn, unsigned int npages)
531 {
532 	struct page *page = pfn_to_page(pfn);
533 
534 	pr_warn("Leaking PFN range 0x%llx-0x%llx\n", pfn, pfn + npages);
535 
536 	spin_lock(&snp_leaked_pages_list_lock);
537 	while (npages--) {
538 
539 		/*
540 		 * Reuse the page's buddy list for chaining into the leaked
541 		 * pages list. This page should not be on a free list currently
542 		 * and is also unsafe to be added to a free list.
543 		 */
544 		if (likely(!PageCompound(page)) ||
545 
546 			/*
547 			 * Skip inserting tail pages of compound page as
548 			 * page->buddy_list of tail pages is not usable.
549 			 */
550 		    (PageHead(page) && compound_nr(page) <= npages))
551 			list_add_tail(&page->buddy_list, &snp_leaked_pages_list);
552 
553 		dump_rmpentry(pfn);
554 		snp_nr_leaked_pages++;
555 		pfn++;
556 		page++;
557 	}
558 	spin_unlock(&snp_leaked_pages_list_lock);
559 }
560 EXPORT_SYMBOL_GPL(snp_leak_pages);
561