1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD SVM-SEV Host Support. 4 * 5 * Copyright (C) 2023 Advanced Micro Devices, Inc. 6 * 7 * Author: Ashish Kalra <ashish.kalra@amd.com> 8 * 9 */ 10 11 #include <linux/cc_platform.h> 12 #include <linux/printk.h> 13 #include <linux/mm_types.h> 14 #include <linux/set_memory.h> 15 #include <linux/memblock.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/cpumask.h> 19 #include <linux/iommu.h> 20 #include <linux/amd-iommu.h> 21 #include <linux/nospec.h> 22 23 #include <asm/sev.h> 24 #include <asm/processor.h> 25 #include <asm/setup.h> 26 #include <asm/svm.h> 27 #include <asm/smp.h> 28 #include <asm/cpu.h> 29 #include <asm/apic.h> 30 #include <asm/cpuid.h> 31 #include <asm/cmdline.h> 32 #include <asm/iommu.h> 33 34 /* 35 * The RMP entry information as returned by the RMPREAD instruction. 36 */ 37 struct rmpentry { 38 u64 gpa; 39 u8 assigned :1, 40 rsvd1 :7; 41 u8 pagesize :1, 42 hpage_region_status :1, 43 rsvd2 :6; 44 u8 immutable :1, 45 rsvd3 :7; 46 u8 rsvd4; 47 u32 asid; 48 } __packed; 49 50 /* 51 * The raw RMP entry format is not architectural. The format is defined in PPR 52 * Family 19h Model 01h, Rev B1 processor. This format represents the actual 53 * entry in the RMP table memory. The bitfield definitions are used for machines 54 * without the RMPREAD instruction (Zen3 and Zen4), otherwise the "hi" and "lo" 55 * fields are only used for dumping the raw data. 56 */ 57 struct rmpentry_raw { 58 union { 59 struct { 60 u64 assigned : 1, 61 pagesize : 1, 62 immutable : 1, 63 rsvd1 : 9, 64 gpa : 39, 65 asid : 10, 66 vmsa : 1, 67 validated : 1, 68 rsvd2 : 1; 69 }; 70 u64 lo; 71 }; 72 u64 hi; 73 } __packed; 74 75 /* 76 * The first 16KB from the RMP_BASE is used by the processor for the 77 * bookkeeping, the range needs to be added during the RMP entry lookup. 78 */ 79 #define RMPTABLE_CPU_BOOKKEEPING_SZ 0x4000 80 81 /* 82 * For a non-segmented RMP table, use the maximum physical addressing as the 83 * segment size in order to always arrive at index 0 in the table. 84 */ 85 #define RMPTABLE_NON_SEGMENTED_SHIFT 52 86 87 struct rmp_segment_desc { 88 struct rmpentry_raw *rmp_entry; 89 u64 max_index; 90 u64 size; 91 }; 92 93 /* 94 * Segmented RMP Table support. 95 * - The segment size is used for two purposes: 96 * - Identify the amount of memory covered by an RMP segment 97 * - Quickly locate an RMP segment table entry for a physical address 98 * 99 * - The RMP segment table contains pointers to an RMP table that covers 100 * a specific portion of memory. There can be up to 512 8-byte entries, 101 * one pages worth. 102 */ 103 #define RST_ENTRY_MAPPED_SIZE(x) ((x) & GENMASK_ULL(19, 0)) 104 #define RST_ENTRY_SEGMENT_BASE(x) ((x) & GENMASK_ULL(51, 20)) 105 106 #define RST_SIZE SZ_4K 107 static struct rmp_segment_desc **rmp_segment_table __ro_after_init; 108 static unsigned int rst_max_index __ro_after_init = 512; 109 110 static unsigned int rmp_segment_shift; 111 static u64 rmp_segment_size; 112 static u64 rmp_segment_mask; 113 114 #define RST_ENTRY_INDEX(x) ((x) >> rmp_segment_shift) 115 #define RMP_ENTRY_INDEX(x) ((u64)(PHYS_PFN((x) & rmp_segment_mask))) 116 117 static u64 rmp_cfg; 118 119 /* Mask to apply to a PFN to get the first PFN of a 2MB page */ 120 #define PFN_PMD_MASK GENMASK_ULL(63, PMD_SHIFT - PAGE_SHIFT) 121 122 static u64 probed_rmp_base, probed_rmp_size; 123 124 static LIST_HEAD(snp_leaked_pages_list); 125 static DEFINE_SPINLOCK(snp_leaked_pages_list_lock); 126 127 static unsigned long snp_nr_leaked_pages; 128 129 #undef pr_fmt 130 #define pr_fmt(fmt) "SEV-SNP: " fmt 131 132 static int __mfd_enable(unsigned int cpu) 133 { 134 u64 val; 135 136 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 137 return 0; 138 139 rdmsrl(MSR_AMD64_SYSCFG, val); 140 141 val |= MSR_AMD64_SYSCFG_MFDM; 142 143 wrmsrl(MSR_AMD64_SYSCFG, val); 144 145 return 0; 146 } 147 148 static __init void mfd_enable(void *arg) 149 { 150 __mfd_enable(smp_processor_id()); 151 } 152 153 static int __snp_enable(unsigned int cpu) 154 { 155 u64 val; 156 157 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 158 return 0; 159 160 rdmsrl(MSR_AMD64_SYSCFG, val); 161 162 val |= MSR_AMD64_SYSCFG_SNP_EN; 163 val |= MSR_AMD64_SYSCFG_SNP_VMPL_EN; 164 165 wrmsrl(MSR_AMD64_SYSCFG, val); 166 167 return 0; 168 } 169 170 static __init void snp_enable(void *arg) 171 { 172 __snp_enable(smp_processor_id()); 173 } 174 175 static void __init __snp_fixup_e820_tables(u64 pa) 176 { 177 if (IS_ALIGNED(pa, PMD_SIZE)) 178 return; 179 180 /* 181 * Handle cases where the RMP table placement by the BIOS is not 182 * 2M aligned and the kexec kernel could try to allocate 183 * from within that chunk which then causes a fatal RMP fault. 184 * 185 * The e820_table needs to be updated as it is converted to 186 * kernel memory resources and used by KEXEC_FILE_LOAD syscall 187 * to load kexec segments. 188 * 189 * The e820_table_firmware needs to be updated as it is exposed 190 * to sysfs and used by the KEXEC_LOAD syscall to load kexec 191 * segments. 192 * 193 * The e820_table_kexec needs to be updated as it passed to 194 * the kexec-ed kernel. 195 */ 196 pa = ALIGN_DOWN(pa, PMD_SIZE); 197 if (e820__mapped_any(pa, pa + PMD_SIZE, E820_TYPE_RAM)) { 198 pr_info("Reserving start/end of RMP table on a 2MB boundary [0x%016llx]\n", pa); 199 e820__range_update(pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 200 e820__range_update_table(e820_table_kexec, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 201 if (!memblock_is_region_reserved(pa, PMD_SIZE)) 202 memblock_reserve(pa, PMD_SIZE); 203 } 204 } 205 206 static void __init fixup_e820_tables_for_segmented_rmp(void) 207 { 208 u64 pa, *rst, size, mapped_size; 209 unsigned int i; 210 211 __snp_fixup_e820_tables(probed_rmp_base); 212 213 pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ; 214 215 __snp_fixup_e820_tables(pa + RST_SIZE); 216 217 rst = early_memremap(pa, RST_SIZE); 218 if (!rst) 219 return; 220 221 for (i = 0; i < rst_max_index; i++) { 222 pa = RST_ENTRY_SEGMENT_BASE(rst[i]); 223 mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]); 224 if (!mapped_size) 225 continue; 226 227 __snp_fixup_e820_tables(pa); 228 229 /* 230 * Mapped size in GB. Mapped size is allowed to exceed 231 * the segment coverage size, but gets reduced to the 232 * segment coverage size. 233 */ 234 mapped_size <<= 30; 235 if (mapped_size > rmp_segment_size) 236 mapped_size = rmp_segment_size; 237 238 /* Calculate the RMP segment size (16 bytes/page mapped) */ 239 size = PHYS_PFN(mapped_size) << 4; 240 241 __snp_fixup_e820_tables(pa + size); 242 } 243 244 early_memunmap(rst, RST_SIZE); 245 } 246 247 static void __init fixup_e820_tables_for_contiguous_rmp(void) 248 { 249 __snp_fixup_e820_tables(probed_rmp_base); 250 __snp_fixup_e820_tables(probed_rmp_base + probed_rmp_size); 251 } 252 253 void __init snp_fixup_e820_tables(void) 254 { 255 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) { 256 fixup_e820_tables_for_segmented_rmp(); 257 } else { 258 fixup_e820_tables_for_contiguous_rmp(); 259 } 260 } 261 262 static bool __init clear_rmptable_bookkeeping(void) 263 { 264 void *bk; 265 266 bk = memremap(probed_rmp_base, RMPTABLE_CPU_BOOKKEEPING_SZ, MEMREMAP_WB); 267 if (!bk) { 268 pr_err("Failed to map RMP bookkeeping area\n"); 269 return false; 270 } 271 272 memset(bk, 0, RMPTABLE_CPU_BOOKKEEPING_SZ); 273 274 memunmap(bk); 275 276 return true; 277 } 278 279 static bool __init alloc_rmp_segment_desc(u64 segment_pa, u64 segment_size, u64 pa) 280 { 281 u64 rst_index, rmp_segment_size_max; 282 struct rmp_segment_desc *desc; 283 void *rmp_segment; 284 285 /* Calculate the maximum size an RMP can be (16 bytes/page mapped) */ 286 rmp_segment_size_max = PHYS_PFN(rmp_segment_size) << 4; 287 288 /* Validate the RMP segment size */ 289 if (segment_size > rmp_segment_size_max) { 290 pr_err("Invalid RMP size 0x%llx for configured segment size 0x%llx\n", 291 segment_size, rmp_segment_size_max); 292 return false; 293 } 294 295 /* Validate the RMP segment table index */ 296 rst_index = RST_ENTRY_INDEX(pa); 297 if (rst_index >= rst_max_index) { 298 pr_err("Invalid RMP segment base address 0x%llx for configured segment size 0x%llx\n", 299 pa, rmp_segment_size); 300 return false; 301 } 302 303 if (rmp_segment_table[rst_index]) { 304 pr_err("RMP segment descriptor already exists at index %llu\n", rst_index); 305 return false; 306 } 307 308 rmp_segment = memremap(segment_pa, segment_size, MEMREMAP_WB); 309 if (!rmp_segment) { 310 pr_err("Failed to map RMP segment addr 0x%llx size 0x%llx\n", 311 segment_pa, segment_size); 312 return false; 313 } 314 315 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 316 if (!desc) { 317 memunmap(rmp_segment); 318 return false; 319 } 320 321 desc->rmp_entry = rmp_segment; 322 desc->max_index = segment_size / sizeof(*desc->rmp_entry); 323 desc->size = segment_size; 324 325 rmp_segment_table[rst_index] = desc; 326 327 return true; 328 } 329 330 static void __init free_rmp_segment_table(void) 331 { 332 unsigned int i; 333 334 for (i = 0; i < rst_max_index; i++) { 335 struct rmp_segment_desc *desc; 336 337 desc = rmp_segment_table[i]; 338 if (!desc) 339 continue; 340 341 memunmap(desc->rmp_entry); 342 343 kfree(desc); 344 } 345 346 free_page((unsigned long)rmp_segment_table); 347 348 rmp_segment_table = NULL; 349 } 350 351 /* Allocate the table used to index into the RMP segments */ 352 static bool __init alloc_rmp_segment_table(void) 353 { 354 struct page *page; 355 356 page = alloc_page(__GFP_ZERO); 357 if (!page) 358 return false; 359 360 rmp_segment_table = page_address(page); 361 362 return true; 363 } 364 365 static bool __init setup_contiguous_rmptable(void) 366 { 367 u64 max_rmp_pfn, calc_rmp_sz, rmptable_segment, rmptable_size, rmp_end; 368 369 if (!probed_rmp_size) 370 return false; 371 372 rmp_end = probed_rmp_base + probed_rmp_size - 1; 373 374 /* 375 * Calculate the amount of memory that must be reserved by the BIOS to 376 * address the whole RAM, including the bookkeeping area. The RMP itself 377 * must also be covered. 378 */ 379 max_rmp_pfn = max_pfn; 380 if (PFN_UP(rmp_end) > max_pfn) 381 max_rmp_pfn = PFN_UP(rmp_end); 382 383 calc_rmp_sz = (max_rmp_pfn << 4) + RMPTABLE_CPU_BOOKKEEPING_SZ; 384 if (calc_rmp_sz > probed_rmp_size) { 385 pr_err("Memory reserved for the RMP table does not cover full system RAM (expected 0x%llx got 0x%llx)\n", 386 calc_rmp_sz, probed_rmp_size); 387 return false; 388 } 389 390 if (!alloc_rmp_segment_table()) 391 return false; 392 393 /* Map only the RMP entries */ 394 rmptable_segment = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ; 395 rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ; 396 397 if (!alloc_rmp_segment_desc(rmptable_segment, rmptable_size, 0)) { 398 free_rmp_segment_table(); 399 return false; 400 } 401 402 return true; 403 } 404 405 static bool __init setup_segmented_rmptable(void) 406 { 407 u64 rst_pa, *rst, pa, ram_pa_end, ram_pa_max; 408 unsigned int i, max_index; 409 410 if (!probed_rmp_base) 411 return false; 412 413 if (!alloc_rmp_segment_table()) 414 return false; 415 416 rst_pa = probed_rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ; 417 rst = memremap(rst_pa, RST_SIZE, MEMREMAP_WB); 418 if (!rst) { 419 pr_err("Failed to map RMP segment table addr 0x%llx\n", rst_pa); 420 goto e_free; 421 } 422 423 pr_info("Segmented RMP using %lluGB segments\n", rmp_segment_size >> 30); 424 425 ram_pa_max = max_pfn << PAGE_SHIFT; 426 427 max_index = 0; 428 ram_pa_end = 0; 429 for (i = 0; i < rst_max_index; i++) { 430 u64 rmp_segment, rmp_size, mapped_size; 431 432 mapped_size = RST_ENTRY_MAPPED_SIZE(rst[i]); 433 if (!mapped_size) 434 continue; 435 436 max_index = i; 437 438 /* 439 * Mapped size in GB. Mapped size is allowed to exceed the 440 * segment coverage size, but gets reduced to the segment 441 * coverage size. 442 */ 443 mapped_size <<= 30; 444 if (mapped_size > rmp_segment_size) { 445 pr_info("RMP segment %u mapped size (0x%llx) reduced to 0x%llx\n", 446 i, mapped_size, rmp_segment_size); 447 mapped_size = rmp_segment_size; 448 } 449 450 rmp_segment = RST_ENTRY_SEGMENT_BASE(rst[i]); 451 452 /* Calculate the RMP segment size (16 bytes/page mapped) */ 453 rmp_size = PHYS_PFN(mapped_size) << 4; 454 455 pa = (u64)i << rmp_segment_shift; 456 457 /* 458 * Some segments may be for MMIO mapped above system RAM. These 459 * segments are used for Trusted I/O. 460 */ 461 if (pa < ram_pa_max) 462 ram_pa_end = pa + mapped_size; 463 464 if (!alloc_rmp_segment_desc(rmp_segment, rmp_size, pa)) 465 goto e_unmap; 466 467 pr_info("RMP segment %u physical address [0x%llx - 0x%llx] covering [0x%llx - 0x%llx]\n", 468 i, rmp_segment, rmp_segment + rmp_size - 1, pa, pa + mapped_size - 1); 469 } 470 471 if (ram_pa_max > ram_pa_end) { 472 pr_err("Segmented RMP does not cover full system RAM (expected 0x%llx got 0x%llx)\n", 473 ram_pa_max, ram_pa_end); 474 goto e_unmap; 475 } 476 477 /* Adjust the maximum index based on the found segments */ 478 rst_max_index = max_index + 1; 479 480 memunmap(rst); 481 482 return true; 483 484 e_unmap: 485 memunmap(rst); 486 487 e_free: 488 free_rmp_segment_table(); 489 490 return false; 491 } 492 493 static bool __init setup_rmptable(void) 494 { 495 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) { 496 return setup_segmented_rmptable(); 497 } else { 498 return setup_contiguous_rmptable(); 499 } 500 } 501 502 /* 503 * Do the necessary preparations which are verified by the firmware as 504 * described in the SNP_INIT_EX firmware command description in the SNP 505 * firmware ABI spec. 506 */ 507 int __init snp_rmptable_init(void) 508 { 509 unsigned int i; 510 u64 val; 511 512 if (WARN_ON_ONCE(!cc_platform_has(CC_ATTR_HOST_SEV_SNP))) 513 return -ENOSYS; 514 515 if (WARN_ON_ONCE(!amd_iommu_snp_en)) 516 return -ENOSYS; 517 518 if (!setup_rmptable()) 519 return -ENOSYS; 520 521 /* 522 * Check if SEV-SNP is already enabled, this can happen in case of 523 * kexec boot. 524 */ 525 rdmsrl(MSR_AMD64_SYSCFG, val); 526 if (val & MSR_AMD64_SYSCFG_SNP_EN) 527 goto skip_enable; 528 529 /* Zero out the RMP bookkeeping area */ 530 if (!clear_rmptable_bookkeeping()) { 531 free_rmp_segment_table(); 532 return -ENOSYS; 533 } 534 535 /* Zero out the RMP entries */ 536 for (i = 0; i < rst_max_index; i++) { 537 struct rmp_segment_desc *desc; 538 539 desc = rmp_segment_table[i]; 540 if (!desc) 541 continue; 542 543 memset(desc->rmp_entry, 0, desc->size); 544 } 545 546 /* Flush the caches to ensure that data is written before SNP is enabled. */ 547 wbinvd_on_all_cpus(); 548 549 /* MtrrFixDramModEn must be enabled on all the CPUs prior to enabling SNP. */ 550 on_each_cpu(mfd_enable, NULL, 1); 551 552 on_each_cpu(snp_enable, NULL, 1); 553 554 skip_enable: 555 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rmptable_init:online", __snp_enable, NULL); 556 557 /* 558 * Setting crash_kexec_post_notifiers to 'true' to ensure that SNP panic 559 * notifier is invoked to do SNP IOMMU shutdown before kdump. 560 */ 561 crash_kexec_post_notifiers = true; 562 563 return 0; 564 } 565 566 static void set_rmp_segment_info(unsigned int segment_shift) 567 { 568 rmp_segment_shift = segment_shift; 569 rmp_segment_size = 1ULL << rmp_segment_shift; 570 rmp_segment_mask = rmp_segment_size - 1; 571 } 572 573 #define RMP_ADDR_MASK GENMASK_ULL(51, 13) 574 575 static bool probe_contiguous_rmptable_info(void) 576 { 577 u64 rmp_sz, rmp_base, rmp_end; 578 579 rdmsrl(MSR_AMD64_RMP_BASE, rmp_base); 580 rdmsrl(MSR_AMD64_RMP_END, rmp_end); 581 582 if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) { 583 pr_err("Memory for the RMP table has not been reserved by BIOS\n"); 584 return false; 585 } 586 587 if (rmp_base > rmp_end) { 588 pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end); 589 return false; 590 } 591 592 rmp_sz = rmp_end - rmp_base + 1; 593 594 /* Treat the contiguous RMP table as a single segment */ 595 rst_max_index = 1; 596 597 set_rmp_segment_info(RMPTABLE_NON_SEGMENTED_SHIFT); 598 599 probed_rmp_base = rmp_base; 600 probed_rmp_size = rmp_sz; 601 602 pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n", 603 rmp_base, rmp_end); 604 605 return true; 606 } 607 608 static bool probe_segmented_rmptable_info(void) 609 { 610 unsigned int eax, ebx, segment_shift, segment_shift_min, segment_shift_max; 611 u64 rmp_base, rmp_end; 612 613 rdmsrl(MSR_AMD64_RMP_BASE, rmp_base); 614 if (!(rmp_base & RMP_ADDR_MASK)) { 615 pr_err("Memory for the RMP table has not been reserved by BIOS\n"); 616 return false; 617 } 618 619 rdmsrl(MSR_AMD64_RMP_END, rmp_end); 620 WARN_ONCE(rmp_end & RMP_ADDR_MASK, 621 "Segmented RMP enabled but RMP_END MSR is non-zero\n"); 622 623 /* Obtain the min and max supported RMP segment size */ 624 eax = cpuid_eax(0x80000025); 625 segment_shift_min = eax & GENMASK(5, 0); 626 segment_shift_max = (eax & GENMASK(11, 6)) >> 6; 627 628 /* Verify the segment size is within the supported limits */ 629 segment_shift = MSR_AMD64_RMP_SEGMENT_SHIFT(rmp_cfg); 630 if (segment_shift > segment_shift_max || segment_shift < segment_shift_min) { 631 pr_err("RMP segment size (%u) is not within advertised bounds (min=%u, max=%u)\n", 632 segment_shift, segment_shift_min, segment_shift_max); 633 return false; 634 } 635 636 /* Override the max supported RST index if a hardware limit exists */ 637 ebx = cpuid_ebx(0x80000025); 638 if (ebx & BIT(10)) 639 rst_max_index = ebx & GENMASK(9, 0); 640 641 set_rmp_segment_info(segment_shift); 642 643 probed_rmp_base = rmp_base; 644 probed_rmp_size = 0; 645 646 pr_info("Segmented RMP base table physical range [0x%016llx - 0x%016llx]\n", 647 rmp_base, rmp_base + RMPTABLE_CPU_BOOKKEEPING_SZ + RST_SIZE); 648 649 return true; 650 } 651 652 bool snp_probe_rmptable_info(void) 653 { 654 if (cpu_feature_enabled(X86_FEATURE_SEGMENTED_RMP)) 655 rdmsrl(MSR_AMD64_RMP_CFG, rmp_cfg); 656 657 if (rmp_cfg & MSR_AMD64_SEG_RMP_ENABLED) 658 return probe_segmented_rmptable_info(); 659 else 660 return probe_contiguous_rmptable_info(); 661 } 662 663 /* 664 * About the array_index_nospec() usage below: 665 * 666 * This function can get called by exported functions like 667 * snp_lookup_rmpentry(), which is used by the KVM #PF handler, among 668 * others, and since the @pfn passed in cannot always be trusted, 669 * speculation should be stopped as a protective measure. 670 */ 671 static struct rmpentry_raw *get_raw_rmpentry(u64 pfn) 672 { 673 u64 paddr, rst_index, segment_index; 674 struct rmp_segment_desc *desc; 675 676 if (!rmp_segment_table) 677 return ERR_PTR(-ENODEV); 678 679 paddr = pfn << PAGE_SHIFT; 680 681 rst_index = RST_ENTRY_INDEX(paddr); 682 if (unlikely(rst_index >= rst_max_index)) 683 return ERR_PTR(-EFAULT); 684 685 rst_index = array_index_nospec(rst_index, rst_max_index); 686 687 desc = rmp_segment_table[rst_index]; 688 if (unlikely(!desc)) 689 return ERR_PTR(-EFAULT); 690 691 segment_index = RMP_ENTRY_INDEX(paddr); 692 if (unlikely(segment_index >= desc->max_index)) 693 return ERR_PTR(-EFAULT); 694 695 segment_index = array_index_nospec(segment_index, desc->max_index); 696 697 return desc->rmp_entry + segment_index; 698 } 699 700 static int get_rmpentry(u64 pfn, struct rmpentry *e) 701 { 702 struct rmpentry_raw *e_raw; 703 704 if (cpu_feature_enabled(X86_FEATURE_RMPREAD)) { 705 int ret; 706 707 /* Binutils version 2.44 supports the RMPREAD mnemonic. */ 708 asm volatile(".byte 0xf2, 0x0f, 0x01, 0xfd" 709 : "=a" (ret) 710 : "a" (pfn << PAGE_SHIFT), "c" (e) 711 : "memory", "cc"); 712 713 return ret; 714 } 715 716 e_raw = get_raw_rmpentry(pfn); 717 if (IS_ERR(e_raw)) 718 return PTR_ERR(e_raw); 719 720 /* 721 * Map the raw RMP table entry onto the RMPREAD output format. 722 * The 2MB region status indicator (hpage_region_status field) is not 723 * calculated, since the overhead could be significant and the field 724 * is not used. 725 */ 726 memset(e, 0, sizeof(*e)); 727 e->gpa = e_raw->gpa << PAGE_SHIFT; 728 e->asid = e_raw->asid; 729 e->assigned = e_raw->assigned; 730 e->pagesize = e_raw->pagesize; 731 e->immutable = e_raw->immutable; 732 733 return 0; 734 } 735 736 static int __snp_lookup_rmpentry(u64 pfn, struct rmpentry *e, int *level) 737 { 738 struct rmpentry e_large; 739 int ret; 740 741 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 742 return -ENODEV; 743 744 ret = get_rmpentry(pfn, e); 745 if (ret) 746 return ret; 747 748 /* 749 * Find the authoritative RMP entry for a PFN. This can be either a 4K 750 * RMP entry or a special large RMP entry that is authoritative for a 751 * whole 2M area. 752 */ 753 ret = get_rmpentry(pfn & PFN_PMD_MASK, &e_large); 754 if (ret) 755 return ret; 756 757 *level = RMP_TO_PG_LEVEL(e_large.pagesize); 758 759 return 0; 760 } 761 762 int snp_lookup_rmpentry(u64 pfn, bool *assigned, int *level) 763 { 764 struct rmpentry e; 765 int ret; 766 767 ret = __snp_lookup_rmpentry(pfn, &e, level); 768 if (ret) 769 return ret; 770 771 *assigned = !!e.assigned; 772 return 0; 773 } 774 EXPORT_SYMBOL_GPL(snp_lookup_rmpentry); 775 776 /* 777 * Dump the raw RMP entry for a particular PFN. These bits are documented in the 778 * PPR for a particular CPU model and provide useful information about how a 779 * particular PFN is being utilized by the kernel/firmware at the time certain 780 * unexpected events occur, such as RMP faults. 781 */ 782 static void dump_rmpentry(u64 pfn) 783 { 784 struct rmpentry_raw *e_raw; 785 u64 pfn_i, pfn_end; 786 struct rmpentry e; 787 int level, ret; 788 789 ret = __snp_lookup_rmpentry(pfn, &e, &level); 790 if (ret) { 791 pr_err("Failed to read RMP entry for PFN 0x%llx, error %d\n", 792 pfn, ret); 793 return; 794 } 795 796 if (e.assigned) { 797 e_raw = get_raw_rmpentry(pfn); 798 if (IS_ERR(e_raw)) { 799 pr_err("Failed to read RMP contents for PFN 0x%llx, error %ld\n", 800 pfn, PTR_ERR(e_raw)); 801 return; 802 } 803 804 pr_info("PFN 0x%llx, RMP entry: [0x%016llx - 0x%016llx]\n", 805 pfn, e_raw->lo, e_raw->hi); 806 return; 807 } 808 809 /* 810 * If the RMP entry for a particular PFN is not in an assigned state, 811 * then it is sometimes useful to get an idea of whether or not any RMP 812 * entries for other PFNs within the same 2MB region are assigned, since 813 * those too can affect the ability to access a particular PFN in 814 * certain situations, such as when the PFN is being accessed via a 2MB 815 * mapping in the host page table. 816 */ 817 pfn_i = ALIGN_DOWN(pfn, PTRS_PER_PMD); 818 pfn_end = pfn_i + PTRS_PER_PMD; 819 820 pr_info("PFN 0x%llx unassigned, dumping non-zero entries in 2M PFN region: [0x%llx - 0x%llx]\n", 821 pfn, pfn_i, pfn_end); 822 823 while (pfn_i < pfn_end) { 824 e_raw = get_raw_rmpentry(pfn_i); 825 if (IS_ERR(e_raw)) { 826 pr_err("Error %ld reading RMP contents for PFN 0x%llx\n", 827 PTR_ERR(e_raw), pfn_i); 828 pfn_i++; 829 continue; 830 } 831 832 if (e_raw->lo || e_raw->hi) 833 pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e_raw->lo, e_raw->hi); 834 pfn_i++; 835 } 836 } 837 838 void snp_dump_hva_rmpentry(unsigned long hva) 839 { 840 unsigned long paddr; 841 unsigned int level; 842 pgd_t *pgd; 843 pte_t *pte; 844 845 pgd = __va(read_cr3_pa()); 846 pgd += pgd_index(hva); 847 pte = lookup_address_in_pgd(pgd, hva, &level); 848 849 if (!pte) { 850 pr_err("Can't dump RMP entry for HVA %lx: no PTE/PFN found\n", hva); 851 return; 852 } 853 854 paddr = PFN_PHYS(pte_pfn(*pte)) | (hva & ~page_level_mask(level)); 855 dump_rmpentry(PHYS_PFN(paddr)); 856 } 857 858 /* 859 * PSMASH a 2MB aligned page into 4K pages in the RMP table while preserving the 860 * Validated bit. 861 */ 862 int psmash(u64 pfn) 863 { 864 unsigned long paddr = pfn << PAGE_SHIFT; 865 int ret; 866 867 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 868 return -ENODEV; 869 870 if (!pfn_valid(pfn)) 871 return -EINVAL; 872 873 /* Binutils version 2.36 supports the PSMASH mnemonic. */ 874 asm volatile(".byte 0xF3, 0x0F, 0x01, 0xFF" 875 : "=a" (ret) 876 : "a" (paddr) 877 : "memory", "cc"); 878 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(psmash); 882 883 /* 884 * If the kernel uses a 2MB or larger directmap mapping to write to an address, 885 * and that mapping contains any 4KB pages that are set to private in the RMP 886 * table, an RMP #PF will trigger and cause a host crash. Hypervisor code that 887 * owns the PFNs being transitioned will never attempt such a write, but other 888 * kernel tasks writing to other PFNs in the range may trigger these checks 889 * inadvertently due a large directmap mapping that happens to overlap such a 890 * PFN. 891 * 892 * Prevent this by splitting any 2MB+ mappings that might end up containing a 893 * mix of private/shared PFNs as a result of a subsequent RMPUPDATE for the 894 * PFN/rmp_level passed in. 895 * 896 * Note that there is no attempt here to scan all the RMP entries for the 2MB 897 * physical range, since it would only be worthwhile in determining if a 898 * subsequent RMPUPDATE for a 4KB PFN would result in all the entries being of 899 * the same shared/private state, thus avoiding the need to split the mapping. 900 * But that would mean the entries are currently in a mixed state, and so the 901 * mapping would have already been split as a result of prior transitions. 902 * And since the 4K split is only done if the mapping is 2MB+, and there isn't 903 * currently a mechanism in place to restore 2MB+ mappings, such a check would 904 * not provide any usable benefit. 905 * 906 * More specifics on how these checks are carried out can be found in APM 907 * Volume 2, "RMP and VMPL Access Checks". 908 */ 909 static int adjust_direct_map(u64 pfn, int rmp_level) 910 { 911 unsigned long vaddr; 912 unsigned int level; 913 int npages, ret; 914 pte_t *pte; 915 916 /* 917 * pfn_to_kaddr() will return a vaddr only within the direct 918 * map range. 919 */ 920 vaddr = (unsigned long)pfn_to_kaddr(pfn); 921 922 /* Only 4KB/2MB RMP entries are supported by current hardware. */ 923 if (WARN_ON_ONCE(rmp_level > PG_LEVEL_2M)) 924 return -EINVAL; 925 926 if (!pfn_valid(pfn)) 927 return -EINVAL; 928 929 if (rmp_level == PG_LEVEL_2M && 930 (!IS_ALIGNED(pfn, PTRS_PER_PMD) || !pfn_valid(pfn + PTRS_PER_PMD - 1))) 931 return -EINVAL; 932 933 /* 934 * If an entire 2MB physical range is being transitioned, then there is 935 * no risk of RMP #PFs due to write accesses from overlapping mappings, 936 * since even accesses from 1GB mappings will be treated as 2MB accesses 937 * as far as RMP table checks are concerned. 938 */ 939 if (rmp_level == PG_LEVEL_2M) 940 return 0; 941 942 pte = lookup_address(vaddr, &level); 943 if (!pte || pte_none(*pte)) 944 return 0; 945 946 if (level == PG_LEVEL_4K) 947 return 0; 948 949 npages = page_level_size(rmp_level) / PAGE_SIZE; 950 ret = set_memory_4k(vaddr, npages); 951 if (ret) 952 pr_warn("Failed to split direct map for PFN 0x%llx, ret: %d\n", 953 pfn, ret); 954 955 return ret; 956 } 957 958 /* 959 * It is expected that those operations are seldom enough so that no mutual 960 * exclusion of updaters is needed and thus the overlap error condition below 961 * should happen very rarely and would get resolved relatively quickly by 962 * the firmware. 963 * 964 * If not, one could consider introducing a mutex or so here to sync concurrent 965 * RMP updates and thus diminish the amount of cases where firmware needs to 966 * lock 2M ranges to protect against concurrent updates. 967 * 968 * The optimal solution would be range locking to avoid locking disjoint 969 * regions unnecessarily but there's no support for that yet. 970 */ 971 static int rmpupdate(u64 pfn, struct rmp_state *state) 972 { 973 unsigned long paddr = pfn << PAGE_SHIFT; 974 int ret, level; 975 976 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 977 return -ENODEV; 978 979 level = RMP_TO_PG_LEVEL(state->pagesize); 980 981 if (adjust_direct_map(pfn, level)) 982 return -EFAULT; 983 984 do { 985 /* Binutils version 2.36 supports the RMPUPDATE mnemonic. */ 986 asm volatile(".byte 0xF2, 0x0F, 0x01, 0xFE" 987 : "=a" (ret) 988 : "a" (paddr), "c" ((unsigned long)state) 989 : "memory", "cc"); 990 } while (ret == RMPUPDATE_FAIL_OVERLAP); 991 992 if (ret) { 993 pr_err("RMPUPDATE failed for PFN %llx, pg_level: %d, ret: %d\n", 994 pfn, level, ret); 995 dump_rmpentry(pfn); 996 dump_stack(); 997 return -EFAULT; 998 } 999 1000 return 0; 1001 } 1002 1003 /* Transition a page to guest-owned/private state in the RMP table. */ 1004 int rmp_make_private(u64 pfn, u64 gpa, enum pg_level level, u32 asid, bool immutable) 1005 { 1006 struct rmp_state state; 1007 1008 memset(&state, 0, sizeof(state)); 1009 state.assigned = 1; 1010 state.asid = asid; 1011 state.immutable = immutable; 1012 state.gpa = gpa; 1013 state.pagesize = PG_LEVEL_TO_RMP(level); 1014 1015 return rmpupdate(pfn, &state); 1016 } 1017 EXPORT_SYMBOL_GPL(rmp_make_private); 1018 1019 /* Transition a page to hypervisor-owned/shared state in the RMP table. */ 1020 int rmp_make_shared(u64 pfn, enum pg_level level) 1021 { 1022 struct rmp_state state; 1023 1024 memset(&state, 0, sizeof(state)); 1025 state.pagesize = PG_LEVEL_TO_RMP(level); 1026 1027 return rmpupdate(pfn, &state); 1028 } 1029 EXPORT_SYMBOL_GPL(rmp_make_shared); 1030 1031 void snp_leak_pages(u64 pfn, unsigned int npages) 1032 { 1033 struct page *page = pfn_to_page(pfn); 1034 1035 pr_warn("Leaking PFN range 0x%llx-0x%llx\n", pfn, pfn + npages); 1036 1037 spin_lock(&snp_leaked_pages_list_lock); 1038 while (npages--) { 1039 1040 /* 1041 * Reuse the page's buddy list for chaining into the leaked 1042 * pages list. This page should not be on a free list currently 1043 * and is also unsafe to be added to a free list. 1044 */ 1045 if (likely(!PageCompound(page)) || 1046 1047 /* 1048 * Skip inserting tail pages of compound page as 1049 * page->buddy_list of tail pages is not usable. 1050 */ 1051 (PageHead(page) && compound_nr(page) <= npages)) 1052 list_add_tail(&page->buddy_list, &snp_leaked_pages_list); 1053 1054 dump_rmpentry(pfn); 1055 snp_nr_leaked_pages++; 1056 pfn++; 1057 page++; 1058 } 1059 spin_unlock(&snp_leaked_pages_list_lock); 1060 } 1061 EXPORT_SYMBOL_GPL(snp_leak_pages); 1062 1063 void kdump_sev_callback(void) 1064 { 1065 /* 1066 * Do wbinvd() on remote CPUs when SNP is enabled in order to 1067 * safely do SNP_SHUTDOWN on the local CPU. 1068 */ 1069 if (cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 1070 wbinvd(); 1071 } 1072