xref: /linux/arch/x86/tools/relocs.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* This is included from relocs_32/64.c */
3 
4 #define ElfW(type)		_ElfW(ELF_BITS, type)
5 #define _ElfW(bits, type)	__ElfW(bits, type)
6 #define __ElfW(bits, type)	Elf##bits##_##type
7 
8 #define Elf_Addr		ElfW(Addr)
9 #define Elf_Ehdr		ElfW(Ehdr)
10 #define Elf_Phdr		ElfW(Phdr)
11 #define Elf_Shdr		ElfW(Shdr)
12 #define Elf_Sym			ElfW(Sym)
13 
14 static Elf_Ehdr			ehdr;
15 static unsigned long		shnum;
16 static unsigned int		shstrndx;
17 static unsigned int		shsymtabndx;
18 static unsigned int		shxsymtabndx;
19 
20 static int sym_index(Elf_Sym *sym);
21 
22 struct relocs {
23 				uint32_t	*offset;
24 				unsigned long	count;
25 				unsigned long	size;
26 };
27 
28 static struct relocs		relocs16;
29 static struct relocs		relocs32;
30 
31 #if ELF_BITS == 64
32 static struct relocs		relocs32neg;
33 static struct relocs		relocs64;
34 # define FMT PRIu64
35 #else
36 # define FMT PRIu32
37 #endif
38 
39 struct section {
40 				Elf_Shdr       shdr;
41 				struct section *link;
42 				Elf_Sym        *symtab;
43 				Elf32_Word     *xsymtab;
44 				Elf_Rel        *reltab;
45 				char           *strtab;
46 };
47 static struct section		*secs;
48 
49 static const char * const	sym_regex_kernel[S_NSYMTYPES] = {
50 /*
51  * Following symbols have been audited. There values are constant and do
52  * not change if bzImage is loaded at a different physical address than
53  * the address for which it has been compiled. Don't warn user about
54  * absolute relocations present w.r.t these symbols.
55  */
56 	[S_ABS] =
57 	"^(xen_irq_disable_direct_reloc$|"
58 	"xen_save_fl_direct_reloc$|"
59 	"xen_elfnote_.+_offset$|"
60 	"VDSO|"
61 	"__kcfi_typeid_|"
62 	"__crc_)",
63 
64 /*
65  * These symbols are known to be relative, even if the linker marks them
66  * as absolute (typically defined outside any section in the linker script.)
67  */
68 	[S_REL] =
69 	"^(__init_(begin|end)|"
70 	"__x86_cpu_dev_(start|end)|"
71 	"__alt_instructions(_end)?|"
72 	"(__iommu_table|__apicdrivers|__smp_locks)(_end)?|"
73 	"__(start|end)_pci_.*|"
74 #if CONFIG_FW_LOADER
75 	"__(start|end)_builtin_fw|"
76 #endif
77 	"__(start|stop)___ksymtab(_gpl)?|"
78 	"__(start|stop)___kcrctab(_gpl)?|"
79 	"__(start|stop)___param|"
80 	"__(start|stop)___modver|"
81 	"__(start|stop)___bug_table|"
82 	"__tracedata_(start|end)|"
83 	"__(start|stop)_notes|"
84 	"__end_rodata|"
85 	"__end_rodata_aligned|"
86 	"__initramfs_start|"
87 	"(jiffies|jiffies_64)|"
88 #if ELF_BITS == 64
89 	"__per_cpu_load|"
90 	"init_per_cpu__.*|"
91 	"__end_rodata_hpage_align|"
92 #endif
93 	"__vvar_page|"
94 	"_end)$"
95 };
96 
97 
98 static const char * const sym_regex_realmode[S_NSYMTYPES] = {
99 /*
100  * These symbols are known to be relative, even if the linker marks them
101  * as absolute (typically defined outside any section in the linker script.)
102  */
103 	[S_REL] =
104 	"^pa_",
105 
106 /*
107  * These are 16-bit segment symbols when compiling 16-bit code.
108  */
109 	[S_SEG] =
110 	"^real_mode_seg$",
111 
112 /*
113  * These are offsets belonging to segments, as opposed to linear addresses,
114  * when compiling 16-bit code.
115  */
116 	[S_LIN] =
117 	"^pa_",
118 };
119 
120 static const char * const	*sym_regex;
121 
122 static regex_t			sym_regex_c[S_NSYMTYPES];
123 
124 static int is_reloc(enum symtype type, const char *sym_name)
125 {
126 	return sym_regex[type] && !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
127 }
128 
129 static void regex_init(int use_real_mode)
130 {
131         char errbuf[128];
132         int err;
133 	int i;
134 
135 	if (use_real_mode)
136 		sym_regex = sym_regex_realmode;
137 	else
138 		sym_regex = sym_regex_kernel;
139 
140 	for (i = 0; i < S_NSYMTYPES; i++) {
141 		if (!sym_regex[i])
142 			continue;
143 
144 		err = regcomp(&sym_regex_c[i], sym_regex[i], REG_EXTENDED|REG_NOSUB);
145 
146 		if (err) {
147 			regerror(err, &sym_regex_c[i], errbuf, sizeof(errbuf));
148 			die("%s", errbuf);
149 		}
150         }
151 }
152 
153 static const char *sym_type(unsigned type)
154 {
155 	static const char *type_name[] = {
156 #define SYM_TYPE(X) [X] = #X
157 		SYM_TYPE(STT_NOTYPE),
158 		SYM_TYPE(STT_OBJECT),
159 		SYM_TYPE(STT_FUNC),
160 		SYM_TYPE(STT_SECTION),
161 		SYM_TYPE(STT_FILE),
162 		SYM_TYPE(STT_COMMON),
163 		SYM_TYPE(STT_TLS),
164 #undef SYM_TYPE
165 	};
166 	const char *name = "unknown sym type name";
167 
168 	if (type < ARRAY_SIZE(type_name))
169 		name = type_name[type];
170 
171 	return name;
172 }
173 
174 static const char *sym_bind(unsigned bind)
175 {
176 	static const char *bind_name[] = {
177 #define SYM_BIND(X) [X] = #X
178 		SYM_BIND(STB_LOCAL),
179 		SYM_BIND(STB_GLOBAL),
180 		SYM_BIND(STB_WEAK),
181 #undef SYM_BIND
182 	};
183 	const char *name = "unknown sym bind name";
184 
185 	if (bind < ARRAY_SIZE(bind_name))
186 		name = bind_name[bind];
187 
188 	return name;
189 }
190 
191 static const char *sym_visibility(unsigned visibility)
192 {
193 	static const char *visibility_name[] = {
194 #define SYM_VISIBILITY(X) [X] = #X
195 		SYM_VISIBILITY(STV_DEFAULT),
196 		SYM_VISIBILITY(STV_INTERNAL),
197 		SYM_VISIBILITY(STV_HIDDEN),
198 		SYM_VISIBILITY(STV_PROTECTED),
199 #undef SYM_VISIBILITY
200 	};
201 	const char *name = "unknown sym visibility name";
202 
203 	if (visibility < ARRAY_SIZE(visibility_name))
204 		name = visibility_name[visibility];
205 
206 	return name;
207 }
208 
209 static const char *rel_type(unsigned type)
210 {
211 	static const char *type_name[] = {
212 #define REL_TYPE(X) [X] = #X
213 #if ELF_BITS == 64
214 		REL_TYPE(R_X86_64_NONE),
215 		REL_TYPE(R_X86_64_64),
216 		REL_TYPE(R_X86_64_PC64),
217 		REL_TYPE(R_X86_64_PC32),
218 		REL_TYPE(R_X86_64_GOT32),
219 		REL_TYPE(R_X86_64_PLT32),
220 		REL_TYPE(R_X86_64_COPY),
221 		REL_TYPE(R_X86_64_GLOB_DAT),
222 		REL_TYPE(R_X86_64_JUMP_SLOT),
223 		REL_TYPE(R_X86_64_RELATIVE),
224 		REL_TYPE(R_X86_64_GOTPCREL),
225 		REL_TYPE(R_X86_64_32),
226 		REL_TYPE(R_X86_64_32S),
227 		REL_TYPE(R_X86_64_16),
228 		REL_TYPE(R_X86_64_PC16),
229 		REL_TYPE(R_X86_64_8),
230 		REL_TYPE(R_X86_64_PC8),
231 #else
232 		REL_TYPE(R_386_NONE),
233 		REL_TYPE(R_386_32),
234 		REL_TYPE(R_386_PC32),
235 		REL_TYPE(R_386_GOT32),
236 		REL_TYPE(R_386_PLT32),
237 		REL_TYPE(R_386_COPY),
238 		REL_TYPE(R_386_GLOB_DAT),
239 		REL_TYPE(R_386_JMP_SLOT),
240 		REL_TYPE(R_386_RELATIVE),
241 		REL_TYPE(R_386_GOTOFF),
242 		REL_TYPE(R_386_GOTPC),
243 		REL_TYPE(R_386_8),
244 		REL_TYPE(R_386_PC8),
245 		REL_TYPE(R_386_16),
246 		REL_TYPE(R_386_PC16),
247 #endif
248 #undef REL_TYPE
249 	};
250 	const char *name = "unknown type rel type name";
251 
252 	if (type < ARRAY_SIZE(type_name) && type_name[type])
253 		name = type_name[type];
254 
255 	return name;
256 }
257 
258 static const char *sec_name(unsigned shndx)
259 {
260 	const char *sec_strtab;
261 	const char *name;
262 	sec_strtab = secs[shstrndx].strtab;
263 	name = "<noname>";
264 
265 	if (shndx < shnum)
266 		name = sec_strtab + secs[shndx].shdr.sh_name;
267 	else if (shndx == SHN_ABS)
268 		name = "ABSOLUTE";
269 	else if (shndx == SHN_COMMON)
270 		name = "COMMON";
271 
272 	return name;
273 }
274 
275 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
276 {
277 	const char *name;
278 	name = "<noname>";
279 
280 	if (sym->st_name)
281 		name = sym_strtab + sym->st_name;
282 	else
283 		name = sec_name(sym_index(sym));
284 
285 	return name;
286 }
287 
288 static Elf_Sym *sym_lookup(const char *symname)
289 {
290 	int i;
291 
292 	for (i = 0; i < shnum; i++) {
293 		struct section *sec = &secs[i];
294 		long nsyms;
295 		char *strtab;
296 		Elf_Sym *symtab;
297 		Elf_Sym *sym;
298 
299 		if (sec->shdr.sh_type != SHT_SYMTAB)
300 			continue;
301 
302 		nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
303 		symtab = sec->symtab;
304 		strtab = sec->link->strtab;
305 
306 		for (sym = symtab; --nsyms >= 0; sym++) {
307 			if (!sym->st_name)
308 				continue;
309 			if (strcmp(symname, strtab + sym->st_name) == 0)
310 				return sym;
311 		}
312 	}
313 	return 0;
314 }
315 
316 #if BYTE_ORDER == LITTLE_ENDIAN
317 # define le16_to_cpu(val)	(val)
318 # define le32_to_cpu(val)	(val)
319 # define le64_to_cpu(val)	(val)
320 #endif
321 
322 #if BYTE_ORDER == BIG_ENDIAN
323 # define le16_to_cpu(val)	bswap_16(val)
324 # define le32_to_cpu(val)	bswap_32(val)
325 # define le64_to_cpu(val)	bswap_64(val)
326 #endif
327 
328 static uint16_t elf16_to_cpu(uint16_t val)
329 {
330 	return le16_to_cpu(val);
331 }
332 
333 static uint32_t elf32_to_cpu(uint32_t val)
334 {
335 	return le32_to_cpu(val);
336 }
337 
338 #define elf_half_to_cpu(x)	elf16_to_cpu(x)
339 #define elf_word_to_cpu(x)	elf32_to_cpu(x)
340 
341 #if ELF_BITS == 64
342 static uint64_t elf64_to_cpu(uint64_t val)
343 {
344         return le64_to_cpu(val);
345 }
346 # define elf_addr_to_cpu(x)	elf64_to_cpu(x)
347 # define elf_off_to_cpu(x)	elf64_to_cpu(x)
348 # define elf_xword_to_cpu(x)	elf64_to_cpu(x)
349 #else
350 # define elf_addr_to_cpu(x)	elf32_to_cpu(x)
351 # define elf_off_to_cpu(x)	elf32_to_cpu(x)
352 # define elf_xword_to_cpu(x)	elf32_to_cpu(x)
353 #endif
354 
355 static int sym_index(Elf_Sym *sym)
356 {
357 	Elf_Sym *symtab = secs[shsymtabndx].symtab;
358 	Elf32_Word *xsymtab = secs[shxsymtabndx].xsymtab;
359 	unsigned long offset;
360 	int index;
361 
362 	if (sym->st_shndx != SHN_XINDEX)
363 		return sym->st_shndx;
364 
365 	/* calculate offset of sym from head of table. */
366 	offset = (unsigned long)sym - (unsigned long)symtab;
367 	index = offset / sizeof(*sym);
368 
369 	return elf32_to_cpu(xsymtab[index]);
370 }
371 
372 static void read_ehdr(FILE *fp)
373 {
374 	if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1)
375 		die("Cannot read ELF header: %s\n", strerror(errno));
376 	if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0)
377 		die("No ELF magic\n");
378 	if (ehdr.e_ident[EI_CLASS] != ELF_CLASS)
379 		die("Not a %d bit executable\n", ELF_BITS);
380 	if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB)
381 		die("Not a LSB ELF executable\n");
382 	if (ehdr.e_ident[EI_VERSION] != EV_CURRENT)
383 		die("Unknown ELF version\n");
384 
385 	/* Convert the fields to native endian */
386 	ehdr.e_type      = elf_half_to_cpu(ehdr.e_type);
387 	ehdr.e_machine   = elf_half_to_cpu(ehdr.e_machine);
388 	ehdr.e_version   = elf_word_to_cpu(ehdr.e_version);
389 	ehdr.e_entry     = elf_addr_to_cpu(ehdr.e_entry);
390 	ehdr.e_phoff     = elf_off_to_cpu(ehdr.e_phoff);
391 	ehdr.e_shoff     = elf_off_to_cpu(ehdr.e_shoff);
392 	ehdr.e_flags     = elf_word_to_cpu(ehdr.e_flags);
393 	ehdr.e_ehsize    = elf_half_to_cpu(ehdr.e_ehsize);
394 	ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
395 	ehdr.e_phnum     = elf_half_to_cpu(ehdr.e_phnum);
396 	ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
397 	ehdr.e_shnum     = elf_half_to_cpu(ehdr.e_shnum);
398 	ehdr.e_shstrndx  = elf_half_to_cpu(ehdr.e_shstrndx);
399 
400 	shnum = ehdr.e_shnum;
401 	shstrndx = ehdr.e_shstrndx;
402 
403 	if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN))
404 		die("Unsupported ELF header type\n");
405 	if (ehdr.e_machine != ELF_MACHINE)
406 		die("Not for %s\n", ELF_MACHINE_NAME);
407 	if (ehdr.e_version != EV_CURRENT)
408 		die("Unknown ELF version\n");
409 	if (ehdr.e_ehsize != sizeof(Elf_Ehdr))
410 		die("Bad ELF header size\n");
411 	if (ehdr.e_phentsize != sizeof(Elf_Phdr))
412 		die("Bad program header entry\n");
413 	if (ehdr.e_shentsize != sizeof(Elf_Shdr))
414 		die("Bad section header entry\n");
415 
416 
417 	if (shnum == SHN_UNDEF || shstrndx == SHN_XINDEX) {
418 		Elf_Shdr shdr;
419 
420 		if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
421 			die("Seek to %" FMT " failed: %s\n", ehdr.e_shoff, strerror(errno));
422 
423 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
424 			die("Cannot read initial ELF section header: %s\n", strerror(errno));
425 
426 		if (shnum == SHN_UNDEF)
427 			shnum = elf_xword_to_cpu(shdr.sh_size);
428 
429 		if (shstrndx == SHN_XINDEX)
430 			shstrndx = elf_word_to_cpu(shdr.sh_link);
431 	}
432 
433 	if (shstrndx >= shnum)
434 		die("String table index out of bounds\n");
435 }
436 
437 static void read_shdrs(FILE *fp)
438 {
439 	int i;
440 	Elf_Shdr shdr;
441 
442 	secs = calloc(shnum, sizeof(struct section));
443 	if (!secs)
444 		die("Unable to allocate %ld section headers\n", shnum);
445 
446 	if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0)
447 		die("Seek to %" FMT " failed: %s\n", ehdr.e_shoff, strerror(errno));
448 
449 	for (i = 0; i < shnum; i++) {
450 		struct section *sec = &secs[i];
451 
452 		if (fread(&shdr, sizeof(shdr), 1, fp) != 1)
453 			die("Cannot read ELF section headers %d/%ld: %s\n", i, shnum, strerror(errno));
454 
455 		sec->shdr.sh_name      = elf_word_to_cpu(shdr.sh_name);
456 		sec->shdr.sh_type      = elf_word_to_cpu(shdr.sh_type);
457 		sec->shdr.sh_flags     = elf_xword_to_cpu(shdr.sh_flags);
458 		sec->shdr.sh_addr      = elf_addr_to_cpu(shdr.sh_addr);
459 		sec->shdr.sh_offset    = elf_off_to_cpu(shdr.sh_offset);
460 		sec->shdr.sh_size      = elf_xword_to_cpu(shdr.sh_size);
461 		sec->shdr.sh_link      = elf_word_to_cpu(shdr.sh_link);
462 		sec->shdr.sh_info      = elf_word_to_cpu(shdr.sh_info);
463 		sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
464 		sec->shdr.sh_entsize   = elf_xword_to_cpu(shdr.sh_entsize);
465 		if (sec->shdr.sh_link < shnum)
466 			sec->link = &secs[sec->shdr.sh_link];
467 	}
468 
469 }
470 
471 static void read_strtabs(FILE *fp)
472 {
473 	int i;
474 
475 	for (i = 0; i < shnum; i++) {
476 		struct section *sec = &secs[i];
477 
478 		if (sec->shdr.sh_type != SHT_STRTAB)
479 			continue;
480 
481 		sec->strtab = malloc(sec->shdr.sh_size);
482 		if (!sec->strtab)
483 			die("malloc of %" FMT " bytes for strtab failed\n", sec->shdr.sh_size);
484 
485 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
486 			die("Seek to %" FMT " failed: %s\n", sec->shdr.sh_offset, strerror(errno));
487 
488 		if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size)
489 			die("Cannot read symbol table: %s\n", strerror(errno));
490 	}
491 }
492 
493 static void read_symtabs(FILE *fp)
494 {
495 	int i, j;
496 
497 	for (i = 0; i < shnum; i++) {
498 		struct section *sec = &secs[i];
499 		int num_syms;
500 
501 		switch (sec->shdr.sh_type) {
502 		case SHT_SYMTAB_SHNDX:
503 			sec->xsymtab = malloc(sec->shdr.sh_size);
504 			if (!sec->xsymtab)
505 				die("malloc of %" FMT " bytes for xsymtab failed\n", sec->shdr.sh_size);
506 
507 			if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
508 				die("Seek to %" FMT " failed: %s\n", sec->shdr.sh_offset, strerror(errno));
509 
510 			if (fread(sec->xsymtab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size)
511 				die("Cannot read extended symbol table: %s\n", strerror(errno));
512 
513 			shxsymtabndx = i;
514 			continue;
515 
516 		case SHT_SYMTAB:
517 			num_syms = sec->shdr.sh_size / sizeof(Elf_Sym);
518 
519 			sec->symtab = malloc(sec->shdr.sh_size);
520 			if (!sec->symtab)
521 				die("malloc of %" FMT " bytes for symtab failed\n", sec->shdr.sh_size);
522 
523 			if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
524 				die("Seek to %" FMT " failed: %s\n", sec->shdr.sh_offset, strerror(errno));
525 
526 			if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size)
527 				die("Cannot read symbol table: %s\n", strerror(errno));
528 
529 			for (j = 0; j < num_syms; j++) {
530 				Elf_Sym *sym = &sec->symtab[j];
531 
532 				sym->st_name  = elf_word_to_cpu(sym->st_name);
533 				sym->st_value = elf_addr_to_cpu(sym->st_value);
534 				sym->st_size  = elf_xword_to_cpu(sym->st_size);
535 				sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
536 			}
537 			shsymtabndx = i;
538 			continue;
539 
540 		default:
541 			continue;
542 		}
543 	}
544 }
545 
546 
547 static void read_relocs(FILE *fp)
548 {
549 	int i, j;
550 
551 	for (i = 0; i < shnum; i++) {
552 		struct section *sec = &secs[i];
553 
554 		if (sec->shdr.sh_type != SHT_REL_TYPE)
555 			continue;
556 
557 		sec->reltab = malloc(sec->shdr.sh_size);
558 		if (!sec->reltab)
559 			die("malloc of %" FMT " bytes for relocs failed\n", sec->shdr.sh_size);
560 
561 		if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0)
562 			die("Seek to %" FMT " failed: %s\n", sec->shdr.sh_offset, strerror(errno));
563 
564 		if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size)
565 			die("Cannot read symbol table: %s\n", strerror(errno));
566 
567 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
568 			Elf_Rel *rel = &sec->reltab[j];
569 
570 			rel->r_offset = elf_addr_to_cpu(rel->r_offset);
571 			rel->r_info   = elf_xword_to_cpu(rel->r_info);
572 #if (SHT_REL_TYPE == SHT_RELA)
573 			rel->r_addend = elf_xword_to_cpu(rel->r_addend);
574 #endif
575 		}
576 	}
577 }
578 
579 
580 static void print_absolute_symbols(void)
581 {
582 	int i;
583 	const char *format;
584 
585 	if (ELF_BITS == 64)
586 		format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
587 	else
588 		format = "%5d %08"PRIx32"  %5"PRId32" %10s %10s %12s %s\n";
589 
590 	printf("Absolute symbols\n");
591 	printf(" Num:    Value Size  Type       Bind        Visibility  Name\n");
592 
593 	for (i = 0; i < shnum; i++) {
594 		struct section *sec = &secs[i];
595 		char *sym_strtab;
596 		int j;
597 
598 		if (sec->shdr.sh_type != SHT_SYMTAB)
599 			continue;
600 
601 		sym_strtab = sec->link->strtab;
602 
603 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
604 			Elf_Sym *sym;
605 			const char *name;
606 
607 			sym = &sec->symtab[j];
608 			name = sym_name(sym_strtab, sym);
609 
610 			if (sym->st_shndx != SHN_ABS)
611 				continue;
612 
613 			printf(format,
614 				j, sym->st_value, sym->st_size,
615 				sym_type(ELF_ST_TYPE(sym->st_info)),
616 				sym_bind(ELF_ST_BIND(sym->st_info)),
617 				sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
618 				name);
619 		}
620 	}
621 	printf("\n");
622 }
623 
624 static void print_absolute_relocs(void)
625 {
626 	int i, printed = 0;
627 	const char *format;
628 
629 	if (ELF_BITS == 64)
630 		format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64"  %s\n";
631 	else
632 		format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32"  %s\n";
633 
634 	for (i = 0; i < shnum; i++) {
635 		struct section *sec = &secs[i];
636 		struct section *sec_applies, *sec_symtab;
637 		char *sym_strtab;
638 		Elf_Sym *sh_symtab;
639 		int j;
640 
641 		if (sec->shdr.sh_type != SHT_REL_TYPE)
642 			continue;
643 
644 		sec_symtab  = sec->link;
645 		sec_applies = &secs[sec->shdr.sh_info];
646 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC))
647 			continue;
648 
649 		/*
650 		 * Do not perform relocations in .notes section; any
651 		 * values there are meant for pre-boot consumption (e.g.
652 		 * startup_xen).
653 		 */
654 		if (sec_applies->shdr.sh_type == SHT_NOTE)
655 			continue;
656 
657 		sh_symtab  = sec_symtab->symtab;
658 		sym_strtab = sec_symtab->link->strtab;
659 
660 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
661 			Elf_Rel *rel;
662 			Elf_Sym *sym;
663 			const char *name;
664 
665 			rel = &sec->reltab[j];
666 			sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
667 			name = sym_name(sym_strtab, sym);
668 
669 			if (sym->st_shndx != SHN_ABS)
670 				continue;
671 
672 			/* Absolute symbols are not relocated if bzImage is
673 			 * loaded at a non-compiled address. Display a warning
674 			 * to user at compile time about the absolute
675 			 * relocations present.
676 			 *
677 			 * User need to audit the code to make sure
678 			 * some symbols which should have been section
679 			 * relative have not become absolute because of some
680 			 * linker optimization or wrong programming usage.
681 			 *
682 			 * Before warning check if this absolute symbol
683 			 * relocation is harmless.
684 			 */
685 			if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
686 				continue;
687 
688 			if (!printed) {
689 				printf("WARNING: Absolute relocations present\n");
690 				printf("Offset     Info     Type     Sym.Value Sym.Name\n");
691 				printed = 1;
692 			}
693 
694 			printf(format,
695 				rel->r_offset,
696 				rel->r_info,
697 				rel_type(ELF_R_TYPE(rel->r_info)),
698 				sym->st_value,
699 				name);
700 		}
701 	}
702 
703 	if (printed)
704 		printf("\n");
705 }
706 
707 static void add_reloc(struct relocs *r, uint32_t offset)
708 {
709 	if (r->count == r->size) {
710 		unsigned long newsize = r->size + 50000;
711 		void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
712 
713 		if (!mem)
714 			die("realloc of %ld entries for relocs failed\n", newsize);
715 
716 		r->offset = mem;
717 		r->size = newsize;
718 	}
719 	r->offset[r->count++] = offset;
720 }
721 
722 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
723 			Elf_Sym *sym, const char *symname))
724 {
725 	int i;
726 
727 	/* Walk through the relocations */
728 	for (i = 0; i < shnum; i++) {
729 		char *sym_strtab;
730 		Elf_Sym *sh_symtab;
731 		struct section *sec_applies, *sec_symtab;
732 		int j;
733 		struct section *sec = &secs[i];
734 
735 		if (sec->shdr.sh_type != SHT_REL_TYPE)
736 			continue;
737 
738 		sec_symtab  = sec->link;
739 		sec_applies = &secs[sec->shdr.sh_info];
740 		if (!(sec_applies->shdr.sh_flags & SHF_ALLOC))
741 			continue;
742 
743 		/*
744 		 * Do not perform relocations in .notes sections; any
745 		 * values there are meant for pre-boot consumption (e.g.
746 		 * startup_xen).
747 		 */
748 		if (sec_applies->shdr.sh_type == SHT_NOTE)
749 			continue;
750 
751 		sh_symtab = sec_symtab->symtab;
752 		sym_strtab = sec_symtab->link->strtab;
753 
754 		for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
755 			Elf_Rel *rel = &sec->reltab[j];
756 			Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
757 			const char *symname = sym_name(sym_strtab, sym);
758 
759 			process(sec, rel, sym, symname);
760 		}
761 	}
762 }
763 
764 /*
765  * The .data..percpu section is a special case for x86_64 SMP kernels.
766  * It is used to initialize the actual per_cpu areas and to provide
767  * definitions for the per_cpu variables that correspond to their offsets
768  * within the percpu area. Since the values of all of the symbols need
769  * to be offsets from the start of the per_cpu area the virtual address
770  * (sh_addr) of .data..percpu is 0 in SMP kernels.
771  *
772  * This means that:
773  *
774  *	Relocations that reference symbols in the per_cpu area do not
775  *	need further relocation (since the value is an offset relative
776  *	to the start of the per_cpu area that does not change).
777  *
778  *	Relocations that apply to the per_cpu area need to have their
779  *	offset adjusted by by the value of __per_cpu_load to make them
780  *	point to the correct place in the loaded image (because the
781  *	virtual address of .data..percpu is 0).
782  *
783  * For non SMP kernels .data..percpu is linked as part of the normal
784  * kernel data and does not require special treatment.
785  *
786  */
787 static int per_cpu_shndx = -1;
788 static Elf_Addr per_cpu_load_addr;
789 
790 static void percpu_init(void)
791 {
792 	int i;
793 
794 	for (i = 0; i < shnum; i++) {
795 		ElfW(Sym) *sym;
796 
797 		if (strcmp(sec_name(i), ".data..percpu"))
798 			continue;
799 
800 		if (secs[i].shdr.sh_addr != 0)	/* non SMP kernel */
801 			return;
802 
803 		sym = sym_lookup("__per_cpu_load");
804 		if (!sym)
805 			die("can't find __per_cpu_load\n");
806 
807 		per_cpu_shndx = i;
808 		per_cpu_load_addr = sym->st_value;
809 
810 		return;
811 	}
812 }
813 
814 #if ELF_BITS == 64
815 
816 /*
817  * Check to see if a symbol lies in the .data..percpu section.
818  *
819  * The linker incorrectly associates some symbols with the
820  * .data..percpu section so we also need to check the symbol
821  * name to make sure that we classify the symbol correctly.
822  *
823  * The GNU linker incorrectly associates:
824  *	__init_begin
825  *	__per_cpu_load
826  *
827  * The "gold" linker incorrectly associates:
828  *	init_per_cpu__fixed_percpu_data
829  *	init_per_cpu__gdt_page
830  */
831 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
832 {
833 	int shndx = sym_index(sym);
834 
835 	return (shndx == per_cpu_shndx) &&
836 		strcmp(symname, "__init_begin") &&
837 		strcmp(symname, "__per_cpu_load") &&
838 		strncmp(symname, "init_per_cpu_", 13);
839 }
840 
841 
842 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
843 		      const char *symname)
844 {
845 	unsigned r_type = ELF64_R_TYPE(rel->r_info);
846 	ElfW(Addr) offset = rel->r_offset;
847 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
848 
849 	if (sym->st_shndx == SHN_UNDEF)
850 		return 0;
851 
852 	/*
853 	 * Adjust the offset if this reloc applies to the percpu section.
854 	 */
855 	if (sec->shdr.sh_info == per_cpu_shndx)
856 		offset += per_cpu_load_addr;
857 
858 	switch (r_type) {
859 	case R_X86_64_NONE:
860 		/* NONE can be ignored. */
861 		break;
862 
863 	case R_X86_64_PC32:
864 	case R_X86_64_PLT32:
865 		/*
866 		 * PC relative relocations don't need to be adjusted unless
867 		 * referencing a percpu symbol.
868 		 *
869 		 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
870 		 */
871 		if (is_percpu_sym(sym, symname))
872 			add_reloc(&relocs32neg, offset);
873 		break;
874 
875 	case R_X86_64_PC64:
876 		/*
877 		 * Only used by jump labels
878 		 */
879 		if (is_percpu_sym(sym, symname))
880 			die("Invalid R_X86_64_PC64 relocation against per-CPU symbol %s\n", symname);
881 		break;
882 
883 	case R_X86_64_32:
884 	case R_X86_64_32S:
885 	case R_X86_64_64:
886 		/*
887 		 * References to the percpu area don't need to be adjusted.
888 		 */
889 		if (is_percpu_sym(sym, symname))
890 			break;
891 
892 		if (shn_abs) {
893 			/*
894 			 * Whitelisted absolute symbols do not require
895 			 * relocation.
896 			 */
897 			if (is_reloc(S_ABS, symname))
898 				break;
899 
900 			die("Invalid absolute %s relocation: %s\n", rel_type(r_type), symname);
901 			break;
902 		}
903 
904 		/*
905 		 * Relocation offsets for 64 bit kernels are output
906 		 * as 32 bits and sign extended back to 64 bits when
907 		 * the relocations are processed.
908 		 * Make sure that the offset will fit.
909 		 */
910 		if ((int32_t)offset != (int64_t)offset)
911 			die("Relocation offset doesn't fit in 32 bits\n");
912 
913 		if (r_type == R_X86_64_64)
914 			add_reloc(&relocs64, offset);
915 		else
916 			add_reloc(&relocs32, offset);
917 		break;
918 
919 	default:
920 		die("Unsupported relocation type: %s (%d)\n", rel_type(r_type), r_type);
921 		break;
922 	}
923 
924 	return 0;
925 }
926 
927 #else
928 
929 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
930 		      const char *symname)
931 {
932 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
933 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
934 
935 	switch (r_type) {
936 	case R_386_NONE:
937 	case R_386_PC32:
938 	case R_386_PC16:
939 	case R_386_PC8:
940 	case R_386_PLT32:
941 		/*
942 		 * NONE can be ignored and PC relative relocations don't need
943 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
944 		 * be treated the same way as R_386_PC32.
945 		 */
946 		break;
947 
948 	case R_386_32:
949 		if (shn_abs) {
950 			/*
951 			 * Whitelisted absolute symbols do not require
952 			 * relocation.
953 			 */
954 			if (is_reloc(S_ABS, symname))
955 				break;
956 
957 			die("Invalid absolute %s relocation: %s\n", rel_type(r_type), symname);
958 			break;
959 		}
960 
961 		add_reloc(&relocs32, rel->r_offset);
962 		break;
963 
964 	default:
965 		die("Unsupported relocation type: %s (%d)\n", rel_type(r_type), r_type);
966 		break;
967 	}
968 
969 	return 0;
970 }
971 
972 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, const char *symname)
973 {
974 	unsigned r_type = ELF32_R_TYPE(rel->r_info);
975 	int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
976 
977 	switch (r_type) {
978 	case R_386_NONE:
979 	case R_386_PC32:
980 	case R_386_PC16:
981 	case R_386_PC8:
982 	case R_386_PLT32:
983 		/*
984 		 * NONE can be ignored and PC relative relocations don't need
985 		 * to be adjusted. Because sym must be defined, R_386_PLT32 can
986 		 * be treated the same way as R_386_PC32.
987 		 */
988 		break;
989 
990 	case R_386_16:
991 		if (shn_abs) {
992 			/*
993 			 * Whitelisted absolute symbols do not require
994 			 * relocation.
995 			 */
996 			if (is_reloc(S_ABS, symname))
997 				break;
998 
999 			if (is_reloc(S_SEG, symname)) {
1000 				add_reloc(&relocs16, rel->r_offset);
1001 				break;
1002 			}
1003 		} else {
1004 			if (!is_reloc(S_LIN, symname))
1005 				break;
1006 		}
1007 		die("Invalid %s %s relocation: %s\n", shn_abs ? "absolute" : "relative", rel_type(r_type), symname);
1008 		break;
1009 
1010 	case R_386_32:
1011 		if (shn_abs) {
1012 			/*
1013 			 * Whitelisted absolute symbols do not require
1014 			 * relocation.
1015 			 */
1016 			if (is_reloc(S_ABS, symname))
1017 				break;
1018 
1019 			if (is_reloc(S_REL, symname)) {
1020 				add_reloc(&relocs32, rel->r_offset);
1021 				break;
1022 			}
1023 		} else {
1024 			if (is_reloc(S_LIN, symname))
1025 				add_reloc(&relocs32, rel->r_offset);
1026 			break;
1027 		}
1028 		die("Invalid %s %s relocation: %s\n", shn_abs ? "absolute" : "relative", rel_type(r_type), symname);
1029 		break;
1030 
1031 	default:
1032 		die("Unsupported relocation type: %s (%d)\n", rel_type(r_type), r_type);
1033 		break;
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 #endif
1040 
1041 static int cmp_relocs(const void *va, const void *vb)
1042 {
1043 	const uint32_t *a, *b;
1044 
1045 	a = va;
1046 	b = vb;
1047 
1048 	return (*a == *b)? 0 : (*a > *b)? 1 : -1;
1049 }
1050 
1051 static void sort_relocs(struct relocs *r)
1052 {
1053 	qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
1054 }
1055 
1056 static int write32(uint32_t v, FILE *f)
1057 {
1058 	unsigned char buf[4];
1059 
1060 	put_unaligned_le32(v, buf);
1061 
1062 	return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
1063 }
1064 
1065 static int write32_as_text(uint32_t v, FILE *f)
1066 {
1067 	return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
1068 }
1069 
1070 static void emit_relocs(int as_text, int use_real_mode)
1071 {
1072 	int i;
1073 	int (*write_reloc)(uint32_t, FILE *) = write32;
1074 	int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym, const char *symname);
1075 
1076 #if ELF_BITS == 64
1077 	if (!use_real_mode)
1078 		do_reloc = do_reloc64;
1079 	else
1080 		die("--realmode not valid for a 64-bit ELF file");
1081 #else
1082 	if (!use_real_mode)
1083 		do_reloc = do_reloc32;
1084 	else
1085 		do_reloc = do_reloc_real;
1086 #endif
1087 
1088 	/* Collect up the relocations */
1089 	walk_relocs(do_reloc);
1090 
1091 	if (relocs16.count && !use_real_mode)
1092 		die("Segment relocations found but --realmode not specified\n");
1093 
1094 	/* Order the relocations for more efficient processing */
1095 	sort_relocs(&relocs32);
1096 #if ELF_BITS == 64
1097 	sort_relocs(&relocs32neg);
1098 	sort_relocs(&relocs64);
1099 #else
1100 	sort_relocs(&relocs16);
1101 #endif
1102 
1103 	/* Print the relocations */
1104 	if (as_text) {
1105 		/* Print the relocations in a form suitable that
1106 		 * gas will like.
1107 		 */
1108 		printf(".section \".data.reloc\",\"a\"\n");
1109 		printf(".balign 4\n");
1110 		write_reloc = write32_as_text;
1111 	}
1112 
1113 	if (use_real_mode) {
1114 		write_reloc(relocs16.count, stdout);
1115 		for (i = 0; i < relocs16.count; i++)
1116 			write_reloc(relocs16.offset[i], stdout);
1117 
1118 		write_reloc(relocs32.count, stdout);
1119 		for (i = 0; i < relocs32.count; i++)
1120 			write_reloc(relocs32.offset[i], stdout);
1121 	} else {
1122 #if ELF_BITS == 64
1123 		/* Print a stop */
1124 		write_reloc(0, stdout);
1125 
1126 		/* Now print each relocation */
1127 		for (i = 0; i < relocs64.count; i++)
1128 			write_reloc(relocs64.offset[i], stdout);
1129 
1130 		/* Print a stop */
1131 		write_reloc(0, stdout);
1132 
1133 		/* Now print each inverse 32-bit relocation */
1134 		for (i = 0; i < relocs32neg.count; i++)
1135 			write_reloc(relocs32neg.offset[i], stdout);
1136 #endif
1137 
1138 		/* Print a stop */
1139 		write_reloc(0, stdout);
1140 
1141 		/* Now print each relocation */
1142 		for (i = 0; i < relocs32.count; i++)
1143 			write_reloc(relocs32.offset[i], stdout);
1144 	}
1145 }
1146 
1147 /*
1148  * As an aid to debugging problems with different linkers
1149  * print summary information about the relocs.
1150  * Since different linkers tend to emit the sections in
1151  * different orders we use the section names in the output.
1152  */
1153 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1154 				const char *symname)
1155 {
1156 	printf("%s\t%s\t%s\t%s\n",
1157 		sec_name(sec->shdr.sh_info),
1158 		rel_type(ELF_R_TYPE(rel->r_info)),
1159 		symname,
1160 		sec_name(sym_index(sym)));
1161 
1162 	return 0;
1163 }
1164 
1165 static void print_reloc_info(void)
1166 {
1167 	printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1168 	walk_relocs(do_reloc_info);
1169 }
1170 
1171 #if ELF_BITS == 64
1172 # define process process_64
1173 #else
1174 # define process process_32
1175 #endif
1176 
1177 void process(FILE *fp, int use_real_mode, int as_text,
1178 	     int show_absolute_syms, int show_absolute_relocs,
1179 	     int show_reloc_info)
1180 {
1181 	regex_init(use_real_mode);
1182 	read_ehdr(fp);
1183 	read_shdrs(fp);
1184 	read_strtabs(fp);
1185 	read_symtabs(fp);
1186 	read_relocs(fp);
1187 
1188 	if (ELF_BITS == 64)
1189 		percpu_init();
1190 
1191 	if (show_absolute_syms) {
1192 		print_absolute_symbols();
1193 		return;
1194 	}
1195 
1196 	if (show_absolute_relocs) {
1197 		print_absolute_relocs();
1198 		return;
1199 	}
1200 
1201 	if (show_reloc_info) {
1202 		print_reloc_info();
1203 		return;
1204 	}
1205 
1206 	emit_relocs(as_text, use_real_mode);
1207 }
1208