xref: /linux/arch/x86/power/cpu.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Suspend support specific for i386/x86-64.
3  *
4  * Distribute under GPLv2
5  *
6  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9  */
10 
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <linux/dmi.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 		msr++;
45 	}
46 }
47 
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 	struct saved_msr *msr = ctxt->saved_msrs.array;
51 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
52 
53 	while (msr < end) {
54 		if (msr->valid)
55 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 		msr++;
57 	}
58 }
59 
60 /**
61  *	__save_processor_state - save CPU registers before creating a
62  *		hibernation image and before restoring the memory state from it
63  *	@ctxt - structure to store the registers contents in
64  *
65  *	NOTE: If there is a CPU register the modification of which by the
66  *	boot kernel (ie. the kernel used for loading the hibernation image)
67  *	might affect the operations of the restored target kernel (ie. the one
68  *	saved in the hibernation image), then its contents must be saved by this
69  *	function.  In other words, if kernel A is hibernated and different
70  *	kernel B is used for loading the hibernation image into memory, the
71  *	kernel A's __save_processor_state() function must save all registers
72  *	needed by kernel A, so that it can operate correctly after the resume
73  *	regardless of what kernel B does in the meantime.
74  */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 	mtrr_save_fixed_ranges(NULL);
79 #endif
80 	kernel_fpu_begin();
81 
82 	/*
83 	 * descriptor tables
84 	 */
85 #ifdef CONFIG_X86_32
86 	store_idt(&ctxt->idt);
87 #else
88 /* CONFIG_X86_64 */
89 	store_idt((struct desc_ptr *)&ctxt->idt_limit);
90 #endif
91 	/*
92 	 * We save it here, but restore it only in the hibernate case.
93 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
94 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
95 	 * 'pmode_gdt' in wakeup_start.
96 	 */
97 	ctxt->gdt_desc.size = GDT_SIZE - 1;
98 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
99 
100 	store_tr(ctxt->tr);
101 
102 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103 	/*
104 	 * segment registers
105 	 */
106 #ifdef CONFIG_X86_32
107 	savesegment(es, ctxt->es);
108 	savesegment(fs, ctxt->fs);
109 	savesegment(gs, ctxt->gs);
110 	savesegment(ss, ctxt->ss);
111 #else
112 /* CONFIG_X86_64 */
113 	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
114 	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
115 	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
116 	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
117 	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
118 
119 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
120 	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
121 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
122 	mtrr_save_fixed_ranges(NULL);
123 
124 	rdmsrl(MSR_EFER, ctxt->efer);
125 #endif
126 
127 	/*
128 	 * control registers
129 	 */
130 	ctxt->cr0 = read_cr0();
131 	ctxt->cr2 = read_cr2();
132 	ctxt->cr3 = read_cr3();
133 	ctxt->cr4 = __read_cr4();
134 #ifdef CONFIG_X86_64
135 	ctxt->cr8 = read_cr8();
136 #endif
137 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
138 					       &ctxt->misc_enable);
139 	msr_save_context(ctxt);
140 }
141 
142 /* Needed by apm.c */
143 void save_processor_state(void)
144 {
145 	__save_processor_state(&saved_context);
146 	x86_platform.save_sched_clock_state();
147 }
148 #ifdef CONFIG_X86_32
149 EXPORT_SYMBOL(save_processor_state);
150 #endif
151 
152 static void do_fpu_end(void)
153 {
154 	/*
155 	 * Restore FPU regs if necessary.
156 	 */
157 	kernel_fpu_end();
158 }
159 
160 static void fix_processor_context(void)
161 {
162 	int cpu = smp_processor_id();
163 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
164 #ifdef CONFIG_X86_64
165 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
166 	tss_desc tss;
167 #endif
168 	set_tss_desc(cpu, t);	/*
169 				 * This just modifies memory; should not be
170 				 * necessary. But... This is necessary, because
171 				 * 386 hardware has concept of busy TSS or some
172 				 * similar stupidity.
173 				 */
174 
175 #ifdef CONFIG_X86_64
176 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
177 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
178 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
179 
180 	syscall_init();				/* This sets MSR_*STAR and related */
181 #endif
182 	load_TR_desc();				/* This does ltr */
183 	load_mm_ldt(current->active_mm);	/* This does lldt */
184 
185 	fpu__resume_cpu();
186 
187 	/* The processor is back on the direct GDT, load back the fixmap */
188 	load_fixmap_gdt(cpu);
189 }
190 
191 /**
192  *	__restore_processor_state - restore the contents of CPU registers saved
193  *		by __save_processor_state()
194  *	@ctxt - structure to load the registers contents from
195  */
196 static void notrace __restore_processor_state(struct saved_context *ctxt)
197 {
198 	if (ctxt->misc_enable_saved)
199 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
200 	/*
201 	 * control registers
202 	 */
203 	/* cr4 was introduced in the Pentium CPU */
204 #ifdef CONFIG_X86_32
205 	if (ctxt->cr4)
206 		__write_cr4(ctxt->cr4);
207 #else
208 /* CONFIG X86_64 */
209 	wrmsrl(MSR_EFER, ctxt->efer);
210 	write_cr8(ctxt->cr8);
211 	__write_cr4(ctxt->cr4);
212 #endif
213 	write_cr3(ctxt->cr3);
214 	write_cr2(ctxt->cr2);
215 	write_cr0(ctxt->cr0);
216 
217 	/*
218 	 * now restore the descriptor tables to their proper values
219 	 * ltr is done i fix_processor_context().
220 	 */
221 #ifdef CONFIG_X86_32
222 	load_idt(&ctxt->idt);
223 #else
224 /* CONFIG_X86_64 */
225 	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
226 #endif
227 
228 	/*
229 	 * segment registers
230 	 */
231 #ifdef CONFIG_X86_32
232 	loadsegment(es, ctxt->es);
233 	loadsegment(fs, ctxt->fs);
234 	loadsegment(gs, ctxt->gs);
235 	loadsegment(ss, ctxt->ss);
236 
237 	/*
238 	 * sysenter MSRs
239 	 */
240 	if (boot_cpu_has(X86_FEATURE_SEP))
241 		enable_sep_cpu();
242 #else
243 /* CONFIG_X86_64 */
244 	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
245 	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
246 	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
247 	load_gs_index(ctxt->gs);
248 	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
249 
250 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
251 	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
252 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
253 #endif
254 
255 	fix_processor_context();
256 
257 	do_fpu_end();
258 	tsc_verify_tsc_adjust(true);
259 	x86_platform.restore_sched_clock_state();
260 	mtrr_bp_restore();
261 	perf_restore_debug_store();
262 	msr_restore_context(ctxt);
263 }
264 
265 /* Needed by apm.c */
266 void notrace restore_processor_state(void)
267 {
268 	__restore_processor_state(&saved_context);
269 }
270 #ifdef CONFIG_X86_32
271 EXPORT_SYMBOL(restore_processor_state);
272 #endif
273 
274 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
275 static void resume_play_dead(void)
276 {
277 	play_dead_common();
278 	tboot_shutdown(TB_SHUTDOWN_WFS);
279 	hlt_play_dead();
280 }
281 
282 int hibernate_resume_nonboot_cpu_disable(void)
283 {
284 	void (*play_dead)(void) = smp_ops.play_dead;
285 	int ret;
286 
287 	/*
288 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
289 	 * during hibernate image restoration, because it is likely that the
290 	 * monitored address will be actually written to at that time and then
291 	 * the "dead" CPU will attempt to execute instructions again, but the
292 	 * address in its instruction pointer may not be possible to resolve
293 	 * any more at that point (the page tables used by it previously may
294 	 * have been overwritten by hibernate image data).
295 	 */
296 	smp_ops.play_dead = resume_play_dead;
297 	ret = disable_nonboot_cpus();
298 	smp_ops.play_dead = play_dead;
299 	return ret;
300 }
301 #endif
302 
303 /*
304  * When bsp_check() is called in hibernate and suspend, cpu hotplug
305  * is disabled already. So it's unnessary to handle race condition between
306  * cpumask query and cpu hotplug.
307  */
308 static int bsp_check(void)
309 {
310 	if (cpumask_first(cpu_online_mask) != 0) {
311 		pr_warn("CPU0 is offline.\n");
312 		return -ENODEV;
313 	}
314 
315 	return 0;
316 }
317 
318 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
319 			   void *ptr)
320 {
321 	int ret = 0;
322 
323 	switch (action) {
324 	case PM_SUSPEND_PREPARE:
325 	case PM_HIBERNATION_PREPARE:
326 		ret = bsp_check();
327 		break;
328 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
329 	case PM_RESTORE_PREPARE:
330 		/*
331 		 * When system resumes from hibernation, online CPU0 because
332 		 * 1. it's required for resume and
333 		 * 2. the CPU was online before hibernation
334 		 */
335 		if (!cpu_online(0))
336 			_debug_hotplug_cpu(0, 1);
337 		break;
338 	case PM_POST_RESTORE:
339 		/*
340 		 * When a resume really happens, this code won't be called.
341 		 *
342 		 * This code is called only when user space hibernation software
343 		 * prepares for snapshot device during boot time. So we just
344 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
345 		 * preparing the snapshot device.
346 		 *
347 		 * This works for normal boot case in our CPU0 hotplug debug
348 		 * mode, i.e. CPU0 is offline and user mode hibernation
349 		 * software initializes during boot time.
350 		 *
351 		 * If CPU0 is online and user application accesses snapshot
352 		 * device after boot time, this will offline CPU0 and user may
353 		 * see different CPU0 state before and after accessing
354 		 * the snapshot device. But hopefully this is not a case when
355 		 * user debugging CPU0 hotplug. Even if users hit this case,
356 		 * they can easily online CPU0 back.
357 		 *
358 		 * To simplify this debug code, we only consider normal boot
359 		 * case. Otherwise we need to remember CPU0's state and restore
360 		 * to that state and resolve racy conditions etc.
361 		 */
362 		_debug_hotplug_cpu(0, 0);
363 		break;
364 #endif
365 	default:
366 		break;
367 	}
368 	return notifier_from_errno(ret);
369 }
370 
371 static int __init bsp_pm_check_init(void)
372 {
373 	/*
374 	 * Set this bsp_pm_callback as lower priority than
375 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
376 	 * earlier to disable cpu hotplug before bsp online check.
377 	 */
378 	pm_notifier(bsp_pm_callback, -INT_MAX);
379 	return 0;
380 }
381 
382 core_initcall(bsp_pm_check_init);
383 
384 static int msr_init_context(const u32 *msr_id, const int total_num)
385 {
386 	int i = 0;
387 	struct saved_msr *msr_array;
388 
389 	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
390 		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
391 		return -EINVAL;
392 	}
393 
394 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
395 	if (!msr_array) {
396 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
397 		return -ENOMEM;
398 	}
399 
400 	for (i = 0; i < total_num; i++) {
401 		msr_array[i].info.msr_no	= msr_id[i];
402 		msr_array[i].valid		= false;
403 		msr_array[i].info.reg.q		= 0;
404 	}
405 	saved_context.saved_msrs.num	= total_num;
406 	saved_context.saved_msrs.array	= msr_array;
407 
408 	return 0;
409 }
410 
411 /*
412  * The following section is a quirk framework for problematic BIOSen:
413  * Sometimes MSRs are modified by the BIOSen after suspended to
414  * RAM, this might cause unexpected behavior after wakeup.
415  * Thus we save/restore these specified MSRs across suspend/resume
416  * in order to work around it.
417  *
418  * For any further problematic BIOSen/platforms,
419  * please add your own function similar to msr_initialize_bdw.
420  */
421 static int msr_initialize_bdw(const struct dmi_system_id *d)
422 {
423 	/* Add any extra MSR ids into this array. */
424 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
425 
426 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
427 	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
428 }
429 
430 static struct dmi_system_id msr_save_dmi_table[] = {
431 	{
432 	 .callback = msr_initialize_bdw,
433 	 .ident = "BROADWELL BDX_EP",
434 	 .matches = {
435 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
436 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
437 		},
438 	},
439 	{}
440 };
441 
442 static int pm_check_save_msr(void)
443 {
444 	dmi_check_system(msr_save_dmi_table);
445 	return 0;
446 }
447 
448 device_initcall(pm_check_save_msr);
449