xref: /linux/arch/x86/power/cpu.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Suspend support specific for i386/x86-64.
4  *
5  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8  */
9 
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 		msr++;
45 	}
46 }
47 
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 	struct saved_msr *msr = ctxt->saved_msrs.array;
51 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
52 
53 	while (msr < end) {
54 		if (msr->valid)
55 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 		msr++;
57 	}
58 }
59 
60 /**
61  *	__save_processor_state - save CPU registers before creating a
62  *		hibernation image and before restoring the memory state from it
63  *	@ctxt - structure to store the registers contents in
64  *
65  *	NOTE: If there is a CPU register the modification of which by the
66  *	boot kernel (ie. the kernel used for loading the hibernation image)
67  *	might affect the operations of the restored target kernel (ie. the one
68  *	saved in the hibernation image), then its contents must be saved by this
69  *	function.  In other words, if kernel A is hibernated and different
70  *	kernel B is used for loading the hibernation image into memory, the
71  *	kernel A's __save_processor_state() function must save all registers
72  *	needed by kernel A, so that it can operate correctly after the resume
73  *	regardless of what kernel B does in the meantime.
74  */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 	mtrr_save_fixed_ranges(NULL);
79 #endif
80 	kernel_fpu_begin();
81 
82 	/*
83 	 * descriptor tables
84 	 */
85 	store_idt(&ctxt->idt);
86 
87 	/*
88 	 * We save it here, but restore it only in the hibernate case.
89 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 	 * 'pmode_gdt' in wakeup_start.
92 	 */
93 	ctxt->gdt_desc.size = GDT_SIZE - 1;
94 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95 
96 	store_tr(ctxt->tr);
97 
98 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
99 	/*
100 	 * segment registers
101 	 */
102 #ifdef CONFIG_X86_32_LAZY_GS
103 	savesegment(gs, ctxt->gs);
104 #endif
105 #ifdef CONFIG_X86_64
106 	savesegment(gs, ctxt->gs);
107 	savesegment(fs, ctxt->fs);
108 	savesegment(ds, ctxt->ds);
109 	savesegment(es, ctxt->es);
110 
111 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
112 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
113 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
114 	mtrr_save_fixed_ranges(NULL);
115 
116 	rdmsrl(MSR_EFER, ctxt->efer);
117 #endif
118 
119 	/*
120 	 * control registers
121 	 */
122 	ctxt->cr0 = read_cr0();
123 	ctxt->cr2 = read_cr2();
124 	ctxt->cr3 = __read_cr3();
125 	ctxt->cr4 = __read_cr4();
126 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
127 					       &ctxt->misc_enable);
128 	msr_save_context(ctxt);
129 }
130 
131 /* Needed by apm.c */
132 void save_processor_state(void)
133 {
134 	__save_processor_state(&saved_context);
135 	x86_platform.save_sched_clock_state();
136 }
137 #ifdef CONFIG_X86_32
138 EXPORT_SYMBOL(save_processor_state);
139 #endif
140 
141 static void do_fpu_end(void)
142 {
143 	/*
144 	 * Restore FPU regs if necessary.
145 	 */
146 	kernel_fpu_end();
147 }
148 
149 static void fix_processor_context(void)
150 {
151 	int cpu = smp_processor_id();
152 #ifdef CONFIG_X86_64
153 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
154 	tss_desc tss;
155 #endif
156 
157 	/*
158 	 * We need to reload TR, which requires that we change the
159 	 * GDT entry to indicate "available" first.
160 	 *
161 	 * XXX: This could probably all be replaced by a call to
162 	 * force_reload_TR().
163 	 */
164 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
165 
166 #ifdef CONFIG_X86_64
167 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
168 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
169 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
170 
171 	syscall_init();				/* This sets MSR_*STAR and related */
172 #else
173 	if (boot_cpu_has(X86_FEATURE_SEP))
174 		enable_sep_cpu();
175 #endif
176 	load_TR_desc();				/* This does ltr */
177 	load_mm_ldt(current->active_mm);	/* This does lldt */
178 	initialize_tlbstate_and_flush();
179 
180 	fpu__resume_cpu();
181 
182 	/* The processor is back on the direct GDT, load back the fixmap */
183 	load_fixmap_gdt(cpu);
184 }
185 
186 /**
187  * __restore_processor_state - restore the contents of CPU registers saved
188  *                             by __save_processor_state()
189  * @ctxt - structure to load the registers contents from
190  *
191  * The asm code that gets us here will have restored a usable GDT, although
192  * it will be pointing to the wrong alias.
193  */
194 static void notrace __restore_processor_state(struct saved_context *ctxt)
195 {
196 	if (ctxt->misc_enable_saved)
197 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
198 	/*
199 	 * control registers
200 	 */
201 	/* cr4 was introduced in the Pentium CPU */
202 #ifdef CONFIG_X86_32
203 	if (ctxt->cr4)
204 		__write_cr4(ctxt->cr4);
205 #else
206 /* CONFIG X86_64 */
207 	wrmsrl(MSR_EFER, ctxt->efer);
208 	__write_cr4(ctxt->cr4);
209 #endif
210 	write_cr3(ctxt->cr3);
211 	write_cr2(ctxt->cr2);
212 	write_cr0(ctxt->cr0);
213 
214 	/* Restore the IDT. */
215 	load_idt(&ctxt->idt);
216 
217 	/*
218 	 * Just in case the asm code got us here with the SS, DS, or ES
219 	 * out of sync with the GDT, update them.
220 	 */
221 	loadsegment(ss, __KERNEL_DS);
222 	loadsegment(ds, __USER_DS);
223 	loadsegment(es, __USER_DS);
224 
225 	/*
226 	 * Restore percpu access.  Percpu access can happen in exception
227 	 * handlers or in complicated helpers like load_gs_index().
228 	 */
229 #ifdef CONFIG_X86_64
230 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
231 #else
232 	loadsegment(fs, __KERNEL_PERCPU);
233 	loadsegment(gs, __KERNEL_STACK_CANARY);
234 #endif
235 
236 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
237 	fix_processor_context();
238 
239 	/*
240 	 * Now that we have descriptor tables fully restored and working
241 	 * exception handling, restore the usermode segments.
242 	 */
243 #ifdef CONFIG_X86_64
244 	loadsegment(ds, ctxt->es);
245 	loadsegment(es, ctxt->es);
246 	loadsegment(fs, ctxt->fs);
247 	load_gs_index(ctxt->gs);
248 
249 	/*
250 	 * Restore FSBASE and GSBASE after restoring the selectors, since
251 	 * restoring the selectors clobbers the bases.  Keep in mind
252 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
253 	 */
254 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
255 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
256 #elif defined(CONFIG_X86_32_LAZY_GS)
257 	loadsegment(gs, ctxt->gs);
258 #endif
259 
260 	do_fpu_end();
261 	tsc_verify_tsc_adjust(true);
262 	x86_platform.restore_sched_clock_state();
263 	mtrr_bp_restore();
264 	perf_restore_debug_store();
265 	msr_restore_context(ctxt);
266 }
267 
268 /* Needed by apm.c */
269 void notrace restore_processor_state(void)
270 {
271 	__restore_processor_state(&saved_context);
272 }
273 #ifdef CONFIG_X86_32
274 EXPORT_SYMBOL(restore_processor_state);
275 #endif
276 
277 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
278 static void resume_play_dead(void)
279 {
280 	play_dead_common();
281 	tboot_shutdown(TB_SHUTDOWN_WFS);
282 	hlt_play_dead();
283 }
284 
285 int hibernate_resume_nonboot_cpu_disable(void)
286 {
287 	void (*play_dead)(void) = smp_ops.play_dead;
288 	int ret;
289 
290 	/*
291 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
292 	 * during hibernate image restoration, because it is likely that the
293 	 * monitored address will be actually written to at that time and then
294 	 * the "dead" CPU will attempt to execute instructions again, but the
295 	 * address in its instruction pointer may not be possible to resolve
296 	 * any more at that point (the page tables used by it previously may
297 	 * have been overwritten by hibernate image data).
298 	 *
299 	 * First, make sure that we wake up all the potentially disabled SMT
300 	 * threads which have been initially brought up and then put into
301 	 * mwait/cpuidle sleep.
302 	 * Those will be put to proper (not interfering with hibernation
303 	 * resume) sleep afterwards, and the resumed kernel will decide itself
304 	 * what to do with them.
305 	 */
306 	ret = cpuhp_smt_enable();
307 	if (ret)
308 		return ret;
309 	smp_ops.play_dead = resume_play_dead;
310 	ret = disable_nonboot_cpus();
311 	smp_ops.play_dead = play_dead;
312 	return ret;
313 }
314 #endif
315 
316 /*
317  * When bsp_check() is called in hibernate and suspend, cpu hotplug
318  * is disabled already. So it's unnessary to handle race condition between
319  * cpumask query and cpu hotplug.
320  */
321 static int bsp_check(void)
322 {
323 	if (cpumask_first(cpu_online_mask) != 0) {
324 		pr_warn("CPU0 is offline.\n");
325 		return -ENODEV;
326 	}
327 
328 	return 0;
329 }
330 
331 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
332 			   void *ptr)
333 {
334 	int ret = 0;
335 
336 	switch (action) {
337 	case PM_SUSPEND_PREPARE:
338 	case PM_HIBERNATION_PREPARE:
339 		ret = bsp_check();
340 		break;
341 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
342 	case PM_RESTORE_PREPARE:
343 		/*
344 		 * When system resumes from hibernation, online CPU0 because
345 		 * 1. it's required for resume and
346 		 * 2. the CPU was online before hibernation
347 		 */
348 		if (!cpu_online(0))
349 			_debug_hotplug_cpu(0, 1);
350 		break;
351 	case PM_POST_RESTORE:
352 		/*
353 		 * When a resume really happens, this code won't be called.
354 		 *
355 		 * This code is called only when user space hibernation software
356 		 * prepares for snapshot device during boot time. So we just
357 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
358 		 * preparing the snapshot device.
359 		 *
360 		 * This works for normal boot case in our CPU0 hotplug debug
361 		 * mode, i.e. CPU0 is offline and user mode hibernation
362 		 * software initializes during boot time.
363 		 *
364 		 * If CPU0 is online and user application accesses snapshot
365 		 * device after boot time, this will offline CPU0 and user may
366 		 * see different CPU0 state before and after accessing
367 		 * the snapshot device. But hopefully this is not a case when
368 		 * user debugging CPU0 hotplug. Even if users hit this case,
369 		 * they can easily online CPU0 back.
370 		 *
371 		 * To simplify this debug code, we only consider normal boot
372 		 * case. Otherwise we need to remember CPU0's state and restore
373 		 * to that state and resolve racy conditions etc.
374 		 */
375 		_debug_hotplug_cpu(0, 0);
376 		break;
377 #endif
378 	default:
379 		break;
380 	}
381 	return notifier_from_errno(ret);
382 }
383 
384 static int __init bsp_pm_check_init(void)
385 {
386 	/*
387 	 * Set this bsp_pm_callback as lower priority than
388 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
389 	 * earlier to disable cpu hotplug before bsp online check.
390 	 */
391 	pm_notifier(bsp_pm_callback, -INT_MAX);
392 	return 0;
393 }
394 
395 core_initcall(bsp_pm_check_init);
396 
397 static int msr_build_context(const u32 *msr_id, const int num)
398 {
399 	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
400 	struct saved_msr *msr_array;
401 	int total_num;
402 	int i, j;
403 
404 	total_num = saved_msrs->num + num;
405 
406 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
407 	if (!msr_array) {
408 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
409 		return -ENOMEM;
410 	}
411 
412 	if (saved_msrs->array) {
413 		/*
414 		 * Multiple callbacks can invoke this function, so copy any
415 		 * MSR save requests from previous invocations.
416 		 */
417 		memcpy(msr_array, saved_msrs->array,
418 		       sizeof(struct saved_msr) * saved_msrs->num);
419 
420 		kfree(saved_msrs->array);
421 	}
422 
423 	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
424 		msr_array[i].info.msr_no	= msr_id[j];
425 		msr_array[i].valid		= false;
426 		msr_array[i].info.reg.q		= 0;
427 	}
428 	saved_msrs->num   = total_num;
429 	saved_msrs->array = msr_array;
430 
431 	return 0;
432 }
433 
434 /*
435  * The following sections are a quirk framework for problematic BIOSen:
436  * Sometimes MSRs are modified by the BIOSen after suspended to
437  * RAM, this might cause unexpected behavior after wakeup.
438  * Thus we save/restore these specified MSRs across suspend/resume
439  * in order to work around it.
440  *
441  * For any further problematic BIOSen/platforms,
442  * please add your own function similar to msr_initialize_bdw.
443  */
444 static int msr_initialize_bdw(const struct dmi_system_id *d)
445 {
446 	/* Add any extra MSR ids into this array. */
447 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
448 
449 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
450 	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
451 }
452 
453 static const struct dmi_system_id msr_save_dmi_table[] = {
454 	{
455 	 .callback = msr_initialize_bdw,
456 	 .ident = "BROADWELL BDX_EP",
457 	 .matches = {
458 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
459 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
460 		},
461 	},
462 	{}
463 };
464 
465 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
466 {
467 	u32 cpuid_msr_id[] = {
468 		MSR_AMD64_CPUID_FN_1,
469 	};
470 
471 	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
472 		c->family);
473 
474 	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
475 }
476 
477 static const struct x86_cpu_id msr_save_cpu_table[] = {
478 	{
479 		.vendor = X86_VENDOR_AMD,
480 		.family = 0x15,
481 		.model = X86_MODEL_ANY,
482 		.feature = X86_FEATURE_ANY,
483 		.driver_data = (kernel_ulong_t)msr_save_cpuid_features,
484 	},
485 	{
486 		.vendor = X86_VENDOR_AMD,
487 		.family = 0x16,
488 		.model = X86_MODEL_ANY,
489 		.feature = X86_FEATURE_ANY,
490 		.driver_data = (kernel_ulong_t)msr_save_cpuid_features,
491 	},
492 	{}
493 };
494 
495 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
496 static int pm_cpu_check(const struct x86_cpu_id *c)
497 {
498 	const struct x86_cpu_id *m;
499 	int ret = 0;
500 
501 	m = x86_match_cpu(msr_save_cpu_table);
502 	if (m) {
503 		pm_cpu_match_t fn;
504 
505 		fn = (pm_cpu_match_t)m->driver_data;
506 		ret = fn(m);
507 	}
508 
509 	return ret;
510 }
511 
512 static int pm_check_save_msr(void)
513 {
514 	dmi_check_system(msr_save_dmi_table);
515 	pm_cpu_check(msr_save_cpu_table);
516 
517 	return 0;
518 }
519 
520 device_initcall(pm_check_save_msr);
521