xref: /linux/arch/x86/power/cpu.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Suspend support specific for i386/x86-64.
3  *
4  * Distribute under GPLv2
5  *
6  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9  */
10 
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 
16 #include <asm/pgtable.h>
17 #include <asm/proto.h>
18 #include <asm/mtrr.h>
19 #include <asm/page.h>
20 #include <asm/mce.h>
21 #include <asm/suspend.h>
22 #include <asm/fpu/internal.h>
23 #include <asm/debugreg.h>
24 #include <asm/cpu.h>
25 #include <asm/mmu_context.h>
26 #include <linux/dmi.h>
27 
28 #ifdef CONFIG_X86_32
29 __visible unsigned long saved_context_ebx;
30 __visible unsigned long saved_context_esp, saved_context_ebp;
31 __visible unsigned long saved_context_esi, saved_context_edi;
32 __visible unsigned long saved_context_eflags;
33 #endif
34 struct saved_context saved_context;
35 
36 static void msr_save_context(struct saved_context *ctxt)
37 {
38 	struct saved_msr *msr = ctxt->saved_msrs.array;
39 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
40 
41 	while (msr < end) {
42 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
43 		msr++;
44 	}
45 }
46 
47 static void msr_restore_context(struct saved_context *ctxt)
48 {
49 	struct saved_msr *msr = ctxt->saved_msrs.array;
50 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
51 
52 	while (msr < end) {
53 		if (msr->valid)
54 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
55 		msr++;
56 	}
57 }
58 
59 /**
60  *	__save_processor_state - save CPU registers before creating a
61  *		hibernation image and before restoring the memory state from it
62  *	@ctxt - structure to store the registers contents in
63  *
64  *	NOTE: If there is a CPU register the modification of which by the
65  *	boot kernel (ie. the kernel used for loading the hibernation image)
66  *	might affect the operations of the restored target kernel (ie. the one
67  *	saved in the hibernation image), then its contents must be saved by this
68  *	function.  In other words, if kernel A is hibernated and different
69  *	kernel B is used for loading the hibernation image into memory, the
70  *	kernel A's __save_processor_state() function must save all registers
71  *	needed by kernel A, so that it can operate correctly after the resume
72  *	regardless of what kernel B does in the meantime.
73  */
74 static void __save_processor_state(struct saved_context *ctxt)
75 {
76 #ifdef CONFIG_X86_32
77 	mtrr_save_fixed_ranges(NULL);
78 #endif
79 	kernel_fpu_begin();
80 
81 	/*
82 	 * descriptor tables
83 	 */
84 #ifdef CONFIG_X86_32
85 	store_idt(&ctxt->idt);
86 #else
87 /* CONFIG_X86_64 */
88 	store_idt((struct desc_ptr *)&ctxt->idt_limit);
89 #endif
90 	/*
91 	 * We save it here, but restore it only in the hibernate case.
92 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
93 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
94 	 * 'pmode_gdt' in wakeup_start.
95 	 */
96 	ctxt->gdt_desc.size = GDT_SIZE - 1;
97 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
98 
99 	store_tr(ctxt->tr);
100 
101 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102 	/*
103 	 * segment registers
104 	 */
105 #ifdef CONFIG_X86_32
106 	savesegment(es, ctxt->es);
107 	savesegment(fs, ctxt->fs);
108 	savesegment(gs, ctxt->gs);
109 	savesegment(ss, ctxt->ss);
110 #else
111 /* CONFIG_X86_64 */
112 	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
113 	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
114 	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
115 	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
116 	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
117 
118 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
119 	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
120 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
121 	mtrr_save_fixed_ranges(NULL);
122 
123 	rdmsrl(MSR_EFER, ctxt->efer);
124 #endif
125 
126 	/*
127 	 * control registers
128 	 */
129 	ctxt->cr0 = read_cr0();
130 	ctxt->cr2 = read_cr2();
131 	ctxt->cr3 = read_cr3();
132 	ctxt->cr4 = __read_cr4_safe();
133 #ifdef CONFIG_X86_64
134 	ctxt->cr8 = read_cr8();
135 #endif
136 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
137 					       &ctxt->misc_enable);
138 	msr_save_context(ctxt);
139 }
140 
141 /* Needed by apm.c */
142 void save_processor_state(void)
143 {
144 	__save_processor_state(&saved_context);
145 	x86_platform.save_sched_clock_state();
146 }
147 #ifdef CONFIG_X86_32
148 EXPORT_SYMBOL(save_processor_state);
149 #endif
150 
151 static void do_fpu_end(void)
152 {
153 	/*
154 	 * Restore FPU regs if necessary.
155 	 */
156 	kernel_fpu_end();
157 }
158 
159 static void fix_processor_context(void)
160 {
161 	int cpu = smp_processor_id();
162 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
163 #ifdef CONFIG_X86_64
164 	struct desc_struct *desc = get_cpu_gdt_table(cpu);
165 	tss_desc tss;
166 #endif
167 	set_tss_desc(cpu, t);	/*
168 				 * This just modifies memory; should not be
169 				 * necessary. But... This is necessary, because
170 				 * 386 hardware has concept of busy TSS or some
171 				 * similar stupidity.
172 				 */
173 
174 #ifdef CONFIG_X86_64
175 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
176 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
177 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
178 
179 	syscall_init();				/* This sets MSR_*STAR and related */
180 #endif
181 	load_TR_desc();				/* This does ltr */
182 	load_mm_ldt(current->active_mm);	/* This does lldt */
183 
184 	fpu__resume_cpu();
185 }
186 
187 /**
188  *	__restore_processor_state - restore the contents of CPU registers saved
189  *		by __save_processor_state()
190  *	@ctxt - structure to load the registers contents from
191  */
192 static void notrace __restore_processor_state(struct saved_context *ctxt)
193 {
194 	if (ctxt->misc_enable_saved)
195 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
196 	/*
197 	 * control registers
198 	 */
199 	/* cr4 was introduced in the Pentium CPU */
200 #ifdef CONFIG_X86_32
201 	if (ctxt->cr4)
202 		__write_cr4(ctxt->cr4);
203 #else
204 /* CONFIG X86_64 */
205 	wrmsrl(MSR_EFER, ctxt->efer);
206 	write_cr8(ctxt->cr8);
207 	__write_cr4(ctxt->cr4);
208 #endif
209 	write_cr3(ctxt->cr3);
210 	write_cr2(ctxt->cr2);
211 	write_cr0(ctxt->cr0);
212 
213 	/*
214 	 * now restore the descriptor tables to their proper values
215 	 * ltr is done i fix_processor_context().
216 	 */
217 #ifdef CONFIG_X86_32
218 	load_idt(&ctxt->idt);
219 #else
220 /* CONFIG_X86_64 */
221 	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
222 #endif
223 
224 	/*
225 	 * segment registers
226 	 */
227 #ifdef CONFIG_X86_32
228 	loadsegment(es, ctxt->es);
229 	loadsegment(fs, ctxt->fs);
230 	loadsegment(gs, ctxt->gs);
231 	loadsegment(ss, ctxt->ss);
232 
233 	/*
234 	 * sysenter MSRs
235 	 */
236 	if (boot_cpu_has(X86_FEATURE_SEP))
237 		enable_sep_cpu();
238 #else
239 /* CONFIG_X86_64 */
240 	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
241 	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
242 	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
243 	load_gs_index(ctxt->gs);
244 	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
245 
246 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
247 	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
248 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
249 #endif
250 
251 	fix_processor_context();
252 
253 	do_fpu_end();
254 	x86_platform.restore_sched_clock_state();
255 	mtrr_bp_restore();
256 	perf_restore_debug_store();
257 	msr_restore_context(ctxt);
258 }
259 
260 /* Needed by apm.c */
261 void notrace restore_processor_state(void)
262 {
263 	__restore_processor_state(&saved_context);
264 }
265 #ifdef CONFIG_X86_32
266 EXPORT_SYMBOL(restore_processor_state);
267 #endif
268 
269 /*
270  * When bsp_check() is called in hibernate and suspend, cpu hotplug
271  * is disabled already. So it's unnessary to handle race condition between
272  * cpumask query and cpu hotplug.
273  */
274 static int bsp_check(void)
275 {
276 	if (cpumask_first(cpu_online_mask) != 0) {
277 		pr_warn("CPU0 is offline.\n");
278 		return -ENODEV;
279 	}
280 
281 	return 0;
282 }
283 
284 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
285 			   void *ptr)
286 {
287 	int ret = 0;
288 
289 	switch (action) {
290 	case PM_SUSPEND_PREPARE:
291 	case PM_HIBERNATION_PREPARE:
292 		ret = bsp_check();
293 		break;
294 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
295 	case PM_RESTORE_PREPARE:
296 		/*
297 		 * When system resumes from hibernation, online CPU0 because
298 		 * 1. it's required for resume and
299 		 * 2. the CPU was online before hibernation
300 		 */
301 		if (!cpu_online(0))
302 			_debug_hotplug_cpu(0, 1);
303 		break;
304 	case PM_POST_RESTORE:
305 		/*
306 		 * When a resume really happens, this code won't be called.
307 		 *
308 		 * This code is called only when user space hibernation software
309 		 * prepares for snapshot device during boot time. So we just
310 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
311 		 * preparing the snapshot device.
312 		 *
313 		 * This works for normal boot case in our CPU0 hotplug debug
314 		 * mode, i.e. CPU0 is offline and user mode hibernation
315 		 * software initializes during boot time.
316 		 *
317 		 * If CPU0 is online and user application accesses snapshot
318 		 * device after boot time, this will offline CPU0 and user may
319 		 * see different CPU0 state before and after accessing
320 		 * the snapshot device. But hopefully this is not a case when
321 		 * user debugging CPU0 hotplug. Even if users hit this case,
322 		 * they can easily online CPU0 back.
323 		 *
324 		 * To simplify this debug code, we only consider normal boot
325 		 * case. Otherwise we need to remember CPU0's state and restore
326 		 * to that state and resolve racy conditions etc.
327 		 */
328 		_debug_hotplug_cpu(0, 0);
329 		break;
330 #endif
331 	default:
332 		break;
333 	}
334 	return notifier_from_errno(ret);
335 }
336 
337 static int __init bsp_pm_check_init(void)
338 {
339 	/*
340 	 * Set this bsp_pm_callback as lower priority than
341 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
342 	 * earlier to disable cpu hotplug before bsp online check.
343 	 */
344 	pm_notifier(bsp_pm_callback, -INT_MAX);
345 	return 0;
346 }
347 
348 core_initcall(bsp_pm_check_init);
349 
350 static int msr_init_context(const u32 *msr_id, const int total_num)
351 {
352 	int i = 0;
353 	struct saved_msr *msr_array;
354 
355 	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
356 		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
357 		return -EINVAL;
358 	}
359 
360 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
361 	if (!msr_array) {
362 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
363 		return -ENOMEM;
364 	}
365 
366 	for (i = 0; i < total_num; i++) {
367 		msr_array[i].info.msr_no	= msr_id[i];
368 		msr_array[i].valid		= false;
369 		msr_array[i].info.reg.q		= 0;
370 	}
371 	saved_context.saved_msrs.num	= total_num;
372 	saved_context.saved_msrs.array	= msr_array;
373 
374 	return 0;
375 }
376 
377 /*
378  * The following section is a quirk framework for problematic BIOSen:
379  * Sometimes MSRs are modified by the BIOSen after suspended to
380  * RAM, this might cause unexpected behavior after wakeup.
381  * Thus we save/restore these specified MSRs across suspend/resume
382  * in order to work around it.
383  *
384  * For any further problematic BIOSen/platforms,
385  * please add your own function similar to msr_initialize_bdw.
386  */
387 static int msr_initialize_bdw(const struct dmi_system_id *d)
388 {
389 	/* Add any extra MSR ids into this array. */
390 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
391 
392 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
393 	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
394 }
395 
396 static struct dmi_system_id msr_save_dmi_table[] = {
397 	{
398 	 .callback = msr_initialize_bdw,
399 	 .ident = "BROADWELL BDX_EP",
400 	 .matches = {
401 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
402 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
403 		},
404 	},
405 	{}
406 };
407 
408 static int pm_check_save_msr(void)
409 {
410 	dmi_check_system(msr_save_dmi_table);
411 	return 0;
412 }
413 
414 device_initcall(pm_check_save_msr);
415