xref: /linux/arch/x86/power/cpu.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * Suspend support specific for i386/x86-64.
3  *
4  * Distribute under GPLv2
5  *
6  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9  */
10 
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <linux/dmi.h>
28 
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36 
37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 	struct saved_msr *msr = ctxt->saved_msrs.array;
40 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
41 
42 	while (msr < end) {
43 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 		msr++;
45 	}
46 }
47 
48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 	struct saved_msr *msr = ctxt->saved_msrs.array;
51 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
52 
53 	while (msr < end) {
54 		if (msr->valid)
55 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 		msr++;
57 	}
58 }
59 
60 /**
61  *	__save_processor_state - save CPU registers before creating a
62  *		hibernation image and before restoring the memory state from it
63  *	@ctxt - structure to store the registers contents in
64  *
65  *	NOTE: If there is a CPU register the modification of which by the
66  *	boot kernel (ie. the kernel used for loading the hibernation image)
67  *	might affect the operations of the restored target kernel (ie. the one
68  *	saved in the hibernation image), then its contents must be saved by this
69  *	function.  In other words, if kernel A is hibernated and different
70  *	kernel B is used for loading the hibernation image into memory, the
71  *	kernel A's __save_processor_state() function must save all registers
72  *	needed by kernel A, so that it can operate correctly after the resume
73  *	regardless of what kernel B does in the meantime.
74  */
75 static void __save_processor_state(struct saved_context *ctxt)
76 {
77 #ifdef CONFIG_X86_32
78 	mtrr_save_fixed_ranges(NULL);
79 #endif
80 	kernel_fpu_begin();
81 
82 	/*
83 	 * descriptor tables
84 	 */
85 	store_idt(&ctxt->idt);
86 
87 	/*
88 	 * We save it here, but restore it only in the hibernate case.
89 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
90 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
91 	 * 'pmode_gdt' in wakeup_start.
92 	 */
93 	ctxt->gdt_desc.size = GDT_SIZE - 1;
94 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
95 
96 	store_tr(ctxt->tr);
97 
98 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
99 	/*
100 	 * segment registers
101 	 */
102 #ifdef CONFIG_X86_32_LAZY_GS
103 	savesegment(gs, ctxt->gs);
104 #endif
105 #ifdef CONFIG_X86_64
106 	savesegment(gs, ctxt->gs);
107 	savesegment(fs, ctxt->fs);
108 	savesegment(ds, ctxt->ds);
109 	savesegment(es, ctxt->es);
110 
111 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
112 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
113 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
114 	mtrr_save_fixed_ranges(NULL);
115 
116 	rdmsrl(MSR_EFER, ctxt->efer);
117 #endif
118 
119 	/*
120 	 * control registers
121 	 */
122 	ctxt->cr0 = read_cr0();
123 	ctxt->cr2 = read_cr2();
124 	ctxt->cr3 = __read_cr3();
125 	ctxt->cr4 = __read_cr4();
126 #ifdef CONFIG_X86_64
127 	ctxt->cr8 = read_cr8();
128 #endif
129 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
130 					       &ctxt->misc_enable);
131 	msr_save_context(ctxt);
132 }
133 
134 /* Needed by apm.c */
135 void save_processor_state(void)
136 {
137 	__save_processor_state(&saved_context);
138 	x86_platform.save_sched_clock_state();
139 }
140 #ifdef CONFIG_X86_32
141 EXPORT_SYMBOL(save_processor_state);
142 #endif
143 
144 static void do_fpu_end(void)
145 {
146 	/*
147 	 * Restore FPU regs if necessary.
148 	 */
149 	kernel_fpu_end();
150 }
151 
152 static void fix_processor_context(void)
153 {
154 	int cpu = smp_processor_id();
155 #ifdef CONFIG_X86_64
156 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
157 	tss_desc tss;
158 #endif
159 
160 	/*
161 	 * We need to reload TR, which requires that we change the
162 	 * GDT entry to indicate "available" first.
163 	 *
164 	 * XXX: This could probably all be replaced by a call to
165 	 * force_reload_TR().
166 	 */
167 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
168 
169 #ifdef CONFIG_X86_64
170 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
171 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
172 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
173 
174 	syscall_init();				/* This sets MSR_*STAR and related */
175 #else
176 	if (boot_cpu_has(X86_FEATURE_SEP))
177 		enable_sep_cpu();
178 #endif
179 	load_TR_desc();				/* This does ltr */
180 	load_mm_ldt(current->active_mm);	/* This does lldt */
181 	initialize_tlbstate_and_flush();
182 
183 	fpu__resume_cpu();
184 
185 	/* The processor is back on the direct GDT, load back the fixmap */
186 	load_fixmap_gdt(cpu);
187 }
188 
189 /**
190  * __restore_processor_state - restore the contents of CPU registers saved
191  *                             by __save_processor_state()
192  * @ctxt - structure to load the registers contents from
193  *
194  * The asm code that gets us here will have restored a usable GDT, although
195  * it will be pointing to the wrong alias.
196  */
197 static void notrace __restore_processor_state(struct saved_context *ctxt)
198 {
199 	if (ctxt->misc_enable_saved)
200 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201 	/*
202 	 * control registers
203 	 */
204 	/* cr4 was introduced in the Pentium CPU */
205 #ifdef CONFIG_X86_32
206 	if (ctxt->cr4)
207 		__write_cr4(ctxt->cr4);
208 #else
209 /* CONFIG X86_64 */
210 	wrmsrl(MSR_EFER, ctxt->efer);
211 	write_cr8(ctxt->cr8);
212 	__write_cr4(ctxt->cr4);
213 #endif
214 	write_cr3(ctxt->cr3);
215 	write_cr2(ctxt->cr2);
216 	write_cr0(ctxt->cr0);
217 
218 	/* Restore the IDT. */
219 	load_idt(&ctxt->idt);
220 
221 	/*
222 	 * Just in case the asm code got us here with the SS, DS, or ES
223 	 * out of sync with the GDT, update them.
224 	 */
225 	loadsegment(ss, __KERNEL_DS);
226 	loadsegment(ds, __USER_DS);
227 	loadsegment(es, __USER_DS);
228 
229 	/*
230 	 * Restore percpu access.  Percpu access can happen in exception
231 	 * handlers or in complicated helpers like load_gs_index().
232 	 */
233 #ifdef CONFIG_X86_64
234 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
235 #else
236 	loadsegment(fs, __KERNEL_PERCPU);
237 	loadsegment(gs, __KERNEL_STACK_CANARY);
238 #endif
239 
240 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
241 	fix_processor_context();
242 
243 	/*
244 	 * Now that we have descriptor tables fully restored and working
245 	 * exception handling, restore the usermode segments.
246 	 */
247 #ifdef CONFIG_X86_64
248 	loadsegment(ds, ctxt->es);
249 	loadsegment(es, ctxt->es);
250 	loadsegment(fs, ctxt->fs);
251 	load_gs_index(ctxt->gs);
252 
253 	/*
254 	 * Restore FSBASE and GSBASE after restoring the selectors, since
255 	 * restoring the selectors clobbers the bases.  Keep in mind
256 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
257 	 */
258 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
259 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
260 #elif defined(CONFIG_X86_32_LAZY_GS)
261 	loadsegment(gs, ctxt->gs);
262 #endif
263 
264 	do_fpu_end();
265 	tsc_verify_tsc_adjust(true);
266 	x86_platform.restore_sched_clock_state();
267 	mtrr_bp_restore();
268 	perf_restore_debug_store();
269 	msr_restore_context(ctxt);
270 }
271 
272 /* Needed by apm.c */
273 void notrace restore_processor_state(void)
274 {
275 	__restore_processor_state(&saved_context);
276 }
277 #ifdef CONFIG_X86_32
278 EXPORT_SYMBOL(restore_processor_state);
279 #endif
280 
281 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
282 static void resume_play_dead(void)
283 {
284 	play_dead_common();
285 	tboot_shutdown(TB_SHUTDOWN_WFS);
286 	hlt_play_dead();
287 }
288 
289 int hibernate_resume_nonboot_cpu_disable(void)
290 {
291 	void (*play_dead)(void) = smp_ops.play_dead;
292 	int ret;
293 
294 	/*
295 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
296 	 * during hibernate image restoration, because it is likely that the
297 	 * monitored address will be actually written to at that time and then
298 	 * the "dead" CPU will attempt to execute instructions again, but the
299 	 * address in its instruction pointer may not be possible to resolve
300 	 * any more at that point (the page tables used by it previously may
301 	 * have been overwritten by hibernate image data).
302 	 */
303 	smp_ops.play_dead = resume_play_dead;
304 	ret = disable_nonboot_cpus();
305 	smp_ops.play_dead = play_dead;
306 	return ret;
307 }
308 #endif
309 
310 /*
311  * When bsp_check() is called in hibernate and suspend, cpu hotplug
312  * is disabled already. So it's unnessary to handle race condition between
313  * cpumask query and cpu hotplug.
314  */
315 static int bsp_check(void)
316 {
317 	if (cpumask_first(cpu_online_mask) != 0) {
318 		pr_warn("CPU0 is offline.\n");
319 		return -ENODEV;
320 	}
321 
322 	return 0;
323 }
324 
325 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
326 			   void *ptr)
327 {
328 	int ret = 0;
329 
330 	switch (action) {
331 	case PM_SUSPEND_PREPARE:
332 	case PM_HIBERNATION_PREPARE:
333 		ret = bsp_check();
334 		break;
335 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
336 	case PM_RESTORE_PREPARE:
337 		/*
338 		 * When system resumes from hibernation, online CPU0 because
339 		 * 1. it's required for resume and
340 		 * 2. the CPU was online before hibernation
341 		 */
342 		if (!cpu_online(0))
343 			_debug_hotplug_cpu(0, 1);
344 		break;
345 	case PM_POST_RESTORE:
346 		/*
347 		 * When a resume really happens, this code won't be called.
348 		 *
349 		 * This code is called only when user space hibernation software
350 		 * prepares for snapshot device during boot time. So we just
351 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
352 		 * preparing the snapshot device.
353 		 *
354 		 * This works for normal boot case in our CPU0 hotplug debug
355 		 * mode, i.e. CPU0 is offline and user mode hibernation
356 		 * software initializes during boot time.
357 		 *
358 		 * If CPU0 is online and user application accesses snapshot
359 		 * device after boot time, this will offline CPU0 and user may
360 		 * see different CPU0 state before and after accessing
361 		 * the snapshot device. But hopefully this is not a case when
362 		 * user debugging CPU0 hotplug. Even if users hit this case,
363 		 * they can easily online CPU0 back.
364 		 *
365 		 * To simplify this debug code, we only consider normal boot
366 		 * case. Otherwise we need to remember CPU0's state and restore
367 		 * to that state and resolve racy conditions etc.
368 		 */
369 		_debug_hotplug_cpu(0, 0);
370 		break;
371 #endif
372 	default:
373 		break;
374 	}
375 	return notifier_from_errno(ret);
376 }
377 
378 static int __init bsp_pm_check_init(void)
379 {
380 	/*
381 	 * Set this bsp_pm_callback as lower priority than
382 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
383 	 * earlier to disable cpu hotplug before bsp online check.
384 	 */
385 	pm_notifier(bsp_pm_callback, -INT_MAX);
386 	return 0;
387 }
388 
389 core_initcall(bsp_pm_check_init);
390 
391 static int msr_init_context(const u32 *msr_id, const int total_num)
392 {
393 	int i = 0;
394 	struct saved_msr *msr_array;
395 
396 	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
397 		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
398 		return -EINVAL;
399 	}
400 
401 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
402 	if (!msr_array) {
403 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
404 		return -ENOMEM;
405 	}
406 
407 	for (i = 0; i < total_num; i++) {
408 		msr_array[i].info.msr_no	= msr_id[i];
409 		msr_array[i].valid		= false;
410 		msr_array[i].info.reg.q		= 0;
411 	}
412 	saved_context.saved_msrs.num	= total_num;
413 	saved_context.saved_msrs.array	= msr_array;
414 
415 	return 0;
416 }
417 
418 /*
419  * The following section is a quirk framework for problematic BIOSen:
420  * Sometimes MSRs are modified by the BIOSen after suspended to
421  * RAM, this might cause unexpected behavior after wakeup.
422  * Thus we save/restore these specified MSRs across suspend/resume
423  * in order to work around it.
424  *
425  * For any further problematic BIOSen/platforms,
426  * please add your own function similar to msr_initialize_bdw.
427  */
428 static int msr_initialize_bdw(const struct dmi_system_id *d)
429 {
430 	/* Add any extra MSR ids into this array. */
431 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
432 
433 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
434 	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
435 }
436 
437 static const struct dmi_system_id msr_save_dmi_table[] = {
438 	{
439 	 .callback = msr_initialize_bdw,
440 	 .ident = "BROADWELL BDX_EP",
441 	 .matches = {
442 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
443 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
444 		},
445 	},
446 	{}
447 };
448 
449 static int pm_check_save_msr(void)
450 {
451 	dmi_check_system(msr_save_dmi_table);
452 	return 0;
453 }
454 
455 device_initcall(pm_check_save_msr);
456