1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/internal.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/mmu_context.h> 27 #include <asm/cpu_device_id.h> 28 29 #ifdef CONFIG_X86_32 30 __visible unsigned long saved_context_ebx; 31 __visible unsigned long saved_context_esp, saved_context_ebp; 32 __visible unsigned long saved_context_esi, saved_context_edi; 33 __visible unsigned long saved_context_eflags; 34 #endif 35 struct saved_context saved_context; 36 37 static void msr_save_context(struct saved_context *ctxt) 38 { 39 struct saved_msr *msr = ctxt->saved_msrs.array; 40 struct saved_msr *end = msr + ctxt->saved_msrs.num; 41 42 while (msr < end) { 43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); 44 msr++; 45 } 46 } 47 48 static void msr_restore_context(struct saved_context *ctxt) 49 { 50 struct saved_msr *msr = ctxt->saved_msrs.array; 51 struct saved_msr *end = msr + ctxt->saved_msrs.num; 52 53 while (msr < end) { 54 if (msr->valid) 55 wrmsrl(msr->info.msr_no, msr->info.reg.q); 56 msr++; 57 } 58 } 59 60 /** 61 * __save_processor_state - save CPU registers before creating a 62 * hibernation image and before restoring the memory state from it 63 * @ctxt - structure to store the registers contents in 64 * 65 * NOTE: If there is a CPU register the modification of which by the 66 * boot kernel (ie. the kernel used for loading the hibernation image) 67 * might affect the operations of the restored target kernel (ie. the one 68 * saved in the hibernation image), then its contents must be saved by this 69 * function. In other words, if kernel A is hibernated and different 70 * kernel B is used for loading the hibernation image into memory, the 71 * kernel A's __save_processor_state() function must save all registers 72 * needed by kernel A, so that it can operate correctly after the resume 73 * regardless of what kernel B does in the meantime. 74 */ 75 static void __save_processor_state(struct saved_context *ctxt) 76 { 77 #ifdef CONFIG_X86_32 78 mtrr_save_fixed_ranges(NULL); 79 #endif 80 kernel_fpu_begin(); 81 82 /* 83 * descriptor tables 84 */ 85 store_idt(&ctxt->idt); 86 87 /* 88 * We save it here, but restore it only in the hibernate case. 89 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 90 * mode in "secondary_startup_64". In 32-bit mode it is done via 91 * 'pmode_gdt' in wakeup_start. 92 */ 93 ctxt->gdt_desc.size = GDT_SIZE - 1; 94 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 95 96 store_tr(ctxt->tr); 97 98 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 99 /* 100 * segment registers 101 */ 102 savesegment(gs, ctxt->gs); 103 #ifdef CONFIG_X86_64 104 savesegment(fs, ctxt->fs); 105 savesegment(ds, ctxt->ds); 106 savesegment(es, ctxt->es); 107 108 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 109 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 110 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 111 mtrr_save_fixed_ranges(NULL); 112 113 rdmsrl(MSR_EFER, ctxt->efer); 114 #endif 115 116 /* 117 * control registers 118 */ 119 ctxt->cr0 = read_cr0(); 120 ctxt->cr2 = read_cr2(); 121 ctxt->cr3 = __read_cr3(); 122 ctxt->cr4 = __read_cr4(); 123 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 124 &ctxt->misc_enable); 125 msr_save_context(ctxt); 126 } 127 128 /* Needed by apm.c */ 129 void save_processor_state(void) 130 { 131 __save_processor_state(&saved_context); 132 x86_platform.save_sched_clock_state(); 133 } 134 #ifdef CONFIG_X86_32 135 EXPORT_SYMBOL(save_processor_state); 136 #endif 137 138 static void do_fpu_end(void) 139 { 140 /* 141 * Restore FPU regs if necessary. 142 */ 143 kernel_fpu_end(); 144 } 145 146 static void fix_processor_context(void) 147 { 148 int cpu = smp_processor_id(); 149 #ifdef CONFIG_X86_64 150 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 151 tss_desc tss; 152 #endif 153 154 /* 155 * We need to reload TR, which requires that we change the 156 * GDT entry to indicate "available" first. 157 * 158 * XXX: This could probably all be replaced by a call to 159 * force_reload_TR(). 160 */ 161 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 162 163 #ifdef CONFIG_X86_64 164 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 165 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 166 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 167 168 syscall_init(); /* This sets MSR_*STAR and related */ 169 #else 170 if (boot_cpu_has(X86_FEATURE_SEP)) 171 enable_sep_cpu(); 172 #endif 173 load_TR_desc(); /* This does ltr */ 174 load_mm_ldt(current->active_mm); /* This does lldt */ 175 initialize_tlbstate_and_flush(); 176 177 fpu__resume_cpu(); 178 179 /* The processor is back on the direct GDT, load back the fixmap */ 180 load_fixmap_gdt(cpu); 181 } 182 183 /** 184 * __restore_processor_state - restore the contents of CPU registers saved 185 * by __save_processor_state() 186 * @ctxt - structure to load the registers contents from 187 * 188 * The asm code that gets us here will have restored a usable GDT, although 189 * it will be pointing to the wrong alias. 190 */ 191 static void notrace __restore_processor_state(struct saved_context *ctxt) 192 { 193 struct cpuinfo_x86 *c; 194 195 if (ctxt->misc_enable_saved) 196 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 197 /* 198 * control registers 199 */ 200 /* cr4 was introduced in the Pentium CPU */ 201 #ifdef CONFIG_X86_32 202 if (ctxt->cr4) 203 __write_cr4(ctxt->cr4); 204 #else 205 /* CONFIG X86_64 */ 206 wrmsrl(MSR_EFER, ctxt->efer); 207 __write_cr4(ctxt->cr4); 208 #endif 209 write_cr3(ctxt->cr3); 210 write_cr2(ctxt->cr2); 211 write_cr0(ctxt->cr0); 212 213 /* Restore the IDT. */ 214 load_idt(&ctxt->idt); 215 216 /* 217 * Just in case the asm code got us here with the SS, DS, or ES 218 * out of sync with the GDT, update them. 219 */ 220 loadsegment(ss, __KERNEL_DS); 221 loadsegment(ds, __USER_DS); 222 loadsegment(es, __USER_DS); 223 224 /* 225 * Restore percpu access. Percpu access can happen in exception 226 * handlers or in complicated helpers like load_gs_index(). 227 */ 228 #ifdef CONFIG_X86_64 229 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 230 #else 231 loadsegment(fs, __KERNEL_PERCPU); 232 #endif 233 234 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 235 fix_processor_context(); 236 237 /* 238 * Now that we have descriptor tables fully restored and working 239 * exception handling, restore the usermode segments. 240 */ 241 #ifdef CONFIG_X86_64 242 loadsegment(ds, ctxt->es); 243 loadsegment(es, ctxt->es); 244 loadsegment(fs, ctxt->fs); 245 load_gs_index(ctxt->gs); 246 247 /* 248 * Restore FSBASE and GSBASE after restoring the selectors, since 249 * restoring the selectors clobbers the bases. Keep in mind 250 * that MSR_KERNEL_GS_BASE is horribly misnamed. 251 */ 252 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 253 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 254 #else 255 loadsegment(gs, ctxt->gs); 256 #endif 257 258 do_fpu_end(); 259 tsc_verify_tsc_adjust(true); 260 x86_platform.restore_sched_clock_state(); 261 mtrr_bp_restore(); 262 perf_restore_debug_store(); 263 msr_restore_context(ctxt); 264 265 c = &cpu_data(smp_processor_id()); 266 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 267 init_ia32_feat_ctl(c); 268 } 269 270 /* Needed by apm.c */ 271 void notrace restore_processor_state(void) 272 { 273 __restore_processor_state(&saved_context); 274 } 275 #ifdef CONFIG_X86_32 276 EXPORT_SYMBOL(restore_processor_state); 277 #endif 278 279 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 280 static void resume_play_dead(void) 281 { 282 play_dead_common(); 283 tboot_shutdown(TB_SHUTDOWN_WFS); 284 hlt_play_dead(); 285 } 286 287 int hibernate_resume_nonboot_cpu_disable(void) 288 { 289 void (*play_dead)(void) = smp_ops.play_dead; 290 int ret; 291 292 /* 293 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 294 * during hibernate image restoration, because it is likely that the 295 * monitored address will be actually written to at that time and then 296 * the "dead" CPU will attempt to execute instructions again, but the 297 * address in its instruction pointer may not be possible to resolve 298 * any more at that point (the page tables used by it previously may 299 * have been overwritten by hibernate image data). 300 * 301 * First, make sure that we wake up all the potentially disabled SMT 302 * threads which have been initially brought up and then put into 303 * mwait/cpuidle sleep. 304 * Those will be put to proper (not interfering with hibernation 305 * resume) sleep afterwards, and the resumed kernel will decide itself 306 * what to do with them. 307 */ 308 ret = cpuhp_smt_enable(); 309 if (ret) 310 return ret; 311 smp_ops.play_dead = resume_play_dead; 312 ret = freeze_secondary_cpus(0); 313 smp_ops.play_dead = play_dead; 314 return ret; 315 } 316 #endif 317 318 /* 319 * When bsp_check() is called in hibernate and suspend, cpu hotplug 320 * is disabled already. So it's unnecessary to handle race condition between 321 * cpumask query and cpu hotplug. 322 */ 323 static int bsp_check(void) 324 { 325 if (cpumask_first(cpu_online_mask) != 0) { 326 pr_warn("CPU0 is offline.\n"); 327 return -ENODEV; 328 } 329 330 return 0; 331 } 332 333 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 334 void *ptr) 335 { 336 int ret = 0; 337 338 switch (action) { 339 case PM_SUSPEND_PREPARE: 340 case PM_HIBERNATION_PREPARE: 341 ret = bsp_check(); 342 break; 343 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 344 case PM_RESTORE_PREPARE: 345 /* 346 * When system resumes from hibernation, online CPU0 because 347 * 1. it's required for resume and 348 * 2. the CPU was online before hibernation 349 */ 350 if (!cpu_online(0)) 351 _debug_hotplug_cpu(0, 1); 352 break; 353 case PM_POST_RESTORE: 354 /* 355 * When a resume really happens, this code won't be called. 356 * 357 * This code is called only when user space hibernation software 358 * prepares for snapshot device during boot time. So we just 359 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 360 * preparing the snapshot device. 361 * 362 * This works for normal boot case in our CPU0 hotplug debug 363 * mode, i.e. CPU0 is offline and user mode hibernation 364 * software initializes during boot time. 365 * 366 * If CPU0 is online and user application accesses snapshot 367 * device after boot time, this will offline CPU0 and user may 368 * see different CPU0 state before and after accessing 369 * the snapshot device. But hopefully this is not a case when 370 * user debugging CPU0 hotplug. Even if users hit this case, 371 * they can easily online CPU0 back. 372 * 373 * To simplify this debug code, we only consider normal boot 374 * case. Otherwise we need to remember CPU0's state and restore 375 * to that state and resolve racy conditions etc. 376 */ 377 _debug_hotplug_cpu(0, 0); 378 break; 379 #endif 380 default: 381 break; 382 } 383 return notifier_from_errno(ret); 384 } 385 386 static int __init bsp_pm_check_init(void) 387 { 388 /* 389 * Set this bsp_pm_callback as lower priority than 390 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 391 * earlier to disable cpu hotplug before bsp online check. 392 */ 393 pm_notifier(bsp_pm_callback, -INT_MAX); 394 return 0; 395 } 396 397 core_initcall(bsp_pm_check_init); 398 399 static int msr_build_context(const u32 *msr_id, const int num) 400 { 401 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 402 struct saved_msr *msr_array; 403 int total_num; 404 int i, j; 405 406 total_num = saved_msrs->num + num; 407 408 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 409 if (!msr_array) { 410 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 411 return -ENOMEM; 412 } 413 414 if (saved_msrs->array) { 415 /* 416 * Multiple callbacks can invoke this function, so copy any 417 * MSR save requests from previous invocations. 418 */ 419 memcpy(msr_array, saved_msrs->array, 420 sizeof(struct saved_msr) * saved_msrs->num); 421 422 kfree(saved_msrs->array); 423 } 424 425 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 426 msr_array[i].info.msr_no = msr_id[j]; 427 msr_array[i].valid = false; 428 msr_array[i].info.reg.q = 0; 429 } 430 saved_msrs->num = total_num; 431 saved_msrs->array = msr_array; 432 433 return 0; 434 } 435 436 /* 437 * The following sections are a quirk framework for problematic BIOSen: 438 * Sometimes MSRs are modified by the BIOSen after suspended to 439 * RAM, this might cause unexpected behavior after wakeup. 440 * Thus we save/restore these specified MSRs across suspend/resume 441 * in order to work around it. 442 * 443 * For any further problematic BIOSen/platforms, 444 * please add your own function similar to msr_initialize_bdw. 445 */ 446 static int msr_initialize_bdw(const struct dmi_system_id *d) 447 { 448 /* Add any extra MSR ids into this array. */ 449 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 450 451 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 452 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 453 } 454 455 static const struct dmi_system_id msr_save_dmi_table[] = { 456 { 457 .callback = msr_initialize_bdw, 458 .ident = "BROADWELL BDX_EP", 459 .matches = { 460 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 461 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 462 }, 463 }, 464 {} 465 }; 466 467 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 468 { 469 u32 cpuid_msr_id[] = { 470 MSR_AMD64_CPUID_FN_1, 471 }; 472 473 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 474 c->family); 475 476 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 477 } 478 479 static const struct x86_cpu_id msr_save_cpu_table[] = { 480 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 481 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 482 {} 483 }; 484 485 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 486 static int pm_cpu_check(const struct x86_cpu_id *c) 487 { 488 const struct x86_cpu_id *m; 489 int ret = 0; 490 491 m = x86_match_cpu(msr_save_cpu_table); 492 if (m) { 493 pm_cpu_match_t fn; 494 495 fn = (pm_cpu_match_t)m->driver_data; 496 ret = fn(m); 497 } 498 499 return ret; 500 } 501 502 static int pm_check_save_msr(void) 503 { 504 dmi_check_system(msr_save_dmi_table); 505 pm_cpu_check(msr_save_cpu_table); 506 507 return 0; 508 } 509 510 device_initcall(pm_check_save_msr); 511