1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/api.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/cacheinfo.h> 27 #include <asm/mmu_context.h> 28 #include <asm/cpu_device_id.h> 29 #include <asm/microcode.h> 30 #include <asm/fred.h> 31 32 #ifdef CONFIG_X86_32 33 __visible unsigned long saved_context_ebx; 34 __visible unsigned long saved_context_esp, saved_context_ebp; 35 __visible unsigned long saved_context_esi, saved_context_edi; 36 __visible unsigned long saved_context_eflags; 37 #endif 38 struct saved_context saved_context; 39 40 static void msr_save_context(struct saved_context *ctxt) 41 { 42 struct saved_msr *msr = ctxt->saved_msrs.array; 43 struct saved_msr *end = msr + ctxt->saved_msrs.num; 44 45 while (msr < end) { 46 if (msr->valid) 47 rdmsrl(msr->info.msr_no, msr->info.reg.q); 48 msr++; 49 } 50 } 51 52 static void msr_restore_context(struct saved_context *ctxt) 53 { 54 struct saved_msr *msr = ctxt->saved_msrs.array; 55 struct saved_msr *end = msr + ctxt->saved_msrs.num; 56 57 while (msr < end) { 58 if (msr->valid) 59 wrmsrl(msr->info.msr_no, msr->info.reg.q); 60 msr++; 61 } 62 } 63 64 /** 65 * __save_processor_state() - Save CPU registers before creating a 66 * hibernation image and before restoring 67 * the memory state from it 68 * @ctxt: Structure to store the registers contents in. 69 * 70 * NOTE: If there is a CPU register the modification of which by the 71 * boot kernel (ie. the kernel used for loading the hibernation image) 72 * might affect the operations of the restored target kernel (ie. the one 73 * saved in the hibernation image), then its contents must be saved by this 74 * function. In other words, if kernel A is hibernated and different 75 * kernel B is used for loading the hibernation image into memory, the 76 * kernel A's __save_processor_state() function must save all registers 77 * needed by kernel A, so that it can operate correctly after the resume 78 * regardless of what kernel B does in the meantime. 79 */ 80 static void __save_processor_state(struct saved_context *ctxt) 81 { 82 #ifdef CONFIG_X86_32 83 mtrr_save_fixed_ranges(NULL); 84 #endif 85 kernel_fpu_begin(); 86 87 /* 88 * descriptor tables 89 */ 90 store_idt(&ctxt->idt); 91 92 /* 93 * We save it here, but restore it only in the hibernate case. 94 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 95 * mode in "secondary_startup_64". In 32-bit mode it is done via 96 * 'pmode_gdt' in wakeup_start. 97 */ 98 ctxt->gdt_desc.size = GDT_SIZE - 1; 99 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 100 101 store_tr(ctxt->tr); 102 103 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 104 /* 105 * segment registers 106 */ 107 savesegment(gs, ctxt->gs); 108 #ifdef CONFIG_X86_64 109 savesegment(fs, ctxt->fs); 110 savesegment(ds, ctxt->ds); 111 savesegment(es, ctxt->es); 112 113 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 114 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 115 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 116 mtrr_save_fixed_ranges(NULL); 117 118 rdmsrl(MSR_EFER, ctxt->efer); 119 #endif 120 121 /* 122 * control registers 123 */ 124 ctxt->cr0 = read_cr0(); 125 ctxt->cr2 = read_cr2(); 126 ctxt->cr3 = __read_cr3(); 127 ctxt->cr4 = __read_cr4(); 128 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 129 &ctxt->misc_enable); 130 msr_save_context(ctxt); 131 } 132 133 /* Needed by apm.c */ 134 void save_processor_state(void) 135 { 136 __save_processor_state(&saved_context); 137 x86_platform.save_sched_clock_state(); 138 } 139 #ifdef CONFIG_X86_32 140 EXPORT_SYMBOL(save_processor_state); 141 #endif 142 143 static void do_fpu_end(void) 144 { 145 /* 146 * Restore FPU regs if necessary. 147 */ 148 kernel_fpu_end(); 149 } 150 151 static void fix_processor_context(void) 152 { 153 int cpu = smp_processor_id(); 154 #ifdef CONFIG_X86_64 155 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 156 tss_desc tss; 157 #endif 158 159 /* 160 * We need to reload TR, which requires that we change the 161 * GDT entry to indicate "available" first. 162 * 163 * XXX: This could probably all be replaced by a call to 164 * force_reload_TR(). 165 */ 166 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 167 168 #ifdef CONFIG_X86_64 169 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 170 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 171 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 172 173 syscall_init(); /* This sets MSR_*STAR and related */ 174 #else 175 if (boot_cpu_has(X86_FEATURE_SEP)) 176 enable_sep_cpu(); 177 #endif 178 load_TR_desc(); /* This does ltr */ 179 load_mm_ldt(current->active_mm); /* This does lldt */ 180 initialize_tlbstate_and_flush(); 181 182 fpu__resume_cpu(); 183 184 /* The processor is back on the direct GDT, load back the fixmap */ 185 load_fixmap_gdt(cpu); 186 } 187 188 /** 189 * __restore_processor_state() - Restore the contents of CPU registers saved 190 * by __save_processor_state() 191 * @ctxt: Structure to load the registers contents from. 192 * 193 * The asm code that gets us here will have restored a usable GDT, although 194 * it will be pointing to the wrong alias. 195 */ 196 static void notrace __restore_processor_state(struct saved_context *ctxt) 197 { 198 struct cpuinfo_x86 *c; 199 200 if (ctxt->misc_enable_saved) 201 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 202 /* 203 * control registers 204 */ 205 /* cr4 was introduced in the Pentium CPU */ 206 #ifdef CONFIG_X86_32 207 if (ctxt->cr4) 208 __write_cr4(ctxt->cr4); 209 #else 210 /* CONFIG X86_64 */ 211 wrmsrl(MSR_EFER, ctxt->efer); 212 __write_cr4(ctxt->cr4); 213 #endif 214 write_cr3(ctxt->cr3); 215 write_cr2(ctxt->cr2); 216 write_cr0(ctxt->cr0); 217 218 /* Restore the IDT. */ 219 load_idt(&ctxt->idt); 220 221 /* 222 * Just in case the asm code got us here with the SS, DS, or ES 223 * out of sync with the GDT, update them. 224 */ 225 loadsegment(ss, __KERNEL_DS); 226 loadsegment(ds, __USER_DS); 227 loadsegment(es, __USER_DS); 228 229 /* 230 * Restore percpu access. Percpu access can happen in exception 231 * handlers or in complicated helpers like load_gs_index(). 232 */ 233 #ifdef CONFIG_X86_64 234 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); 235 236 /* 237 * Reinitialize FRED to ensure the FRED MSRs contain the same values 238 * as before hibernation. 239 * 240 * Note, the setup of FRED RSPs requires access to percpu data 241 * structures. Therefore, FRED reinitialization can only occur after 242 * the percpu access pointer (i.e., MSR_GS_BASE) is restored. 243 */ 244 if (ctxt->cr4 & X86_CR4_FRED) { 245 cpu_init_fred_exceptions(); 246 cpu_init_fred_rsps(); 247 } 248 #else 249 loadsegment(fs, __KERNEL_PERCPU); 250 #endif 251 252 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 253 fix_processor_context(); 254 255 /* 256 * Now that we have descriptor tables fully restored and working 257 * exception handling, restore the usermode segments. 258 */ 259 #ifdef CONFIG_X86_64 260 loadsegment(ds, ctxt->es); 261 loadsegment(es, ctxt->es); 262 loadsegment(fs, ctxt->fs); 263 load_gs_index(ctxt->gs); 264 265 /* 266 * Restore FSBASE and GSBASE after restoring the selectors, since 267 * restoring the selectors clobbers the bases. Keep in mind 268 * that MSR_KERNEL_GS_BASE is horribly misnamed. 269 */ 270 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 271 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 272 #else 273 loadsegment(gs, ctxt->gs); 274 #endif 275 276 do_fpu_end(); 277 tsc_verify_tsc_adjust(true); 278 x86_platform.restore_sched_clock_state(); 279 cache_bp_restore(); 280 perf_restore_debug_store(); 281 282 c = &cpu_data(smp_processor_id()); 283 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 284 init_ia32_feat_ctl(c); 285 286 microcode_bsp_resume(); 287 288 /* 289 * This needs to happen after the microcode has been updated upon resume 290 * because some of the MSRs are "emulated" in microcode. 291 */ 292 msr_restore_context(ctxt); 293 } 294 295 /* Needed by apm.c */ 296 void notrace restore_processor_state(void) 297 { 298 __restore_processor_state(&saved_context); 299 } 300 #ifdef CONFIG_X86_32 301 EXPORT_SYMBOL(restore_processor_state); 302 #endif 303 304 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 305 static void __noreturn resume_play_dead(void) 306 { 307 play_dead_common(); 308 tboot_shutdown(TB_SHUTDOWN_WFS); 309 hlt_play_dead(); 310 } 311 312 int hibernate_resume_nonboot_cpu_disable(void) 313 { 314 void (*play_dead)(void) = smp_ops.play_dead; 315 int ret; 316 317 /* 318 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 319 * during hibernate image restoration, because it is likely that the 320 * monitored address will be actually written to at that time and then 321 * the "dead" CPU will attempt to execute instructions again, but the 322 * address in its instruction pointer may not be possible to resolve 323 * any more at that point (the page tables used by it previously may 324 * have been overwritten by hibernate image data). 325 * 326 * First, make sure that we wake up all the potentially disabled SMT 327 * threads which have been initially brought up and then put into 328 * mwait/cpuidle sleep. 329 * Those will be put to proper (not interfering with hibernation 330 * resume) sleep afterwards, and the resumed kernel will decide itself 331 * what to do with them. 332 */ 333 ret = cpuhp_smt_enable(); 334 if (ret) 335 return ret; 336 smp_ops.play_dead = resume_play_dead; 337 ret = freeze_secondary_cpus(0); 338 smp_ops.play_dead = play_dead; 339 return ret; 340 } 341 #endif 342 343 /* 344 * When bsp_check() is called in hibernate and suspend, cpu hotplug 345 * is disabled already. So it's unnecessary to handle race condition between 346 * cpumask query and cpu hotplug. 347 */ 348 static int bsp_check(void) 349 { 350 if (cpumask_first(cpu_online_mask) != 0) { 351 pr_warn("CPU0 is offline.\n"); 352 return -ENODEV; 353 } 354 355 return 0; 356 } 357 358 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 359 void *ptr) 360 { 361 int ret = 0; 362 363 switch (action) { 364 case PM_SUSPEND_PREPARE: 365 case PM_HIBERNATION_PREPARE: 366 ret = bsp_check(); 367 break; 368 default: 369 break; 370 } 371 return notifier_from_errno(ret); 372 } 373 374 static int __init bsp_pm_check_init(void) 375 { 376 /* 377 * Set this bsp_pm_callback as lower priority than 378 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 379 * earlier to disable cpu hotplug before bsp online check. 380 */ 381 pm_notifier(bsp_pm_callback, -INT_MAX); 382 return 0; 383 } 384 385 core_initcall(bsp_pm_check_init); 386 387 static int msr_build_context(const u32 *msr_id, const int num) 388 { 389 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 390 struct saved_msr *msr_array; 391 int total_num; 392 int i, j; 393 394 total_num = saved_msrs->num + num; 395 396 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 397 if (!msr_array) { 398 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 399 return -ENOMEM; 400 } 401 402 if (saved_msrs->array) { 403 /* 404 * Multiple callbacks can invoke this function, so copy any 405 * MSR save requests from previous invocations. 406 */ 407 memcpy(msr_array, saved_msrs->array, 408 sizeof(struct saved_msr) * saved_msrs->num); 409 410 kfree(saved_msrs->array); 411 } 412 413 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 414 u64 dummy; 415 416 msr_array[i].info.msr_no = msr_id[j]; 417 msr_array[i].valid = !rdmsrl_safe(msr_id[j], &dummy); 418 msr_array[i].info.reg.q = 0; 419 } 420 saved_msrs->num = total_num; 421 saved_msrs->array = msr_array; 422 423 return 0; 424 } 425 426 /* 427 * The following sections are a quirk framework for problematic BIOSen: 428 * Sometimes MSRs are modified by the BIOSen after suspended to 429 * RAM, this might cause unexpected behavior after wakeup. 430 * Thus we save/restore these specified MSRs across suspend/resume 431 * in order to work around it. 432 * 433 * For any further problematic BIOSen/platforms, 434 * please add your own function similar to msr_initialize_bdw. 435 */ 436 static int msr_initialize_bdw(const struct dmi_system_id *d) 437 { 438 /* Add any extra MSR ids into this array. */ 439 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 440 441 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 442 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 443 } 444 445 static const struct dmi_system_id msr_save_dmi_table[] = { 446 { 447 .callback = msr_initialize_bdw, 448 .ident = "BROADWELL BDX_EP", 449 .matches = { 450 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 451 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 452 }, 453 }, 454 {} 455 }; 456 457 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 458 { 459 u32 cpuid_msr_id[] = { 460 MSR_AMD64_CPUID_FN_1, 461 }; 462 463 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 464 c->family); 465 466 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 467 } 468 469 static const struct x86_cpu_id msr_save_cpu_table[] = { 470 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 471 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 472 {} 473 }; 474 475 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 476 static int pm_cpu_check(const struct x86_cpu_id *c) 477 { 478 const struct x86_cpu_id *m; 479 int ret = 0; 480 481 m = x86_match_cpu(msr_save_cpu_table); 482 if (m) { 483 pm_cpu_match_t fn; 484 485 fn = (pm_cpu_match_t)m->driver_data; 486 ret = fn(m); 487 } 488 489 return ret; 490 } 491 492 static void pm_save_spec_msr(void) 493 { 494 struct msr_enumeration { 495 u32 msr_no; 496 u32 feature; 497 } msr_enum[] = { 498 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, 499 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, 500 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, 501 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, 502 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, 503 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, 504 }; 505 int i; 506 507 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { 508 if (boot_cpu_has(msr_enum[i].feature)) 509 msr_build_context(&msr_enum[i].msr_no, 1); 510 } 511 } 512 513 static int pm_check_save_msr(void) 514 { 515 dmi_check_system(msr_save_dmi_table); 516 pm_cpu_check(msr_save_cpu_table); 517 pm_save_spec_msr(); 518 519 return 0; 520 } 521 522 device_initcall(pm_check_save_msr); 523