1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Suspend support specific for i386/x86-64. 4 * 5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 8 */ 9 10 #include <linux/suspend.h> 11 #include <linux/export.h> 12 #include <linux/smp.h> 13 #include <linux/perf_event.h> 14 #include <linux/tboot.h> 15 #include <linux/dmi.h> 16 #include <linux/pgtable.h> 17 18 #include <asm/proto.h> 19 #include <asm/mtrr.h> 20 #include <asm/page.h> 21 #include <asm/mce.h> 22 #include <asm/suspend.h> 23 #include <asm/fpu/api.h> 24 #include <asm/debugreg.h> 25 #include <asm/cpu.h> 26 #include <asm/cacheinfo.h> 27 #include <asm/mmu_context.h> 28 #include <asm/cpu_device_id.h> 29 #include <asm/microcode.h> 30 #include <asm/msr.h> 31 #include <asm/fred.h> 32 33 #ifdef CONFIG_X86_32 34 __visible unsigned long saved_context_ebx; 35 __visible unsigned long saved_context_esp, saved_context_ebp; 36 __visible unsigned long saved_context_esi, saved_context_edi; 37 __visible unsigned long saved_context_eflags; 38 #endif 39 struct saved_context saved_context; 40 41 static void msr_save_context(struct saved_context *ctxt) 42 { 43 struct saved_msr *msr = ctxt->saved_msrs.array; 44 struct saved_msr *end = msr + ctxt->saved_msrs.num; 45 46 while (msr < end) { 47 if (msr->valid) 48 rdmsrq(msr->info.msr_no, msr->info.reg.q); 49 msr++; 50 } 51 } 52 53 static void msr_restore_context(struct saved_context *ctxt) 54 { 55 struct saved_msr *msr = ctxt->saved_msrs.array; 56 struct saved_msr *end = msr + ctxt->saved_msrs.num; 57 58 while (msr < end) { 59 if (msr->valid) 60 wrmsrq(msr->info.msr_no, msr->info.reg.q); 61 msr++; 62 } 63 } 64 65 /** 66 * __save_processor_state() - Save CPU registers before creating a 67 * hibernation image and before restoring 68 * the memory state from it 69 * @ctxt: Structure to store the registers contents in. 70 * 71 * NOTE: If there is a CPU register the modification of which by the 72 * boot kernel (ie. the kernel used for loading the hibernation image) 73 * might affect the operations of the restored target kernel (ie. the one 74 * saved in the hibernation image), then its contents must be saved by this 75 * function. In other words, if kernel A is hibernated and different 76 * kernel B is used for loading the hibernation image into memory, the 77 * kernel A's __save_processor_state() function must save all registers 78 * needed by kernel A, so that it can operate correctly after the resume 79 * regardless of what kernel B does in the meantime. 80 */ 81 static void __save_processor_state(struct saved_context *ctxt) 82 { 83 #ifdef CONFIG_X86_32 84 mtrr_save_fixed_ranges(NULL); 85 #endif 86 kernel_fpu_begin(); 87 88 /* 89 * descriptor tables 90 */ 91 store_idt(&ctxt->idt); 92 93 /* 94 * We save it here, but restore it only in the hibernate case. 95 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 96 * mode in "secondary_startup_64". In 32-bit mode it is done via 97 * 'pmode_gdt' in wakeup_start. 98 */ 99 ctxt->gdt_desc.size = GDT_SIZE - 1; 100 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); 101 102 store_tr(ctxt->tr); 103 104 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 105 /* 106 * segment registers 107 */ 108 savesegment(gs, ctxt->gs); 109 #ifdef CONFIG_X86_64 110 savesegment(fs, ctxt->fs); 111 savesegment(ds, ctxt->ds); 112 savesegment(es, ctxt->es); 113 114 rdmsrq(MSR_FS_BASE, ctxt->fs_base); 115 rdmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base); 116 rdmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 117 mtrr_save_fixed_ranges(NULL); 118 119 rdmsrq(MSR_EFER, ctxt->efer); 120 #endif 121 122 /* 123 * control registers 124 */ 125 ctxt->cr0 = read_cr0(); 126 ctxt->cr2 = read_cr2(); 127 ctxt->cr3 = __read_cr3(); 128 ctxt->cr4 = __read_cr4(); 129 ctxt->misc_enable_saved = !rdmsrq_safe(MSR_IA32_MISC_ENABLE, 130 &ctxt->misc_enable); 131 msr_save_context(ctxt); 132 } 133 134 /* Needed by apm.c */ 135 void save_processor_state(void) 136 { 137 __save_processor_state(&saved_context); 138 x86_platform.save_sched_clock_state(); 139 } 140 #ifdef CONFIG_X86_32 141 EXPORT_SYMBOL(save_processor_state); 142 #endif 143 144 static void do_fpu_end(void) 145 { 146 /* 147 * Restore FPU regs if necessary. 148 */ 149 kernel_fpu_end(); 150 } 151 152 static void fix_processor_context(void) 153 { 154 int cpu = smp_processor_id(); 155 #ifdef CONFIG_X86_64 156 struct desc_struct *desc = get_cpu_gdt_rw(cpu); 157 tss_desc tss; 158 #endif 159 160 /* 161 * We need to reload TR, which requires that we change the 162 * GDT entry to indicate "available" first. 163 * 164 * XXX: This could probably all be replaced by a call to 165 * force_reload_TR(). 166 */ 167 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 168 169 #ifdef CONFIG_X86_64 170 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 171 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 172 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 173 174 syscall_init(); /* This sets MSR_*STAR and related */ 175 #else 176 if (boot_cpu_has(X86_FEATURE_SEP)) 177 enable_sep_cpu(); 178 #endif 179 load_TR_desc(); /* This does ltr */ 180 load_mm_ldt(current->active_mm); /* This does lldt */ 181 initialize_tlbstate_and_flush(); 182 183 fpu__resume_cpu(); 184 185 /* The processor is back on the direct GDT, load back the fixmap */ 186 load_fixmap_gdt(cpu); 187 } 188 189 /** 190 * __restore_processor_state() - Restore the contents of CPU registers saved 191 * by __save_processor_state() 192 * @ctxt: Structure to load the registers contents from. 193 * 194 * The asm code that gets us here will have restored a usable GDT, although 195 * it will be pointing to the wrong alias. 196 */ 197 static void notrace __restore_processor_state(struct saved_context *ctxt) 198 { 199 struct cpuinfo_x86 *c; 200 201 if (ctxt->misc_enable_saved) 202 wrmsrq(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 203 /* 204 * control registers 205 */ 206 /* cr4 was introduced in the Pentium CPU */ 207 #ifdef CONFIG_X86_32 208 if (ctxt->cr4) 209 __write_cr4(ctxt->cr4); 210 #else 211 /* CONFIG X86_64 */ 212 wrmsrq(MSR_EFER, ctxt->efer); 213 __write_cr4(ctxt->cr4); 214 #endif 215 write_cr3(ctxt->cr3); 216 write_cr2(ctxt->cr2); 217 write_cr0(ctxt->cr0); 218 219 /* Restore the IDT. */ 220 load_idt(&ctxt->idt); 221 222 /* 223 * Just in case the asm code got us here with the SS, DS, or ES 224 * out of sync with the GDT, update them. 225 */ 226 loadsegment(ss, __KERNEL_DS); 227 loadsegment(ds, __USER_DS); 228 loadsegment(es, __USER_DS); 229 230 /* 231 * Restore percpu access. Percpu access can happen in exception 232 * handlers or in complicated helpers like load_gs_index(). 233 */ 234 #ifdef CONFIG_X86_64 235 wrmsrq(MSR_GS_BASE, ctxt->kernelmode_gs_base); 236 237 /* 238 * Reinitialize FRED to ensure the FRED MSRs contain the same values 239 * as before hibernation. 240 * 241 * Note, the setup of FRED RSPs requires access to percpu data 242 * structures. Therefore, FRED reinitialization can only occur after 243 * the percpu access pointer (i.e., MSR_GS_BASE) is restored. 244 */ 245 if (ctxt->cr4 & X86_CR4_FRED) { 246 cpu_init_fred_exceptions(); 247 cpu_init_fred_rsps(); 248 } 249 #else 250 loadsegment(fs, __KERNEL_PERCPU); 251 #endif 252 253 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ 254 fix_processor_context(); 255 256 /* 257 * Now that we have descriptor tables fully restored and working 258 * exception handling, restore the usermode segments. 259 */ 260 #ifdef CONFIG_X86_64 261 loadsegment(ds, ctxt->es); 262 loadsegment(es, ctxt->es); 263 loadsegment(fs, ctxt->fs); 264 load_gs_index(ctxt->gs); 265 266 /* 267 * Restore FSBASE and GSBASE after restoring the selectors, since 268 * restoring the selectors clobbers the bases. Keep in mind 269 * that MSR_KERNEL_GS_BASE is horribly misnamed. 270 */ 271 wrmsrq(MSR_FS_BASE, ctxt->fs_base); 272 wrmsrq(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); 273 #else 274 loadsegment(gs, ctxt->gs); 275 #endif 276 277 do_fpu_end(); 278 tsc_verify_tsc_adjust(true); 279 x86_platform.restore_sched_clock_state(); 280 cache_bp_restore(); 281 perf_restore_debug_store(); 282 283 c = &cpu_data(smp_processor_id()); 284 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL)) 285 init_ia32_feat_ctl(c); 286 287 microcode_bsp_resume(); 288 289 /* 290 * This needs to happen after the microcode has been updated upon resume 291 * because some of the MSRs are "emulated" in microcode. 292 */ 293 msr_restore_context(ctxt); 294 } 295 296 /* Needed by apm.c */ 297 void notrace restore_processor_state(void) 298 { 299 __restore_processor_state(&saved_context); 300 } 301 #ifdef CONFIG_X86_32 302 EXPORT_SYMBOL(restore_processor_state); 303 #endif 304 305 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) 306 static void __noreturn resume_play_dead(void) 307 { 308 play_dead_common(); 309 tboot_shutdown(TB_SHUTDOWN_WFS); 310 hlt_play_dead(); 311 } 312 313 int hibernate_resume_nonboot_cpu_disable(void) 314 { 315 void (*play_dead)(void) = smp_ops.play_dead; 316 int ret; 317 318 /* 319 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop 320 * during hibernate image restoration, because it is likely that the 321 * monitored address will be actually written to at that time and then 322 * the "dead" CPU will attempt to execute instructions again, but the 323 * address in its instruction pointer may not be possible to resolve 324 * any more at that point (the page tables used by it previously may 325 * have been overwritten by hibernate image data). 326 * 327 * First, make sure that we wake up all the potentially disabled SMT 328 * threads which have been initially brought up and then put into 329 * mwait/cpuidle sleep. 330 * Those will be put to proper (not interfering with hibernation 331 * resume) sleep afterwards, and the resumed kernel will decide itself 332 * what to do with them. 333 */ 334 ret = cpuhp_smt_enable(); 335 if (ret) 336 return ret; 337 smp_ops.play_dead = resume_play_dead; 338 ret = freeze_secondary_cpus(0); 339 smp_ops.play_dead = play_dead; 340 return ret; 341 } 342 #endif 343 344 /* 345 * When bsp_check() is called in hibernate and suspend, cpu hotplug 346 * is disabled already. So it's unnecessary to handle race condition between 347 * cpumask query and cpu hotplug. 348 */ 349 static int bsp_check(void) 350 { 351 if (cpumask_first(cpu_online_mask) != 0) { 352 pr_warn("CPU0 is offline.\n"); 353 return -ENODEV; 354 } 355 356 return 0; 357 } 358 359 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 360 void *ptr) 361 { 362 int ret = 0; 363 364 switch (action) { 365 case PM_SUSPEND_PREPARE: 366 case PM_HIBERNATION_PREPARE: 367 ret = bsp_check(); 368 break; 369 default: 370 break; 371 } 372 return notifier_from_errno(ret); 373 } 374 375 static int __init bsp_pm_check_init(void) 376 { 377 /* 378 * Set this bsp_pm_callback as lower priority than 379 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 380 * earlier to disable cpu hotplug before bsp online check. 381 */ 382 pm_notifier(bsp_pm_callback, -INT_MAX); 383 return 0; 384 } 385 386 core_initcall(bsp_pm_check_init); 387 388 static int msr_build_context(const u32 *msr_id, const int num) 389 { 390 struct saved_msrs *saved_msrs = &saved_context.saved_msrs; 391 struct saved_msr *msr_array; 392 int total_num; 393 int i, j; 394 395 total_num = saved_msrs->num + num; 396 397 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); 398 if (!msr_array) { 399 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); 400 return -ENOMEM; 401 } 402 403 if (saved_msrs->array) { 404 /* 405 * Multiple callbacks can invoke this function, so copy any 406 * MSR save requests from previous invocations. 407 */ 408 memcpy(msr_array, saved_msrs->array, 409 sizeof(struct saved_msr) * saved_msrs->num); 410 411 kfree(saved_msrs->array); 412 } 413 414 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) { 415 u64 dummy; 416 417 msr_array[i].info.msr_no = msr_id[j]; 418 msr_array[i].valid = !rdmsrq_safe(msr_id[j], &dummy); 419 msr_array[i].info.reg.q = 0; 420 } 421 saved_msrs->num = total_num; 422 saved_msrs->array = msr_array; 423 424 return 0; 425 } 426 427 /* 428 * The following sections are a quirk framework for problematic BIOSen: 429 * Sometimes MSRs are modified by the BIOSen after suspended to 430 * RAM, this might cause unexpected behavior after wakeup. 431 * Thus we save/restore these specified MSRs across suspend/resume 432 * in order to work around it. 433 * 434 * For any further problematic BIOSen/platforms, 435 * please add your own function similar to msr_initialize_bdw. 436 */ 437 static int msr_initialize_bdw(const struct dmi_system_id *d) 438 { 439 /* Add any extra MSR ids into this array. */ 440 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; 441 442 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); 443 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); 444 } 445 446 static const struct dmi_system_id msr_save_dmi_table[] = { 447 { 448 .callback = msr_initialize_bdw, 449 .ident = "BROADWELL BDX_EP", 450 .matches = { 451 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), 452 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), 453 }, 454 }, 455 {} 456 }; 457 458 static int msr_save_cpuid_features(const struct x86_cpu_id *c) 459 { 460 u32 cpuid_msr_id[] = { 461 MSR_AMD64_CPUID_FN_1, 462 }; 463 464 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n", 465 c->family); 466 467 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id)); 468 } 469 470 static const struct x86_cpu_id msr_save_cpu_table[] = { 471 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features), 472 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features), 473 {} 474 }; 475 476 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *); 477 static int pm_cpu_check(const struct x86_cpu_id *c) 478 { 479 const struct x86_cpu_id *m; 480 int ret = 0; 481 482 m = x86_match_cpu(msr_save_cpu_table); 483 if (m) { 484 pm_cpu_match_t fn; 485 486 fn = (pm_cpu_match_t)m->driver_data; 487 ret = fn(m); 488 } 489 490 return ret; 491 } 492 493 static void pm_save_spec_msr(void) 494 { 495 struct msr_enumeration { 496 u32 msr_no; 497 u32 feature; 498 } msr_enum[] = { 499 { MSR_IA32_SPEC_CTRL, X86_FEATURE_MSR_SPEC_CTRL }, 500 { MSR_IA32_TSX_CTRL, X86_FEATURE_MSR_TSX_CTRL }, 501 { MSR_TSX_FORCE_ABORT, X86_FEATURE_TSX_FORCE_ABORT }, 502 { MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL }, 503 { MSR_AMD64_LS_CFG, X86_FEATURE_LS_CFG_SSBD }, 504 { MSR_AMD64_DE_CFG, X86_FEATURE_LFENCE_RDTSC }, 505 }; 506 int i; 507 508 for (i = 0; i < ARRAY_SIZE(msr_enum); i++) { 509 if (boot_cpu_has(msr_enum[i].feature)) 510 msr_build_context(&msr_enum[i].msr_no, 1); 511 } 512 } 513 514 static int pm_check_save_msr(void) 515 { 516 dmi_check_system(msr_save_dmi_table); 517 pm_cpu_check(msr_save_cpu_table); 518 pm_save_spec_msr(); 519 520 return 0; 521 } 522 523 device_initcall(pm_check_save_msr); 524