xref: /linux/arch/x86/platform/uv/uv_time.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23 
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30 
31 #define RTC_NAME		"sgi_rtc"
32 
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static int uv_rtc_shutdown(struct clock_event_device *evt);
36 
37 static struct clocksource clocksource_uv = {
38 	.name		= RTC_NAME,
39 	.rating		= 299,
40 	.read		= uv_read_rtc,
41 	.mask		= (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
43 };
44 
45 static struct clock_event_device clock_event_device_uv = {
46 	.name			= RTC_NAME,
47 	.features		= CLOCK_EVT_FEAT_ONESHOT,
48 	.shift			= 20,
49 	.rating			= 400,
50 	.irq			= -1,
51 	.set_next_event		= uv_rtc_next_event,
52 	.set_state_shutdown	= uv_rtc_shutdown,
53 	.event_handler		= NULL,
54 };
55 
56 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
57 
58 /* There is one of these allocated per node */
59 struct uv_rtc_timer_head {
60 	spinlock_t	lock;
61 	/* next cpu waiting for timer, local node relative: */
62 	int		next_cpu;
63 	/* number of cpus on this node: */
64 	int		ncpus;
65 	struct {
66 		int	lcpu;		/* systemwide logical cpu number */
67 		u64	expires;	/* next timer expiration for this cpu */
68 	} cpu[1];
69 };
70 
71 /*
72  * Access to uv_rtc_timer_head via blade id.
73  */
74 static struct uv_rtc_timer_head		**blade_info __read_mostly;
75 
76 static int				uv_rtc_evt_enable;
77 
78 /*
79  * Hardware interface routines
80  */
81 
82 /* Send IPIs to another node */
83 static void uv_rtc_send_IPI(int cpu)
84 {
85 	unsigned long apicid, val;
86 	int pnode;
87 
88 	apicid = cpu_physical_id(cpu);
89 	pnode = uv_apicid_to_pnode(apicid);
90 	apicid |= uv_apicid_hibits;
91 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92 	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93 	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
94 
95 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96 }
97 
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
100 {
101 	if (is_uv1_hub())
102 		return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103 			UV1H_EVENT_OCCURRED0_RTC1_MASK;
104 	else if (is_uvx_hub())
105 		return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
106 			UVXH_EVENT_OCCURRED2_RTC_1_MASK;
107 	return 0;
108 }
109 
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
112 {
113 	u64 val;
114 	unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115 	int pnode = uv_cpu_to_pnode(cpu);
116 
117 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118 		UVH_RTC1_INT_CONFIG_M_MASK);
119 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120 
121 	if (is_uv1_hub())
122 		uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123 				UV1H_EVENT_OCCURRED0_RTC1_MASK);
124 	else
125 		uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
126 				UVXH_EVENT_OCCURRED2_RTC_1_MASK);
127 
128 	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129 		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130 
131 	/* Set configuration */
132 	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133 	/* Initialize comparator value */
134 	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135 
136 	if (uv_read_rtc(NULL) <= expires)
137 		return 0;
138 
139 	return !uv_intr_pending(pnode);
140 }
141 
142 /*
143  * Per-cpu timer tracking routines
144  */
145 
146 static __init void uv_rtc_deallocate_timers(void)
147 {
148 	int bid;
149 
150 	for_each_possible_blade(bid) {
151 		kfree(blade_info[bid]);
152 	}
153 	kfree(blade_info);
154 }
155 
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
158 {
159 	int cpu;
160 
161 	blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162 	if (!blade_info)
163 		return -ENOMEM;
164 
165 	for_each_present_cpu(cpu) {
166 		int nid = cpu_to_node(cpu);
167 		int bid = uv_cpu_to_blade_id(cpu);
168 		int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
169 		struct uv_rtc_timer_head *head = blade_info[bid];
170 
171 		if (!head) {
172 			head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
173 				(uv_blade_nr_possible_cpus(bid) *
174 					2 * sizeof(u64)),
175 				GFP_KERNEL, nid);
176 			if (!head) {
177 				uv_rtc_deallocate_timers();
178 				return -ENOMEM;
179 			}
180 			spin_lock_init(&head->lock);
181 			head->ncpus = uv_blade_nr_possible_cpus(bid);
182 			head->next_cpu = -1;
183 			blade_info[bid] = head;
184 		}
185 
186 		head->cpu[bcpu].lcpu = cpu;
187 		head->cpu[bcpu].expires = ULLONG_MAX;
188 	}
189 
190 	return 0;
191 }
192 
193 /* Find and set the next expiring timer.  */
194 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
195 {
196 	u64 lowest = ULLONG_MAX;
197 	int c, bcpu = -1;
198 
199 	head->next_cpu = -1;
200 	for (c = 0; c < head->ncpus; c++) {
201 		u64 exp = head->cpu[c].expires;
202 		if (exp < lowest) {
203 			bcpu = c;
204 			lowest = exp;
205 		}
206 	}
207 	if (bcpu >= 0) {
208 		head->next_cpu = bcpu;
209 		c = head->cpu[bcpu].lcpu;
210 		if (uv_setup_intr(c, lowest))
211 			/* If we didn't set it up in time, trigger */
212 			uv_rtc_send_IPI(c);
213 	} else {
214 		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
215 			UVH_RTC1_INT_CONFIG_M_MASK);
216 	}
217 }
218 
219 /*
220  * Set expiration time for current cpu.
221  *
222  * Returns 1 if we missed the expiration time.
223  */
224 static int uv_rtc_set_timer(int cpu, u64 expires)
225 {
226 	int pnode = uv_cpu_to_pnode(cpu);
227 	int bid = uv_cpu_to_blade_id(cpu);
228 	struct uv_rtc_timer_head *head = blade_info[bid];
229 	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
230 	u64 *t = &head->cpu[bcpu].expires;
231 	unsigned long flags;
232 	int next_cpu;
233 
234 	spin_lock_irqsave(&head->lock, flags);
235 
236 	next_cpu = head->next_cpu;
237 	*t = expires;
238 
239 	/* Will this one be next to go off? */
240 	if (next_cpu < 0 || bcpu == next_cpu ||
241 			expires < head->cpu[next_cpu].expires) {
242 		head->next_cpu = bcpu;
243 		if (uv_setup_intr(cpu, expires)) {
244 			*t = ULLONG_MAX;
245 			uv_rtc_find_next_timer(head, pnode);
246 			spin_unlock_irqrestore(&head->lock, flags);
247 			return -ETIME;
248 		}
249 	}
250 
251 	spin_unlock_irqrestore(&head->lock, flags);
252 	return 0;
253 }
254 
255 /*
256  * Unset expiration time for current cpu.
257  *
258  * Returns 1 if this timer was pending.
259  */
260 static int uv_rtc_unset_timer(int cpu, int force)
261 {
262 	int pnode = uv_cpu_to_pnode(cpu);
263 	int bid = uv_cpu_to_blade_id(cpu);
264 	struct uv_rtc_timer_head *head = blade_info[bid];
265 	int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
266 	u64 *t = &head->cpu[bcpu].expires;
267 	unsigned long flags;
268 	int rc = 0;
269 
270 	spin_lock_irqsave(&head->lock, flags);
271 
272 	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
273 		rc = 1;
274 
275 	if (rc) {
276 		*t = ULLONG_MAX;
277 		/* Was the hardware setup for this timer? */
278 		if (head->next_cpu == bcpu)
279 			uv_rtc_find_next_timer(head, pnode);
280 	}
281 
282 	spin_unlock_irqrestore(&head->lock, flags);
283 
284 	return rc;
285 }
286 
287 
288 /*
289  * Kernel interface routines.
290  */
291 
292 /*
293  * Read the RTC.
294  *
295  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
296  * cachelines of it's own page.  This allows faster simultaneous reads
297  * from a given socket.
298  */
299 static cycle_t uv_read_rtc(struct clocksource *cs)
300 {
301 	unsigned long offset;
302 
303 	if (uv_get_min_hub_revision_id() == 1)
304 		offset = 0;
305 	else
306 		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
307 
308 	return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
309 }
310 
311 /*
312  * Program the next event, relative to now
313  */
314 static int uv_rtc_next_event(unsigned long delta,
315 			     struct clock_event_device *ced)
316 {
317 	int ced_cpu = cpumask_first(ced->cpumask);
318 
319 	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
320 }
321 
322 /*
323  * Shutdown the RTC timer
324  */
325 static int uv_rtc_shutdown(struct clock_event_device *evt)
326 {
327 	int ced_cpu = cpumask_first(evt->cpumask);
328 
329 	uv_rtc_unset_timer(ced_cpu, 1);
330 	return 0;
331 }
332 
333 static void uv_rtc_interrupt(void)
334 {
335 	int cpu = smp_processor_id();
336 	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
337 
338 	if (!ced || !ced->event_handler)
339 		return;
340 
341 	if (uv_rtc_unset_timer(cpu, 0) != 1)
342 		return;
343 
344 	ced->event_handler(ced);
345 }
346 
347 static int __init uv_enable_evt_rtc(char *str)
348 {
349 	uv_rtc_evt_enable = 1;
350 
351 	return 1;
352 }
353 __setup("uvrtcevt", uv_enable_evt_rtc);
354 
355 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
356 {
357 	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
358 
359 	*ced = clock_event_device_uv;
360 	ced->cpumask = cpumask_of(smp_processor_id());
361 	clockevents_register_device(ced);
362 }
363 
364 static __init int uv_rtc_setup_clock(void)
365 {
366 	int rc;
367 
368 	if (!is_uv_system())
369 		return -ENODEV;
370 
371 	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
372 	if (rc)
373 		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
374 	else
375 		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
376 			sn_rtc_cycles_per_second/(unsigned long)1E6);
377 
378 	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
379 		return rc;
380 
381 	/* Setup and register clockevents */
382 	rc = uv_rtc_allocate_timers();
383 	if (rc)
384 		goto error;
385 
386 	x86_platform_ipi_callback = uv_rtc_interrupt;
387 
388 	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
389 				NSEC_PER_SEC, clock_event_device_uv.shift);
390 
391 	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
392 						sn_rtc_cycles_per_second;
393 
394 	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
395 				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
396 
397 	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
398 	if (rc) {
399 		x86_platform_ipi_callback = NULL;
400 		uv_rtc_deallocate_timers();
401 		goto error;
402 	}
403 
404 	printk(KERN_INFO "UV RTC clockevents registered\n");
405 
406 	return 0;
407 
408 error:
409 	clocksource_unregister(&clocksource_uv);
410 	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
411 
412 	return rc;
413 }
414 arch_initcall(uv_rtc_setup_clock);
415