xref: /linux/arch/x86/platform/uv/uv_nmi.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SGI NMI support routines
4  *
5  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
6  * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
7  * Copyright (c) Mike Travis
8  */
9 
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/kdb.h>
13 #include <linux/kexec.h>
14 #include <linux/kgdb.h>
15 #include <linux/moduleparam.h>
16 #include <linux/nmi.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/slab.h>
20 #include <linux/clocksource.h>
21 
22 #include <asm/apic.h>
23 #include <asm/current.h>
24 #include <asm/kdebug.h>
25 #include <asm/local64.h>
26 #include <asm/nmi.h>
27 #include <asm/traps.h>
28 #include <asm/uv/uv.h>
29 #include <asm/uv/uv_hub.h>
30 #include <asm/uv/uv_mmrs.h>
31 
32 /*
33  * UV handler for NMI
34  *
35  * Handle system-wide NMI events generated by the global 'power nmi' command.
36  *
37  * Basic operation is to field the NMI interrupt on each CPU and wait
38  * until all CPU's have arrived into the nmi handler.  If some CPU's do not
39  * make it into the handler, try and force them in with the IPI(NMI) signal.
40  *
41  * We also have to lessen UV Hub MMR accesses as much as possible as this
42  * disrupts the UV Hub's primary mission of directing NumaLink traffic and
43  * can cause system problems to occur.
44  *
45  * To do this we register our primary NMI notifier on the NMI_UNKNOWN
46  * chain.  This reduces the number of false NMI calls when the perf
47  * tools are running which generate an enormous number of NMIs per
48  * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
49  * very short as it only checks that if it has been "pinged" with the
50  * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
51  *
52  */
53 
54 static struct uv_hub_nmi_s **uv_hub_nmi_list;
55 
56 DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
57 
58 /* Newer SMM NMI handler, not present in all systems */
59 static unsigned long uvh_nmi_mmrx;		/* UVH_EVENT_OCCURRED0/1 */
60 static unsigned long uvh_nmi_mmrx_clear;	/* UVH_EVENT_OCCURRED0/1_ALIAS */
61 static int uvh_nmi_mmrx_shift;			/* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
62 static char *uvh_nmi_mmrx_type;			/* "EXTIO_INT0" */
63 
64 /* Non-zero indicates newer SMM NMI handler present */
65 static unsigned long uvh_nmi_mmrx_supported;	/* UVH_EXTIO_INT0_BROADCAST */
66 
67 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
68 static unsigned long uvh_nmi_mmrx_req;		/* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
69 static int uvh_nmi_mmrx_req_shift;		/* 62 */
70 
71 /* UV hubless values */
72 #define NMI_CONTROL_PORT	0x70
73 #define NMI_DUMMY_PORT		0x71
74 #define PAD_OWN_GPP_D_0		0x2c
75 #define GPI_NMI_STS_GPP_D_0	0x164
76 #define GPI_NMI_ENA_GPP_D_0	0x174
77 #define STS_GPP_D_0_MASK	0x1
78 #define PAD_CFG_DW0_GPP_D_0	0x4c0
79 #define GPIROUTNMI		(1ul << 17)
80 #define PCH_PCR_GPIO_1_BASE	0xfdae0000ul
81 #define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
82 
83 static u64 *pch_base;
84 static unsigned long nmi_mmr;
85 static unsigned long nmi_mmr_clear;
86 static unsigned long nmi_mmr_pending;
87 
88 static atomic_t	uv_in_nmi;
89 static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
90 static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
91 static atomic_t uv_nmi_slave_continue;
92 static cpumask_var_t uv_nmi_cpu_mask;
93 
94 /* Values for uv_nmi_slave_continue */
95 #define SLAVE_CLEAR	0
96 #define SLAVE_CONTINUE	1
97 #define SLAVE_EXIT	2
98 
99 /*
100  * Default is all stack dumps go to the console and buffer.
101  * Lower level to send to log buffer only.
102  */
103 static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
104 module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
105 
106 /*
107  * The following values show statistics on how perf events are affecting
108  * this system.
109  */
110 static int param_get_local64(char *buffer, const struct kernel_param *kp)
111 {
112 	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
113 }
114 
115 static int param_set_local64(const char *val, const struct kernel_param *kp)
116 {
117 	/* Clear on any write */
118 	local64_set((local64_t *)kp->arg, 0);
119 	return 0;
120 }
121 
122 static const struct kernel_param_ops param_ops_local64 = {
123 	.get = param_get_local64,
124 	.set = param_set_local64,
125 };
126 #define param_check_local64(name, p) __param_check(name, p, local64_t)
127 
128 static local64_t uv_nmi_count;
129 module_param_named(nmi_count, uv_nmi_count, local64, 0644);
130 
131 static local64_t uv_nmi_misses;
132 module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
133 
134 static local64_t uv_nmi_ping_count;
135 module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
136 
137 static local64_t uv_nmi_ping_misses;
138 module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
139 
140 /*
141  * Following values allow tuning for large systems under heavy loading
142  */
143 static int uv_nmi_initial_delay = 100;
144 module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
145 
146 static int uv_nmi_slave_delay = 100;
147 module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
148 
149 static int uv_nmi_loop_delay = 100;
150 module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
151 
152 static int uv_nmi_trigger_delay = 10000;
153 module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
154 
155 static int uv_nmi_wait_count = 100;
156 module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
157 
158 static int uv_nmi_retry_count = 500;
159 module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
160 
161 static bool uv_pch_intr_enable = true;
162 static bool uv_pch_intr_now_enabled;
163 module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
164 
165 static bool uv_pch_init_enable = true;
166 module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
167 
168 static int uv_nmi_debug;
169 module_param_named(debug, uv_nmi_debug, int, 0644);
170 
171 #define nmi_debug(fmt, ...)				\
172 	do {						\
173 		if (uv_nmi_debug)			\
174 			pr_info(fmt, ##__VA_ARGS__);	\
175 	} while (0)
176 
177 /* Valid NMI Actions */
178 #define	ACTION_LEN	16
179 static struct nmi_action {
180 	char	*action;
181 	char	*desc;
182 } valid_acts[] = {
183 	{	"kdump",	"do kernel crash dump"			},
184 	{	"dump",		"dump process stack for each cpu"	},
185 	{	"ips",		"dump Inst Ptr info for each cpu"	},
186 	{	"kdb",		"enter KDB (needs kgdboc= assignment)"	},
187 	{	"kgdb",		"enter KGDB (needs gdb target remote)"	},
188 	{	"health",	"check if CPUs respond to NMI"		},
189 };
190 typedef char action_t[ACTION_LEN];
191 static action_t uv_nmi_action = { "dump" };
192 
193 static int param_get_action(char *buffer, const struct kernel_param *kp)
194 {
195 	return sprintf(buffer, "%s\n", uv_nmi_action);
196 }
197 
198 static int param_set_action(const char *val, const struct kernel_param *kp)
199 {
200 	int i;
201 	int n = ARRAY_SIZE(valid_acts);
202 	char arg[ACTION_LEN], *p;
203 
204 	/* (remove possible '\n') */
205 	strncpy(arg, val, ACTION_LEN - 1);
206 	arg[ACTION_LEN - 1] = '\0';
207 	p = strchr(arg, '\n');
208 	if (p)
209 		*p = '\0';
210 
211 	for (i = 0; i < n; i++)
212 		if (!strcmp(arg, valid_acts[i].action))
213 			break;
214 
215 	if (i < n) {
216 		strcpy(uv_nmi_action, arg);
217 		pr_info("UV: New NMI action:%s\n", uv_nmi_action);
218 		return 0;
219 	}
220 
221 	pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
222 	for (i = 0; i < n; i++)
223 		pr_err("UV: %-8s - %s\n",
224 			valid_acts[i].action, valid_acts[i].desc);
225 	return -EINVAL;
226 }
227 
228 static const struct kernel_param_ops param_ops_action = {
229 	.get = param_get_action,
230 	.set = param_set_action,
231 };
232 #define param_check_action(name, p) __param_check(name, p, action_t)
233 
234 module_param_named(action, uv_nmi_action, action, 0644);
235 
236 static inline bool uv_nmi_action_is(const char *action)
237 {
238 	return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
239 }
240 
241 /* Setup which NMI support is present in system */
242 static void uv_nmi_setup_mmrs(void)
243 {
244 	/* First determine arch specific MMRs to handshake with BIOS */
245 	if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {
246 		uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
247 		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
248 		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
249 		uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
250 
251 		uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
252 		uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
253 		uvh_nmi_mmrx_req_shift = 62;
254 
255 	} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) {
256 		uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
257 		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
258 		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
259 		uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
260 
261 		uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
262 		uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
263 		uvh_nmi_mmrx_req_shift = 62;
264 
265 	} else {
266 		pr_err("UV:%s:cannot find EVENT_OCCURRED*_EXTIO_INT0\n",
267 			__func__);
268 		return;
269 	}
270 
271 	/* Then find out if new NMI is supported */
272 	if (likely(uv_read_local_mmr(uvh_nmi_mmrx_supported))) {
273 		uv_write_local_mmr(uvh_nmi_mmrx_req,
274 					1UL << uvh_nmi_mmrx_req_shift);
275 		nmi_mmr = uvh_nmi_mmrx;
276 		nmi_mmr_clear = uvh_nmi_mmrx_clear;
277 		nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
278 		pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
279 	} else {
280 		nmi_mmr = UVH_NMI_MMR;
281 		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
282 		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
283 		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
284 	}
285 }
286 
287 /* Read NMI MMR and check if NMI flag was set by BMC. */
288 static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
289 {
290 	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
291 	atomic_inc(&hub_nmi->read_mmr_count);
292 	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
293 }
294 
295 static inline void uv_local_mmr_clear_nmi(void)
296 {
297 	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
298 }
299 
300 /*
301  * UV hubless NMI handler functions
302  */
303 static inline void uv_reassert_nmi(void)
304 {
305 	/* (from arch/x86/include/asm/mach_traps.h) */
306 	outb(0x8f, NMI_CONTROL_PORT);
307 	inb(NMI_DUMMY_PORT);		/* dummy read */
308 	outb(0x0f, NMI_CONTROL_PORT);
309 	inb(NMI_DUMMY_PORT);		/* dummy read */
310 }
311 
312 static void uv_init_hubless_pch_io(int offset, int mask, int data)
313 {
314 	int *addr = PCH_PCR_GPIO_ADDRESS(offset);
315 	int readd = readl(addr);
316 
317 	if (mask) {			/* OR in new data */
318 		int writed = (readd & ~mask) | data;
319 
320 		nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
321 			addr, readd, ~mask, data, writed);
322 		writel(writed, addr);
323 	} else if (readd & data) {	/* clear status bit */
324 		nmi_debug("UV:PCH: %p = %x\n", addr, data);
325 		writel(data, addr);
326 	}
327 
328 	(void)readl(addr);		/* flush write data */
329 }
330 
331 static void uv_nmi_setup_hubless_intr(void)
332 {
333 	uv_pch_intr_now_enabled = uv_pch_intr_enable;
334 
335 	uv_init_hubless_pch_io(
336 		PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
337 		uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
338 
339 	nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
340 		uv_pch_intr_now_enabled ? "enabled" : "disabled");
341 }
342 
343 static struct init_nmi {
344 	unsigned int	offset;
345 	unsigned int	mask;
346 	unsigned int	data;
347 } init_nmi[] = {
348 	{	/* HOSTSW_OWN_GPP_D_0 */
349 	.offset = 0x84,
350 	.mask = 0x1,
351 	.data = 0x0,	/* ACPI Mode */
352 	},
353 
354 /* Clear status: */
355 	{	/* GPI_INT_STS_GPP_D_0 */
356 	.offset = 0x104,
357 	.mask = 0x0,
358 	.data = 0x1,	/* Clear Status */
359 	},
360 	{	/* GPI_GPE_STS_GPP_D_0 */
361 	.offset = 0x124,
362 	.mask = 0x0,
363 	.data = 0x1,	/* Clear Status */
364 	},
365 	{	/* GPI_SMI_STS_GPP_D_0 */
366 	.offset = 0x144,
367 	.mask = 0x0,
368 	.data = 0x1,	/* Clear Status */
369 	},
370 	{	/* GPI_NMI_STS_GPP_D_0 */
371 	.offset = 0x164,
372 	.mask = 0x0,
373 	.data = 0x1,	/* Clear Status */
374 	},
375 
376 /* Disable interrupts: */
377 	{	/* GPI_INT_EN_GPP_D_0 */
378 	.offset = 0x114,
379 	.mask = 0x1,
380 	.data = 0x0,	/* Disable interrupt generation */
381 	},
382 	{	/* GPI_GPE_EN_GPP_D_0 */
383 	.offset = 0x134,
384 	.mask = 0x1,
385 	.data = 0x0,	/* Disable interrupt generation */
386 	},
387 	{	/* GPI_SMI_EN_GPP_D_0 */
388 	.offset = 0x154,
389 	.mask = 0x1,
390 	.data = 0x0,	/* Disable interrupt generation */
391 	},
392 	{	/* GPI_NMI_EN_GPP_D_0 */
393 	.offset = 0x174,
394 	.mask = 0x1,
395 	.data = 0x0,	/* Disable interrupt generation */
396 	},
397 
398 /* Setup GPP_D_0 Pad Config: */
399 	{	/* PAD_CFG_DW0_GPP_D_0 */
400 	.offset = 0x4c0,
401 	.mask = 0xffffffff,
402 	.data = 0x82020100,
403 /*
404  *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
405  *
406  *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
407  *                                                from RX buffer (default)
408  *
409  *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
410  *
411  *  26:25 RX Level/Edge Configuration (RXEVCFG):
412  *      = 0h # Level
413  *      = 1h # Edge
414  *
415  *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
416  *
417  *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
418  * = 0 # Routing does not cause peripheral IRQ...
419  *     # (we want an NMI not an IRQ)
420  *
421  *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
422  *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
423  *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
424  *
425  *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
426  *   9    GPIO RX Disable (GPIORXDIS):
427  * = 0 # Enable the input buffer (active low enable)
428  *
429  *   8    GPIO TX Disable (GPIOTXDIS):
430  * = 1 # Disable the output buffer; i.e. Hi-Z
431  *
432  *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
433  *   0 GPIO TX State (GPIOTXSTATE):
434  * = 0 # (Leave at default)
435  */
436 	},
437 
438 /* Pad Config DW1 */
439 	{	/* PAD_CFG_DW1_GPP_D_0 */
440 	.offset = 0x4c4,
441 	.mask = 0x3c00,
442 	.data = 0,	/* Termination = none (default) */
443 	},
444 };
445 
446 static void uv_init_hubless_pch_d0(void)
447 {
448 	int i, read;
449 
450 	read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
451 	if (read != 0) {
452 		pr_info("UV: Hubless NMI already configured\n");
453 		return;
454 	}
455 
456 	nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
457 	for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
458 		uv_init_hubless_pch_io(init_nmi[i].offset,
459 					init_nmi[i].mask,
460 					init_nmi[i].data);
461 	}
462 }
463 
464 static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
465 {
466 	int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
467 	int status = *pstat;
468 
469 	hub_nmi->nmi_value = status;
470 	atomic_inc(&hub_nmi->read_mmr_count);
471 
472 	if (!(status & STS_GPP_D_0_MASK))	/* Not a UV external NMI */
473 		return 0;
474 
475 	*pstat = STS_GPP_D_0_MASK;	/* Is a UV NMI: clear GPP_D_0 status */
476 	(void)*pstat;			/* Flush write */
477 
478 	return 1;
479 }
480 
481 static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
482 {
483 	if (hub_nmi->hub_present)
484 		return uv_nmi_test_mmr(hub_nmi);
485 
486 	if (hub_nmi->pch_owner)		/* Only PCH owner can check status */
487 		return uv_nmi_test_hubless(hub_nmi);
488 
489 	return -1;
490 }
491 
492 /*
493  * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
494  * return true.  If first CPU in on the system, set global "in_nmi" flag.
495  */
496 static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
497 {
498 	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
499 
500 	if (first) {
501 		atomic_set(&hub_nmi->cpu_owner, cpu);
502 		if (atomic_add_unless(&uv_in_nmi, 1, 1))
503 			atomic_set(&uv_nmi_cpu, cpu);
504 
505 		atomic_inc(&hub_nmi->nmi_count);
506 	}
507 	return first;
508 }
509 
510 /* Check if this is a system NMI event */
511 static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
512 {
513 	int cpu = smp_processor_id();
514 	int nmi = 0;
515 	int nmi_detected = 0;
516 
517 	local64_inc(&uv_nmi_count);
518 	this_cpu_inc(uv_cpu_nmi.queries);
519 
520 	do {
521 		nmi = atomic_read(&hub_nmi->in_nmi);
522 		if (nmi)
523 			break;
524 
525 		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
526 			nmi_detected = uv_test_nmi(hub_nmi);
527 
528 			/* Check flag for UV external NMI */
529 			if (nmi_detected > 0) {
530 				uv_set_in_nmi(cpu, hub_nmi);
531 				nmi = 1;
532 				break;
533 			}
534 
535 			/* A non-PCH node in a hubless system waits for NMI */
536 			else if (nmi_detected < 0)
537 				goto slave_wait;
538 
539 			/* MMR/PCH NMI flag is clear */
540 			raw_spin_unlock(&hub_nmi->nmi_lock);
541 
542 		} else {
543 
544 			/* Wait a moment for the HUB NMI locker to set flag */
545 slave_wait:		cpu_relax();
546 			udelay(uv_nmi_slave_delay);
547 
548 			/* Re-check hub in_nmi flag */
549 			nmi = atomic_read(&hub_nmi->in_nmi);
550 			if (nmi)
551 				break;
552 		}
553 
554 		/*
555 		 * Check if this BMC missed setting the MMR NMI flag (or)
556 		 * UV hubless system where only PCH owner can check flag
557 		 */
558 		if (!nmi) {
559 			nmi = atomic_read(&uv_in_nmi);
560 			if (nmi)
561 				uv_set_in_nmi(cpu, hub_nmi);
562 		}
563 
564 		/* If we're holding the hub lock, release it now */
565 		if (nmi_detected < 0)
566 			raw_spin_unlock(&hub_nmi->nmi_lock);
567 
568 	} while (0);
569 
570 	if (!nmi)
571 		local64_inc(&uv_nmi_misses);
572 
573 	return nmi;
574 }
575 
576 /* Need to reset the NMI MMR register, but only once per hub. */
577 static inline void uv_clear_nmi(int cpu)
578 {
579 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
580 
581 	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
582 		atomic_set(&hub_nmi->cpu_owner, -1);
583 		atomic_set(&hub_nmi->in_nmi, 0);
584 		if (hub_nmi->hub_present)
585 			uv_local_mmr_clear_nmi();
586 		else
587 			uv_reassert_nmi();
588 		raw_spin_unlock(&hub_nmi->nmi_lock);
589 	}
590 }
591 
592 /* Ping non-responding CPU's attempting to force them into the NMI handler */
593 static void uv_nmi_nr_cpus_ping(void)
594 {
595 	int cpu;
596 
597 	for_each_cpu(cpu, uv_nmi_cpu_mask)
598 		uv_cpu_nmi_per(cpu).pinging = 1;
599 
600 	apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
601 }
602 
603 /* Clean up flags for CPU's that ignored both NMI and ping */
604 static void uv_nmi_cleanup_mask(void)
605 {
606 	int cpu;
607 
608 	for_each_cpu(cpu, uv_nmi_cpu_mask) {
609 		uv_cpu_nmi_per(cpu).pinging =  0;
610 		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
611 		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
612 	}
613 }
614 
615 /* Loop waiting as CPU's enter NMI handler */
616 static int uv_nmi_wait_cpus(int first)
617 {
618 	int i, j, k, n = num_online_cpus();
619 	int last_k = 0, waiting = 0;
620 	int cpu = smp_processor_id();
621 
622 	if (first) {
623 		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
624 		k = 0;
625 	} else {
626 		k = n - cpumask_weight(uv_nmi_cpu_mask);
627 	}
628 
629 	/* PCH NMI causes only one CPU to respond */
630 	if (first && uv_pch_intr_now_enabled) {
631 		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
632 		return n - k - 1;
633 	}
634 
635 	udelay(uv_nmi_initial_delay);
636 	for (i = 0; i < uv_nmi_retry_count; i++) {
637 		int loop_delay = uv_nmi_loop_delay;
638 
639 		for_each_cpu(j, uv_nmi_cpu_mask) {
640 			if (uv_cpu_nmi_per(j).state) {
641 				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
642 				if (++k >= n)
643 					break;
644 			}
645 		}
646 		if (k >= n) {		/* all in? */
647 			k = n;
648 			break;
649 		}
650 		if (last_k != k) {	/* abort if no new CPU's coming in */
651 			last_k = k;
652 			waiting = 0;
653 		} else if (++waiting > uv_nmi_wait_count)
654 			break;
655 
656 		/* Extend delay if waiting only for CPU 0: */
657 		if (waiting && (n - k) == 1 &&
658 		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
659 			loop_delay *= 100;
660 
661 		udelay(loop_delay);
662 	}
663 	atomic_set(&uv_nmi_cpus_in_nmi, k);
664 	return n - k;
665 }
666 
667 /* Wait until all slave CPU's have entered UV NMI handler */
668 static void uv_nmi_wait(int master)
669 {
670 	/* Indicate this CPU is in: */
671 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
672 
673 	/* If not the first CPU in (the master), then we are a slave CPU */
674 	if (!master)
675 		return;
676 
677 	do {
678 		/* Wait for all other CPU's to gather here */
679 		if (!uv_nmi_wait_cpus(1))
680 			break;
681 
682 		/* If not all made it in, send IPI NMI to them */
683 		pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
684 			 cpumask_weight(uv_nmi_cpu_mask),
685 			 cpumask_pr_args(uv_nmi_cpu_mask));
686 
687 		uv_nmi_nr_cpus_ping();
688 
689 		/* If all CPU's are in, then done */
690 		if (!uv_nmi_wait_cpus(0))
691 			break;
692 
693 		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
694 			 cpumask_weight(uv_nmi_cpu_mask),
695 			 cpumask_pr_args(uv_nmi_cpu_mask));
696 	} while (0);
697 
698 	pr_alert("UV: %d of %d CPUs in NMI\n",
699 		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
700 }
701 
702 /* Dump Instruction Pointer header */
703 static void uv_nmi_dump_cpu_ip_hdr(void)
704 {
705 	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
706 		"CPU", "PID", "COMMAND", "IP");
707 }
708 
709 /* Dump Instruction Pointer info */
710 static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
711 {
712 	pr_info("UV: %4d %6d %-32.32s %pS",
713 		cpu, current->pid, current->comm, (void *)regs->ip);
714 }
715 
716 /*
717  * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
718  * failed, then we provide "dump" as an alternate action.  Action "dump" now
719  * also includes the show "ips" (instruction pointers) action whereas the
720  * action "ips" only displays instruction pointers for the non-idle CPU's.
721  * This is an abbreviated form of the "ps" command.
722  */
723 static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
724 {
725 	const char *dots = " ................................. ";
726 
727 	if (cpu == 0)
728 		uv_nmi_dump_cpu_ip_hdr();
729 
730 	if (current->pid != 0 || !uv_nmi_action_is("ips"))
731 		uv_nmi_dump_cpu_ip(cpu, regs);
732 
733 	if (uv_nmi_action_is("dump")) {
734 		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
735 		show_regs(regs);
736 	}
737 
738 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
739 }
740 
741 /* Trigger a slave CPU to dump it's state */
742 static void uv_nmi_trigger_dump(int cpu)
743 {
744 	int retry = uv_nmi_trigger_delay;
745 
746 	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
747 		return;
748 
749 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
750 	do {
751 		cpu_relax();
752 		udelay(10);
753 		if (uv_cpu_nmi_per(cpu).state
754 				!= UV_NMI_STATE_DUMP)
755 			return;
756 	} while (--retry > 0);
757 
758 	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
759 	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
760 }
761 
762 /* Wait until all CPU's ready to exit */
763 static void uv_nmi_sync_exit(int master)
764 {
765 	atomic_dec(&uv_nmi_cpus_in_nmi);
766 	if (master) {
767 		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
768 			cpu_relax();
769 		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
770 	} else {
771 		while (atomic_read(&uv_nmi_slave_continue))
772 			cpu_relax();
773 	}
774 }
775 
776 /* Current "health" check is to check which CPU's are responsive */
777 static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
778 {
779 	if (master) {
780 		int in = atomic_read(&uv_nmi_cpus_in_nmi);
781 		int out = num_online_cpus() - in;
782 
783 		pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
784 		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
785 	} else {
786 		while (!atomic_read(&uv_nmi_slave_continue))
787 			cpu_relax();
788 	}
789 	uv_nmi_sync_exit(master);
790 }
791 
792 /* Walk through CPU list and dump state of each */
793 static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
794 {
795 	if (master) {
796 		int tcpu;
797 		int ignored = 0;
798 		int saved_console_loglevel = console_loglevel;
799 
800 		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
801 			uv_nmi_action_is("ips") ? "IPs" : "processes",
802 			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
803 
804 		console_loglevel = uv_nmi_loglevel;
805 		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
806 		for_each_online_cpu(tcpu) {
807 			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
808 				ignored++;
809 			else if (tcpu == cpu)
810 				uv_nmi_dump_state_cpu(tcpu, regs);
811 			else
812 				uv_nmi_trigger_dump(tcpu);
813 		}
814 		if (ignored)
815 			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
816 
817 		console_loglevel = saved_console_loglevel;
818 		pr_alert("UV: process trace complete\n");
819 	} else {
820 		while (!atomic_read(&uv_nmi_slave_continue))
821 			cpu_relax();
822 		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
823 			cpu_relax();
824 		uv_nmi_dump_state_cpu(cpu, regs);
825 	}
826 	uv_nmi_sync_exit(master);
827 }
828 
829 static void uv_nmi_touch_watchdogs(void)
830 {
831 	touch_softlockup_watchdog_sync();
832 	clocksource_touch_watchdog();
833 	rcu_cpu_stall_reset();
834 	touch_nmi_watchdog();
835 }
836 
837 static atomic_t uv_nmi_kexec_failed;
838 
839 #if defined(CONFIG_KEXEC_CORE)
840 static void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
841 {
842 	/* Call crash to dump system state */
843 	if (master) {
844 		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
845 		crash_kexec(regs);
846 
847 		pr_emerg("UV: crash_kexec unexpectedly returned, ");
848 		atomic_set(&uv_nmi_kexec_failed, 1);
849 		if (!kexec_crash_image) {
850 			pr_cont("crash kernel not loaded\n");
851 			return;
852 		}
853 		pr_cont("kexec busy, stalling cpus while waiting\n");
854 	}
855 
856 	/* If crash exec fails the slaves should return, otherwise stall */
857 	while (atomic_read(&uv_nmi_kexec_failed) == 0)
858 		mdelay(10);
859 }
860 
861 #else /* !CONFIG_KEXEC_CORE */
862 static inline void uv_nmi_kdump(int cpu, int master, struct pt_regs *regs)
863 {
864 	if (master)
865 		pr_err("UV: NMI kdump: KEXEC not supported in this kernel\n");
866 	atomic_set(&uv_nmi_kexec_failed, 1);
867 }
868 #endif /* !CONFIG_KEXEC_CORE */
869 
870 #ifdef CONFIG_KGDB
871 #ifdef CONFIG_KGDB_KDB
872 static inline int uv_nmi_kdb_reason(void)
873 {
874 	return KDB_REASON_SYSTEM_NMI;
875 }
876 #else /* !CONFIG_KGDB_KDB */
877 static inline int uv_nmi_kdb_reason(void)
878 {
879 	/* Ensure user is expecting to attach gdb remote */
880 	if (uv_nmi_action_is("kgdb"))
881 		return 0;
882 
883 	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
884 	return -1;
885 }
886 #endif /* CONFIG_KGDB_KDB */
887 
888 /*
889  * Call KGDB/KDB from NMI handler
890  *
891  * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
892  * 'kdb' has no affect on which is used.  See the KGDB documention for further
893  * information.
894  */
895 static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
896 {
897 	if (master) {
898 		int reason = uv_nmi_kdb_reason();
899 		int ret;
900 
901 		if (reason < 0)
902 			return;
903 
904 		/* Call KGDB NMI handler as MASTER */
905 		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
906 				&uv_nmi_slave_continue);
907 		if (ret) {
908 			pr_alert("KGDB returned error, is kgdboc set?\n");
909 			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
910 		}
911 	} else {
912 		/* Wait for KGDB signal that it's ready for slaves to enter */
913 		int sig;
914 
915 		do {
916 			cpu_relax();
917 			sig = atomic_read(&uv_nmi_slave_continue);
918 		} while (!sig);
919 
920 		/* Call KGDB as slave */
921 		if (sig == SLAVE_CONTINUE)
922 			kgdb_nmicallback(cpu, regs);
923 	}
924 	uv_nmi_sync_exit(master);
925 }
926 
927 #else /* !CONFIG_KGDB */
928 static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
929 {
930 	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
931 }
932 #endif /* !CONFIG_KGDB */
933 
934 /*
935  * UV NMI handler
936  */
937 static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
938 {
939 	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
940 	int cpu = smp_processor_id();
941 	int master = 0;
942 	unsigned long flags;
943 
944 	local_irq_save(flags);
945 
946 	/* If not a UV System NMI, ignore */
947 	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
948 		local_irq_restore(flags);
949 		return NMI_DONE;
950 	}
951 
952 	/* Indicate we are the first CPU into the NMI handler */
953 	master = (atomic_read(&uv_nmi_cpu) == cpu);
954 
955 	/* If NMI action is "kdump", then attempt to do it */
956 	if (uv_nmi_action_is("kdump")) {
957 		uv_nmi_kdump(cpu, master, regs);
958 
959 		/* Unexpected return, revert action to "dump" */
960 		if (master)
961 			strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
962 	}
963 
964 	/* Pause as all CPU's enter the NMI handler */
965 	uv_nmi_wait(master);
966 
967 	/* Process actions other than "kdump": */
968 	if (uv_nmi_action_is("health")) {
969 		uv_nmi_action_health(cpu, regs, master);
970 	} else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
971 		uv_nmi_dump_state(cpu, regs, master);
972 	} else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
973 		uv_call_kgdb_kdb(cpu, regs, master);
974 	} else {
975 		if (master)
976 			pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
977 		uv_nmi_sync_exit(master);
978 	}
979 
980 	/* Clear per_cpu "in_nmi" flag */
981 	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
982 
983 	/* Clear MMR NMI flag on each hub */
984 	uv_clear_nmi(cpu);
985 
986 	/* Clear global flags */
987 	if (master) {
988 		if (cpumask_weight(uv_nmi_cpu_mask))
989 			uv_nmi_cleanup_mask();
990 		atomic_set(&uv_nmi_cpus_in_nmi, -1);
991 		atomic_set(&uv_nmi_cpu, -1);
992 		atomic_set(&uv_in_nmi, 0);
993 		atomic_set(&uv_nmi_kexec_failed, 0);
994 		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
995 	}
996 
997 	uv_nmi_touch_watchdogs();
998 	local_irq_restore(flags);
999 
1000 	return NMI_HANDLED;
1001 }
1002 
1003 /*
1004  * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1005  */
1006 static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1007 {
1008 	int ret;
1009 
1010 	this_cpu_inc(uv_cpu_nmi.queries);
1011 	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1012 		local64_inc(&uv_nmi_ping_misses);
1013 		return NMI_DONE;
1014 	}
1015 
1016 	this_cpu_inc(uv_cpu_nmi.pings);
1017 	local64_inc(&uv_nmi_ping_count);
1018 	ret = uv_handle_nmi(reason, regs);
1019 	this_cpu_write(uv_cpu_nmi.pinging, 0);
1020 	return ret;
1021 }
1022 
1023 static void uv_register_nmi_notifier(void)
1024 {
1025 	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1026 		pr_warn("UV: NMI handler failed to register\n");
1027 
1028 	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1029 		pr_warn("UV: PING NMI handler failed to register\n");
1030 }
1031 
1032 void uv_nmi_init(void)
1033 {
1034 	unsigned int value;
1035 
1036 	/*
1037 	 * Unmask NMI on all CPU's
1038 	 */
1039 	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1040 	value &= ~APIC_LVT_MASKED;
1041 	apic_write(APIC_LVT1, value);
1042 }
1043 
1044 /* Setup HUB NMI info */
1045 static void __init uv_nmi_setup_common(bool hubbed)
1046 {
1047 	int size = sizeof(void *) * (1 << NODES_SHIFT);
1048 	int cpu;
1049 
1050 	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1051 	nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1052 	BUG_ON(!uv_hub_nmi_list);
1053 	size = sizeof(struct uv_hub_nmi_s);
1054 	for_each_present_cpu(cpu) {
1055 		int nid = cpu_to_node(cpu);
1056 		if (uv_hub_nmi_list[nid] == NULL) {
1057 			uv_hub_nmi_list[nid] = kzalloc_node(size,
1058 							    GFP_KERNEL, nid);
1059 			BUG_ON(!uv_hub_nmi_list[nid]);
1060 			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1061 			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1062 			uv_hub_nmi_list[nid]->hub_present = hubbed;
1063 			uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1064 		}
1065 		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1066 	}
1067 	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1068 }
1069 
1070 /* Setup for UV Hub systems */
1071 void __init uv_nmi_setup(void)
1072 {
1073 	uv_nmi_setup_mmrs();
1074 	uv_nmi_setup_common(true);
1075 	uv_register_nmi_notifier();
1076 	pr_info("UV: Hub NMI enabled\n");
1077 }
1078 
1079 /* Setup for UV Hubless systems */
1080 void __init uv_nmi_setup_hubless(void)
1081 {
1082 	uv_nmi_setup_common(false);
1083 	pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1084 	nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1085 		pch_base, PCH_PCR_GPIO_1_BASE);
1086 	if (uv_pch_init_enable)
1087 		uv_init_hubless_pch_d0();
1088 	uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1089 				STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1090 	uv_nmi_setup_hubless_intr();
1091 	/* Ensure NMI enabled in Processor Interface Reg: */
1092 	uv_reassert_nmi();
1093 	uv_register_nmi_notifier();
1094 	pr_info("UV: PCH NMI enabled\n");
1095 }
1096