1 /** 2 * imr.c 3 * 4 * Copyright(c) 2013 Intel Corporation. 5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie> 6 * 7 * IMR registers define an isolated region of memory that can 8 * be masked to prohibit certain system agents from accessing memory. 9 * When a device behind a masked port performs an access - snooped or 10 * not, an IMR may optionally prevent that transaction from changing 11 * the state of memory or from getting correct data in response to the 12 * operation. 13 * 14 * Write data will be dropped and reads will return 0xFFFFFFFF, the 15 * system will reset and system BIOS will print out an error message to 16 * inform the user that an IMR has been violated. 17 * 18 * This code is based on the Linux MTRR code and reference code from 19 * Intel's Quark BSP EFI, Linux and grub code. 20 * 21 * See quark-x1000-datasheet.pdf for register definitions. 22 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf 23 */ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <asm-generic/sections.h> 28 #include <asm/cpu_device_id.h> 29 #include <asm/imr.h> 30 #include <asm/iosf_mbi.h> 31 #include <linux/debugfs.h> 32 #include <linux/init.h> 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/types.h> 36 37 struct imr_device { 38 struct dentry *file; 39 bool init; 40 struct mutex lock; 41 int max_imr; 42 int reg_base; 43 }; 44 45 static struct imr_device imr_dev; 46 47 /* 48 * IMR read/write mask control registers. 49 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for 50 * bit definitions. 51 * 52 * addr_hi 53 * 31 Lock bit 54 * 30:24 Reserved 55 * 23:2 1 KiB aligned lo address 56 * 1:0 Reserved 57 * 58 * addr_hi 59 * 31:24 Reserved 60 * 23:2 1 KiB aligned hi address 61 * 1:0 Reserved 62 */ 63 #define IMR_LOCK BIT(31) 64 65 struct imr_regs { 66 u32 addr_lo; 67 u32 addr_hi; 68 u32 rmask; 69 u32 wmask; 70 }; 71 72 #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) 73 #define IMR_SHIFT 8 74 #define imr_to_phys(x) ((x) << IMR_SHIFT) 75 #define phys_to_imr(x) ((x) >> IMR_SHIFT) 76 77 /** 78 * imr_is_enabled - true if an IMR is enabled false otherwise. 79 * 80 * Determines if an IMR is enabled based on address range and read/write 81 * mask. An IMR set with an address range set to zero and a read/write 82 * access mask set to all is considered to be disabled. An IMR in any 83 * other state - for example set to zero but without read/write access 84 * all is considered to be enabled. This definition of disabled is how 85 * firmware switches off an IMR and is maintained in kernel for 86 * consistency. 87 * 88 * @imr: pointer to IMR descriptor. 89 * @return: true if IMR enabled false if disabled. 90 */ 91 static inline int imr_is_enabled(struct imr_regs *imr) 92 { 93 return !(imr->rmask == IMR_READ_ACCESS_ALL && 94 imr->wmask == IMR_WRITE_ACCESS_ALL && 95 imr_to_phys(imr->addr_lo) == 0 && 96 imr_to_phys(imr->addr_hi) == 0); 97 } 98 99 /** 100 * imr_read - read an IMR at a given index. 101 * 102 * Requires caller to hold imr mutex. 103 * 104 * @idev: pointer to imr_device structure. 105 * @imr_id: IMR entry to read. 106 * @imr: IMR structure representing address and access masks. 107 * @return: 0 on success or error code passed from mbi_iosf on failure. 108 */ 109 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) 110 { 111 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; 112 int ret; 113 114 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo); 115 if (ret) 116 return ret; 117 118 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi); 119 if (ret) 120 return ret; 121 122 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask); 123 if (ret) 124 return ret; 125 126 return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask); 127 } 128 129 /** 130 * imr_write - write an IMR at a given index. 131 * 132 * Requires caller to hold imr mutex. 133 * Note lock bits need to be written independently of address bits. 134 * 135 * @idev: pointer to imr_device structure. 136 * @imr_id: IMR entry to write. 137 * @imr: IMR structure representing address and access masks. 138 * @lock: indicates if the IMR lock bit should be applied. 139 * @return: 0 on success or error code passed from mbi_iosf on failure. 140 */ 141 static int imr_write(struct imr_device *idev, u32 imr_id, 142 struct imr_regs *imr, bool lock) 143 { 144 unsigned long flags; 145 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; 146 int ret; 147 148 local_irq_save(flags); 149 150 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo); 151 if (ret) 152 goto failed; 153 154 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi); 155 if (ret) 156 goto failed; 157 158 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask); 159 if (ret) 160 goto failed; 161 162 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask); 163 if (ret) 164 goto failed; 165 166 /* Lock bit must be set separately to addr_lo address bits. */ 167 if (lock) { 168 imr->addr_lo |= IMR_LOCK; 169 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, 170 reg - IMR_NUM_REGS, imr->addr_lo); 171 if (ret) 172 goto failed; 173 } 174 175 local_irq_restore(flags); 176 return 0; 177 failed: 178 /* 179 * If writing to the IOSF failed then we're in an unknown state, 180 * likely a very bad state. An IMR in an invalid state will almost 181 * certainly lead to a memory access violation. 182 */ 183 local_irq_restore(flags); 184 WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", 185 imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK); 186 187 return ret; 188 } 189 190 /** 191 * imr_dbgfs_state_show - print state of IMR registers. 192 * 193 * @s: pointer to seq_file for output. 194 * @unused: unused parameter. 195 * @return: 0 on success or error code passed from mbi_iosf on failure. 196 */ 197 static int imr_dbgfs_state_show(struct seq_file *s, void *unused) 198 { 199 phys_addr_t base; 200 phys_addr_t end; 201 int i; 202 struct imr_device *idev = s->private; 203 struct imr_regs imr; 204 size_t size; 205 int ret = -ENODEV; 206 207 mutex_lock(&idev->lock); 208 209 for (i = 0; i < idev->max_imr; i++) { 210 211 ret = imr_read(idev, i, &imr); 212 if (ret) 213 break; 214 215 /* 216 * Remember to add IMR_ALIGN bytes to size to indicate the 217 * inherent IMR_ALIGN size bytes contained in the masked away 218 * lower ten bits. 219 */ 220 if (imr_is_enabled(&imr)) { 221 base = imr_to_phys(imr.addr_lo); 222 end = imr_to_phys(imr.addr_hi) + IMR_MASK; 223 size = end - base + 1; 224 } else { 225 base = 0; 226 end = 0; 227 size = 0; 228 } 229 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx " 230 "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, 231 &base, &end, size, imr.rmask, imr.wmask, 232 imr_is_enabled(&imr) ? "enabled " : "disabled", 233 imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); 234 } 235 236 mutex_unlock(&idev->lock); 237 return ret; 238 } 239 240 /** 241 * imr_state_open - debugfs open callback. 242 * 243 * @inode: pointer to struct inode. 244 * @file: pointer to struct file. 245 * @return: result of single open. 246 */ 247 static int imr_state_open(struct inode *inode, struct file *file) 248 { 249 return single_open(file, imr_dbgfs_state_show, inode->i_private); 250 } 251 252 static const struct file_operations imr_state_ops = { 253 .open = imr_state_open, 254 .read = seq_read, 255 .llseek = seq_lseek, 256 .release = single_release, 257 }; 258 259 /** 260 * imr_debugfs_register - register debugfs hooks. 261 * 262 * @idev: pointer to imr_device structure. 263 * @return: 0 on success - errno on failure. 264 */ 265 static int imr_debugfs_register(struct imr_device *idev) 266 { 267 idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL, 268 idev, &imr_state_ops); 269 return PTR_ERR_OR_ZERO(idev->file); 270 } 271 272 /** 273 * imr_debugfs_unregister - unregister debugfs hooks. 274 * 275 * @idev: pointer to imr_device structure. 276 * @return: 277 */ 278 static void imr_debugfs_unregister(struct imr_device *idev) 279 { 280 debugfs_remove(idev->file); 281 } 282 283 /** 284 * imr_check_params - check passed address range IMR alignment and non-zero size 285 * 286 * @base: base address of intended IMR. 287 * @size: size of intended IMR. 288 * @return: zero on valid range -EINVAL on unaligned base/size. 289 */ 290 static int imr_check_params(phys_addr_t base, size_t size) 291 { 292 if ((base & IMR_MASK) || (size & IMR_MASK)) { 293 pr_err("base %pa size 0x%08zx must align to 1KiB\n", 294 &base, size); 295 return -EINVAL; 296 } 297 if (size == 0) 298 return -EINVAL; 299 300 return 0; 301 } 302 303 /** 304 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends. 305 * 306 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the 307 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes 308 * as a result. 309 * 310 * @size: input size bytes. 311 * @return: reduced size. 312 */ 313 static inline size_t imr_raw_size(size_t size) 314 { 315 return size - IMR_ALIGN; 316 } 317 318 /** 319 * imr_address_overlap - detects an address overlap. 320 * 321 * @addr: address to check against an existing IMR. 322 * @imr: imr being checked. 323 * @return: true for overlap false for no overlap. 324 */ 325 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr) 326 { 327 return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi); 328 } 329 330 /** 331 * imr_add_range - add an Isolated Memory Region. 332 * 333 * @base: physical base address of region aligned to 1KiB. 334 * @size: physical size of region in bytes must be aligned to 1KiB. 335 * @read_mask: read access mask. 336 * @write_mask: write access mask. 337 * @lock: indicates whether or not to permanently lock this region. 338 * @return: zero on success or negative value indicating error. 339 */ 340 int imr_add_range(phys_addr_t base, size_t size, 341 unsigned int rmask, unsigned int wmask, bool lock) 342 { 343 phys_addr_t end; 344 unsigned int i; 345 struct imr_device *idev = &imr_dev; 346 struct imr_regs imr; 347 size_t raw_size; 348 int reg; 349 int ret; 350 351 if (WARN_ONCE(idev->init == false, "driver not initialized")) 352 return -ENODEV; 353 354 ret = imr_check_params(base, size); 355 if (ret) 356 return ret; 357 358 /* Tweak the size value. */ 359 raw_size = imr_raw_size(size); 360 end = base + raw_size; 361 362 /* 363 * Check for reserved IMR value common to firmware, kernel and grub 364 * indicating a disabled IMR. 365 */ 366 imr.addr_lo = phys_to_imr(base); 367 imr.addr_hi = phys_to_imr(end); 368 imr.rmask = rmask; 369 imr.wmask = wmask; 370 if (!imr_is_enabled(&imr)) 371 return -ENOTSUPP; 372 373 mutex_lock(&idev->lock); 374 375 /* 376 * Find a free IMR while checking for an existing overlapping range. 377 * Note there's no restriction in silicon to prevent IMR overlaps. 378 * For the sake of simplicity and ease in defining/debugging an IMR 379 * memory map we exclude IMR overlaps. 380 */ 381 reg = -1; 382 for (i = 0; i < idev->max_imr; i++) { 383 ret = imr_read(idev, i, &imr); 384 if (ret) 385 goto failed; 386 387 /* Find overlap @ base or end of requested range. */ 388 ret = -EINVAL; 389 if (imr_is_enabled(&imr)) { 390 if (imr_address_overlap(base, &imr)) 391 goto failed; 392 if (imr_address_overlap(end, &imr)) 393 goto failed; 394 } else { 395 reg = i; 396 } 397 } 398 399 /* Error out if we have no free IMR entries. */ 400 if (reg == -1) { 401 ret = -ENOMEM; 402 goto failed; 403 } 404 405 pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n", 406 reg, &base, &end, raw_size, rmask, wmask); 407 408 /* Enable IMR at specified range and access mask. */ 409 imr.addr_lo = phys_to_imr(base); 410 imr.addr_hi = phys_to_imr(end); 411 imr.rmask = rmask; 412 imr.wmask = wmask; 413 414 ret = imr_write(idev, reg, &imr, lock); 415 if (ret < 0) { 416 /* 417 * In the highly unlikely event iosf_mbi_write failed 418 * attempt to rollback the IMR setup skipping the trapping 419 * of further IOSF write failures. 420 */ 421 imr.addr_lo = 0; 422 imr.addr_hi = 0; 423 imr.rmask = IMR_READ_ACCESS_ALL; 424 imr.wmask = IMR_WRITE_ACCESS_ALL; 425 imr_write(idev, reg, &imr, false); 426 } 427 failed: 428 mutex_unlock(&idev->lock); 429 return ret; 430 } 431 EXPORT_SYMBOL_GPL(imr_add_range); 432 433 /** 434 * __imr_remove_range - delete an Isolated Memory Region. 435 * 436 * This function allows you to delete an IMR by its index specified by reg or 437 * by address range specified by base and size respectively. If you specify an 438 * index on its own the base and size parameters are ignored. 439 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored. 440 * imr_remove_range(-1, base, size); delete IMR from base to base+size. 441 * 442 * @reg: imr index to remove. 443 * @base: physical base address of region aligned to 1 KiB. 444 * @size: physical size of region in bytes aligned to 1 KiB. 445 * @return: -EINVAL on invalid range or out or range id 446 * -ENODEV if reg is valid but no IMR exists or is locked 447 * 0 on success. 448 */ 449 static int __imr_remove_range(int reg, phys_addr_t base, size_t size) 450 { 451 phys_addr_t end; 452 bool found = false; 453 unsigned int i; 454 struct imr_device *idev = &imr_dev; 455 struct imr_regs imr; 456 size_t raw_size; 457 int ret = 0; 458 459 if (WARN_ONCE(idev->init == false, "driver not initialized")) 460 return -ENODEV; 461 462 /* 463 * Validate address range if deleting by address, else we are 464 * deleting by index where base and size will be ignored. 465 */ 466 if (reg == -1) { 467 ret = imr_check_params(base, size); 468 if (ret) 469 return ret; 470 } 471 472 /* Tweak the size value. */ 473 raw_size = imr_raw_size(size); 474 end = base + raw_size; 475 476 mutex_lock(&idev->lock); 477 478 if (reg >= 0) { 479 /* If a specific IMR is given try to use it. */ 480 ret = imr_read(idev, reg, &imr); 481 if (ret) 482 goto failed; 483 484 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) { 485 ret = -ENODEV; 486 goto failed; 487 } 488 found = true; 489 } else { 490 /* Search for match based on address range. */ 491 for (i = 0; i < idev->max_imr; i++) { 492 ret = imr_read(idev, i, &imr); 493 if (ret) 494 goto failed; 495 496 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) 497 continue; 498 499 if ((imr_to_phys(imr.addr_lo) == base) && 500 (imr_to_phys(imr.addr_hi) == end)) { 501 found = true; 502 reg = i; 503 break; 504 } 505 } 506 } 507 508 if (!found) { 509 ret = -ENODEV; 510 goto failed; 511 } 512 513 pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size); 514 515 /* Tear down the IMR. */ 516 imr.addr_lo = 0; 517 imr.addr_hi = 0; 518 imr.rmask = IMR_READ_ACCESS_ALL; 519 imr.wmask = IMR_WRITE_ACCESS_ALL; 520 521 ret = imr_write(idev, reg, &imr, false); 522 523 failed: 524 mutex_unlock(&idev->lock); 525 return ret; 526 } 527 528 /** 529 * imr_remove_range - delete an Isolated Memory Region by address 530 * 531 * This function allows you to delete an IMR by an address range specified 532 * by base and size respectively. 533 * imr_remove_range(base, size); delete IMR from base to base+size. 534 * 535 * @base: physical base address of region aligned to 1 KiB. 536 * @size: physical size of region in bytes aligned to 1 KiB. 537 * @return: -EINVAL on invalid range or out or range id 538 * -ENODEV if reg is valid but no IMR exists or is locked 539 * 0 on success. 540 */ 541 int imr_remove_range(phys_addr_t base, size_t size) 542 { 543 return __imr_remove_range(-1, base, size); 544 } 545 EXPORT_SYMBOL_GPL(imr_remove_range); 546 547 /** 548 * imr_clear - delete an Isolated Memory Region by index 549 * 550 * This function allows you to delete an IMR by an address range specified 551 * by the index of the IMR. Useful for initial sanitization of the IMR 552 * address map. 553 * imr_ge(base, size); delete IMR from base to base+size. 554 * 555 * @reg: imr index to remove. 556 * @return: -EINVAL on invalid range or out or range id 557 * -ENODEV if reg is valid but no IMR exists or is locked 558 * 0 on success. 559 */ 560 static inline int imr_clear(int reg) 561 { 562 return __imr_remove_range(reg, 0, 0); 563 } 564 565 /** 566 * imr_fixup_memmap - Tear down IMRs used during bootup. 567 * 568 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory 569 * that need to be removed before the kernel hands out one of the IMR 570 * encased addresses to a downstream DMA agent such as the SD or Ethernet. 571 * IMRs on Galileo are setup to immediately reset the system on violation. 572 * As a result if you're running a root filesystem from SD - you'll need 573 * the boot-time IMRs torn down or you'll find seemingly random resets when 574 * using your filesystem. 575 * 576 * @idev: pointer to imr_device structure. 577 * @return: 578 */ 579 static void __init imr_fixup_memmap(struct imr_device *idev) 580 { 581 phys_addr_t base = virt_to_phys(&_text); 582 size_t size = virt_to_phys(&__end_rodata) - base; 583 unsigned long start, end; 584 int i; 585 int ret; 586 587 /* Tear down all existing unlocked IMRs. */ 588 for (i = 0; i < idev->max_imr; i++) 589 imr_clear(i); 590 591 start = (unsigned long)_text; 592 end = (unsigned long)__end_rodata - 1; 593 594 /* 595 * Setup a locked IMR around the physical extent of the kernel 596 * from the beginning of the .text secton to the end of the 597 * .rodata section as one physically contiguous block. 598 * 599 * We don't round up @size since it is already PAGE_SIZE aligned. 600 * See vmlinux.lds.S for details. 601 */ 602 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true); 603 if (ret < 0) { 604 pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n", 605 size / 1024, start, end); 606 } else { 607 pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n", 608 size / 1024, start, end); 609 } 610 611 } 612 613 static const struct x86_cpu_id imr_ids[] __initconst = { 614 { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */ 615 {} 616 }; 617 MODULE_DEVICE_TABLE(x86cpu, imr_ids); 618 619 /** 620 * imr_init - entry point for IMR driver. 621 * 622 * return: -ENODEV for no IMR support 0 if good to go. 623 */ 624 static int __init imr_init(void) 625 { 626 struct imr_device *idev = &imr_dev; 627 int ret; 628 629 if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) 630 return -ENODEV; 631 632 idev->max_imr = QUARK_X1000_IMR_MAX; 633 idev->reg_base = QUARK_X1000_IMR_REGBASE; 634 idev->init = true; 635 636 mutex_init(&idev->lock); 637 ret = imr_debugfs_register(idev); 638 if (ret != 0) 639 pr_warn("debugfs register failed!\n"); 640 imr_fixup_memmap(idev); 641 return 0; 642 } 643 644 /** 645 * imr_exit - exit point for IMR code. 646 * 647 * Deregisters debugfs, leave IMR state as-is. 648 * 649 * return: 650 */ 651 static void __exit imr_exit(void) 652 { 653 imr_debugfs_unregister(&imr_dev); 654 } 655 656 module_init(imr_init); 657 module_exit(imr_exit); 658 659 MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>"); 660 MODULE_DESCRIPTION("Intel Isolated Memory Region driver"); 661 MODULE_LICENSE("Dual BSD/GPL"); 662