1 /** 2 * imr.c 3 * 4 * Copyright(c) 2013 Intel Corporation. 5 * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie> 6 * 7 * IMR registers define an isolated region of memory that can 8 * be masked to prohibit certain system agents from accessing memory. 9 * When a device behind a masked port performs an access - snooped or 10 * not, an IMR may optionally prevent that transaction from changing 11 * the state of memory or from getting correct data in response to the 12 * operation. 13 * 14 * Write data will be dropped and reads will return 0xFFFFFFFF, the 15 * system will reset and system BIOS will print out an error message to 16 * inform the user that an IMR has been violated. 17 * 18 * This code is based on the Linux MTRR code and reference code from 19 * Intel's Quark BSP EFI, Linux and grub code. 20 * 21 * See quark-x1000-datasheet.pdf for register definitions. 22 * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf 23 */ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <asm-generic/sections.h> 28 #include <asm/cpu_device_id.h> 29 #include <asm/imr.h> 30 #include <asm/iosf_mbi.h> 31 #include <linux/debugfs.h> 32 #include <linux/init.h> 33 #include <linux/mm.h> 34 #include <linux/module.h> 35 #include <linux/types.h> 36 37 struct imr_device { 38 struct dentry *file; 39 bool init; 40 struct mutex lock; 41 int max_imr; 42 int reg_base; 43 }; 44 45 static struct imr_device imr_dev; 46 47 /* 48 * IMR read/write mask control registers. 49 * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for 50 * bit definitions. 51 * 52 * addr_hi 53 * 31 Lock bit 54 * 30:24 Reserved 55 * 23:2 1 KiB aligned lo address 56 * 1:0 Reserved 57 * 58 * addr_hi 59 * 31:24 Reserved 60 * 23:2 1 KiB aligned hi address 61 * 1:0 Reserved 62 */ 63 #define IMR_LOCK BIT(31) 64 65 struct imr_regs { 66 u32 addr_lo; 67 u32 addr_hi; 68 u32 rmask; 69 u32 wmask; 70 }; 71 72 #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) 73 #define IMR_SHIFT 8 74 #define imr_to_phys(x) ((x) << IMR_SHIFT) 75 #define phys_to_imr(x) ((x) >> IMR_SHIFT) 76 77 /** 78 * imr_is_enabled - true if an IMR is enabled false otherwise. 79 * 80 * Determines if an IMR is enabled based on address range and read/write 81 * mask. An IMR set with an address range set to zero and a read/write 82 * access mask set to all is considered to be disabled. An IMR in any 83 * other state - for example set to zero but without read/write access 84 * all is considered to be enabled. This definition of disabled is how 85 * firmware switches off an IMR and is maintained in kernel for 86 * consistency. 87 * 88 * @imr: pointer to IMR descriptor. 89 * @return: true if IMR enabled false if disabled. 90 */ 91 static inline int imr_is_enabled(struct imr_regs *imr) 92 { 93 return !(imr->rmask == IMR_READ_ACCESS_ALL && 94 imr->wmask == IMR_WRITE_ACCESS_ALL && 95 imr_to_phys(imr->addr_lo) == 0 && 96 imr_to_phys(imr->addr_hi) == 0); 97 } 98 99 /** 100 * imr_read - read an IMR at a given index. 101 * 102 * Requires caller to hold imr mutex. 103 * 104 * @idev: pointer to imr_device structure. 105 * @imr_id: IMR entry to read. 106 * @imr: IMR structure representing address and access masks. 107 * @return: 0 on success or error code passed from mbi_iosf on failure. 108 */ 109 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) 110 { 111 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; 112 int ret; 113 114 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, 115 reg++, &imr->addr_lo); 116 if (ret) 117 return ret; 118 119 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, 120 reg++, &imr->addr_hi); 121 if (ret) 122 return ret; 123 124 ret = iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, 125 reg++, &imr->rmask); 126 if (ret) 127 return ret; 128 129 return iosf_mbi_read(QRK_MBI_UNIT_MM, QRK_MBI_MM_READ, 130 reg++, &imr->wmask); 131 } 132 133 /** 134 * imr_write - write an IMR at a given index. 135 * 136 * Requires caller to hold imr mutex. 137 * Note lock bits need to be written independently of address bits. 138 * 139 * @idev: pointer to imr_device structure. 140 * @imr_id: IMR entry to write. 141 * @imr: IMR structure representing address and access masks. 142 * @lock: indicates if the IMR lock bit should be applied. 143 * @return: 0 on success or error code passed from mbi_iosf on failure. 144 */ 145 static int imr_write(struct imr_device *idev, u32 imr_id, 146 struct imr_regs *imr, bool lock) 147 { 148 unsigned long flags; 149 u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; 150 int ret; 151 152 local_irq_save(flags); 153 154 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, reg++, 155 imr->addr_lo); 156 if (ret) 157 goto failed; 158 159 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, 160 reg++, imr->addr_hi); 161 if (ret) 162 goto failed; 163 164 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, 165 reg++, imr->rmask); 166 if (ret) 167 goto failed; 168 169 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, 170 reg++, imr->wmask); 171 if (ret) 172 goto failed; 173 174 /* Lock bit must be set separately to addr_lo address bits. */ 175 if (lock) { 176 imr->addr_lo |= IMR_LOCK; 177 ret = iosf_mbi_write(QRK_MBI_UNIT_MM, QRK_MBI_MM_WRITE, 178 reg - IMR_NUM_REGS, imr->addr_lo); 179 if (ret) 180 goto failed; 181 } 182 183 local_irq_restore(flags); 184 return 0; 185 failed: 186 /* 187 * If writing to the IOSF failed then we're in an unknown state, 188 * likely a very bad state. An IMR in an invalid state will almost 189 * certainly lead to a memory access violation. 190 */ 191 local_irq_restore(flags); 192 WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", 193 imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK); 194 195 return ret; 196 } 197 198 /** 199 * imr_dbgfs_state_show - print state of IMR registers. 200 * 201 * @s: pointer to seq_file for output. 202 * @unused: unused parameter. 203 * @return: 0 on success or error code passed from mbi_iosf on failure. 204 */ 205 static int imr_dbgfs_state_show(struct seq_file *s, void *unused) 206 { 207 phys_addr_t base; 208 phys_addr_t end; 209 int i; 210 struct imr_device *idev = s->private; 211 struct imr_regs imr; 212 size_t size; 213 int ret = -ENODEV; 214 215 mutex_lock(&idev->lock); 216 217 for (i = 0; i < idev->max_imr; i++) { 218 219 ret = imr_read(idev, i, &imr); 220 if (ret) 221 break; 222 223 /* 224 * Remember to add IMR_ALIGN bytes to size to indicate the 225 * inherent IMR_ALIGN size bytes contained in the masked away 226 * lower ten bits. 227 */ 228 if (imr_is_enabled(&imr)) { 229 base = imr_to_phys(imr.addr_lo); 230 end = imr_to_phys(imr.addr_hi) + IMR_MASK; 231 } else { 232 base = 0; 233 end = 0; 234 } 235 size = end - base; 236 seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx " 237 "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, 238 &base, &end, size, imr.rmask, imr.wmask, 239 imr_is_enabled(&imr) ? "enabled " : "disabled", 240 imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); 241 } 242 243 mutex_unlock(&idev->lock); 244 return ret; 245 } 246 247 /** 248 * imr_state_open - debugfs open callback. 249 * 250 * @inode: pointer to struct inode. 251 * @file: pointer to struct file. 252 * @return: result of single open. 253 */ 254 static int imr_state_open(struct inode *inode, struct file *file) 255 { 256 return single_open(file, imr_dbgfs_state_show, inode->i_private); 257 } 258 259 static const struct file_operations imr_state_ops = { 260 .open = imr_state_open, 261 .read = seq_read, 262 .llseek = seq_lseek, 263 .release = single_release, 264 }; 265 266 /** 267 * imr_debugfs_register - register debugfs hooks. 268 * 269 * @idev: pointer to imr_device structure. 270 * @return: 0 on success - errno on failure. 271 */ 272 static int imr_debugfs_register(struct imr_device *idev) 273 { 274 idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL, 275 idev, &imr_state_ops); 276 return PTR_ERR_OR_ZERO(idev->file); 277 } 278 279 /** 280 * imr_debugfs_unregister - unregister debugfs hooks. 281 * 282 * @idev: pointer to imr_device structure. 283 * @return: 284 */ 285 static void imr_debugfs_unregister(struct imr_device *idev) 286 { 287 debugfs_remove(idev->file); 288 } 289 290 /** 291 * imr_check_params - check passed address range IMR alignment and non-zero size 292 * 293 * @base: base address of intended IMR. 294 * @size: size of intended IMR. 295 * @return: zero on valid range -EINVAL on unaligned base/size. 296 */ 297 static int imr_check_params(phys_addr_t base, size_t size) 298 { 299 if ((base & IMR_MASK) || (size & IMR_MASK)) { 300 pr_err("base %pa size 0x%08zx must align to 1KiB\n", 301 &base, size); 302 return -EINVAL; 303 } 304 if (size == 0) 305 return -EINVAL; 306 307 return 0; 308 } 309 310 /** 311 * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends. 312 * 313 * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the 314 * value in the register. We need to subtract IMR_ALIGN bytes from input sizes 315 * as a result. 316 * 317 * @size: input size bytes. 318 * @return: reduced size. 319 */ 320 static inline size_t imr_raw_size(size_t size) 321 { 322 return size - IMR_ALIGN; 323 } 324 325 /** 326 * imr_address_overlap - detects an address overlap. 327 * 328 * @addr: address to check against an existing IMR. 329 * @imr: imr being checked. 330 * @return: true for overlap false for no overlap. 331 */ 332 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr) 333 { 334 return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi); 335 } 336 337 /** 338 * imr_add_range - add an Isolated Memory Region. 339 * 340 * @base: physical base address of region aligned to 1KiB. 341 * @size: physical size of region in bytes must be aligned to 1KiB. 342 * @read_mask: read access mask. 343 * @write_mask: write access mask. 344 * @lock: indicates whether or not to permanently lock this region. 345 * @return: zero on success or negative value indicating error. 346 */ 347 int imr_add_range(phys_addr_t base, size_t size, 348 unsigned int rmask, unsigned int wmask, bool lock) 349 { 350 phys_addr_t end; 351 unsigned int i; 352 struct imr_device *idev = &imr_dev; 353 struct imr_regs imr; 354 size_t raw_size; 355 int reg; 356 int ret; 357 358 if (WARN_ONCE(idev->init == false, "driver not initialized")) 359 return -ENODEV; 360 361 ret = imr_check_params(base, size); 362 if (ret) 363 return ret; 364 365 /* Tweak the size value. */ 366 raw_size = imr_raw_size(size); 367 end = base + raw_size; 368 369 /* 370 * Check for reserved IMR value common to firmware, kernel and grub 371 * indicating a disabled IMR. 372 */ 373 imr.addr_lo = phys_to_imr(base); 374 imr.addr_hi = phys_to_imr(end); 375 imr.rmask = rmask; 376 imr.wmask = wmask; 377 if (!imr_is_enabled(&imr)) 378 return -ENOTSUPP; 379 380 mutex_lock(&idev->lock); 381 382 /* 383 * Find a free IMR while checking for an existing overlapping range. 384 * Note there's no restriction in silicon to prevent IMR overlaps. 385 * For the sake of simplicity and ease in defining/debugging an IMR 386 * memory map we exclude IMR overlaps. 387 */ 388 reg = -1; 389 for (i = 0; i < idev->max_imr; i++) { 390 ret = imr_read(idev, i, &imr); 391 if (ret) 392 goto failed; 393 394 /* Find overlap @ base or end of requested range. */ 395 ret = -EINVAL; 396 if (imr_is_enabled(&imr)) { 397 if (imr_address_overlap(base, &imr)) 398 goto failed; 399 if (imr_address_overlap(end, &imr)) 400 goto failed; 401 } else { 402 reg = i; 403 } 404 } 405 406 /* Error out if we have no free IMR entries. */ 407 if (reg == -1) { 408 ret = -ENOMEM; 409 goto failed; 410 } 411 412 pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n", 413 reg, &base, &end, raw_size, rmask, wmask); 414 415 /* Enable IMR at specified range and access mask. */ 416 imr.addr_lo = phys_to_imr(base); 417 imr.addr_hi = phys_to_imr(end); 418 imr.rmask = rmask; 419 imr.wmask = wmask; 420 421 ret = imr_write(idev, reg, &imr, lock); 422 if (ret < 0) { 423 /* 424 * In the highly unlikely event iosf_mbi_write failed 425 * attempt to rollback the IMR setup skipping the trapping 426 * of further IOSF write failures. 427 */ 428 imr.addr_lo = 0; 429 imr.addr_hi = 0; 430 imr.rmask = IMR_READ_ACCESS_ALL; 431 imr.wmask = IMR_WRITE_ACCESS_ALL; 432 imr_write(idev, reg, &imr, false); 433 } 434 failed: 435 mutex_unlock(&idev->lock); 436 return ret; 437 } 438 EXPORT_SYMBOL_GPL(imr_add_range); 439 440 /** 441 * __imr_remove_range - delete an Isolated Memory Region. 442 * 443 * This function allows you to delete an IMR by its index specified by reg or 444 * by address range specified by base and size respectively. If you specify an 445 * index on its own the base and size parameters are ignored. 446 * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored. 447 * imr_remove_range(-1, base, size); delete IMR from base to base+size. 448 * 449 * @reg: imr index to remove. 450 * @base: physical base address of region aligned to 1 KiB. 451 * @size: physical size of region in bytes aligned to 1 KiB. 452 * @return: -EINVAL on invalid range or out or range id 453 * -ENODEV if reg is valid but no IMR exists or is locked 454 * 0 on success. 455 */ 456 static int __imr_remove_range(int reg, phys_addr_t base, size_t size) 457 { 458 phys_addr_t end; 459 bool found = false; 460 unsigned int i; 461 struct imr_device *idev = &imr_dev; 462 struct imr_regs imr; 463 size_t raw_size; 464 int ret = 0; 465 466 if (WARN_ONCE(idev->init == false, "driver not initialized")) 467 return -ENODEV; 468 469 /* 470 * Validate address range if deleting by address, else we are 471 * deleting by index where base and size will be ignored. 472 */ 473 if (reg == -1) { 474 ret = imr_check_params(base, size); 475 if (ret) 476 return ret; 477 } 478 479 /* Tweak the size value. */ 480 raw_size = imr_raw_size(size); 481 end = base + raw_size; 482 483 mutex_lock(&idev->lock); 484 485 if (reg >= 0) { 486 /* If a specific IMR is given try to use it. */ 487 ret = imr_read(idev, reg, &imr); 488 if (ret) 489 goto failed; 490 491 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) { 492 ret = -ENODEV; 493 goto failed; 494 } 495 found = true; 496 } else { 497 /* Search for match based on address range. */ 498 for (i = 0; i < idev->max_imr; i++) { 499 ret = imr_read(idev, i, &imr); 500 if (ret) 501 goto failed; 502 503 if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) 504 continue; 505 506 if ((imr_to_phys(imr.addr_lo) == base) && 507 (imr_to_phys(imr.addr_hi) == end)) { 508 found = true; 509 reg = i; 510 break; 511 } 512 } 513 } 514 515 if (!found) { 516 ret = -ENODEV; 517 goto failed; 518 } 519 520 pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size); 521 522 /* Tear down the IMR. */ 523 imr.addr_lo = 0; 524 imr.addr_hi = 0; 525 imr.rmask = IMR_READ_ACCESS_ALL; 526 imr.wmask = IMR_WRITE_ACCESS_ALL; 527 528 ret = imr_write(idev, reg, &imr, false); 529 530 failed: 531 mutex_unlock(&idev->lock); 532 return ret; 533 } 534 535 /** 536 * imr_remove_range - delete an Isolated Memory Region by address 537 * 538 * This function allows you to delete an IMR by an address range specified 539 * by base and size respectively. 540 * imr_remove_range(base, size); delete IMR from base to base+size. 541 * 542 * @base: physical base address of region aligned to 1 KiB. 543 * @size: physical size of region in bytes aligned to 1 KiB. 544 * @return: -EINVAL on invalid range or out or range id 545 * -ENODEV if reg is valid but no IMR exists or is locked 546 * 0 on success. 547 */ 548 int imr_remove_range(phys_addr_t base, size_t size) 549 { 550 return __imr_remove_range(-1, base, size); 551 } 552 EXPORT_SYMBOL_GPL(imr_remove_range); 553 554 /** 555 * imr_clear - delete an Isolated Memory Region by index 556 * 557 * This function allows you to delete an IMR by an address range specified 558 * by the index of the IMR. Useful for initial sanitization of the IMR 559 * address map. 560 * imr_ge(base, size); delete IMR from base to base+size. 561 * 562 * @reg: imr index to remove. 563 * @return: -EINVAL on invalid range or out or range id 564 * -ENODEV if reg is valid but no IMR exists or is locked 565 * 0 on success. 566 */ 567 static inline int imr_clear(int reg) 568 { 569 return __imr_remove_range(reg, 0, 0); 570 } 571 572 /** 573 * imr_fixup_memmap - Tear down IMRs used during bootup. 574 * 575 * BIOS and Grub both setup IMRs around compressed kernel, initrd memory 576 * that need to be removed before the kernel hands out one of the IMR 577 * encased addresses to a downstream DMA agent such as the SD or Ethernet. 578 * IMRs on Galileo are setup to immediately reset the system on violation. 579 * As a result if you're running a root filesystem from SD - you'll need 580 * the boot-time IMRs torn down or you'll find seemingly random resets when 581 * using your filesystem. 582 * 583 * @idev: pointer to imr_device structure. 584 * @return: 585 */ 586 static void __init imr_fixup_memmap(struct imr_device *idev) 587 { 588 phys_addr_t base = virt_to_phys(&_text); 589 size_t size = virt_to_phys(&__end_rodata) - base; 590 int i; 591 int ret; 592 593 /* Tear down all existing unlocked IMRs. */ 594 for (i = 0; i < idev->max_imr; i++) 595 imr_clear(i); 596 597 /* 598 * Setup a locked IMR around the physical extent of the kernel 599 * from the beginning of the .text secton to the end of the 600 * .rodata section as one physically contiguous block. 601 */ 602 ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true); 603 if (ret < 0) { 604 pr_err("unable to setup IMR for kernel: (%p - %p)\n", 605 &_text, &__end_rodata); 606 } else { 607 pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n", 608 size / 1024, &_text, &__end_rodata); 609 } 610 611 } 612 613 static const struct x86_cpu_id imr_ids[] __initconst = { 614 { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */ 615 {} 616 }; 617 MODULE_DEVICE_TABLE(x86cpu, imr_ids); 618 619 /** 620 * imr_init - entry point for IMR driver. 621 * 622 * return: -ENODEV for no IMR support 0 if good to go. 623 */ 624 static int __init imr_init(void) 625 { 626 struct imr_device *idev = &imr_dev; 627 int ret; 628 629 if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) 630 return -ENODEV; 631 632 idev->max_imr = QUARK_X1000_IMR_MAX; 633 idev->reg_base = QUARK_X1000_IMR_REGBASE; 634 idev->init = true; 635 636 mutex_init(&idev->lock); 637 ret = imr_debugfs_register(idev); 638 if (ret != 0) 639 pr_warn("debugfs register failed!\n"); 640 imr_fixup_memmap(idev); 641 return 0; 642 } 643 644 /** 645 * imr_exit - exit point for IMR code. 646 * 647 * Deregisters debugfs, leave IMR state as-is. 648 * 649 * return: 650 */ 651 static void __exit imr_exit(void) 652 { 653 imr_debugfs_unregister(&imr_dev); 654 } 655 656 module_init(imr_init); 657 module_exit(imr_exit); 658 659 MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>"); 660 MODULE_DESCRIPTION("Intel Isolated Memory Region driver"); 661 MODULE_LICENSE("Dual BSD/GPL"); 662