xref: /linux/arch/x86/platform/intel-quark/imr.c (revision 7e3b1207705c10ada363bbc7d0235730ce1f5b79)
1 /**
2  * imr.c
3  *
4  * Copyright(c) 2013 Intel Corporation.
5  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
6  *
7  * IMR registers define an isolated region of memory that can
8  * be masked to prohibit certain system agents from accessing memory.
9  * When a device behind a masked port performs an access - snooped or
10  * not, an IMR may optionally prevent that transaction from changing
11  * the state of memory or from getting correct data in response to the
12  * operation.
13  *
14  * Write data will be dropped and reads will return 0xFFFFFFFF, the
15  * system will reset and system BIOS will print out an error message to
16  * inform the user that an IMR has been violated.
17  *
18  * This code is based on the Linux MTRR code and reference code from
19  * Intel's Quark BSP EFI, Linux and grub code.
20  *
21  * See quark-x1000-datasheet.pdf for register definitions.
22  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
23  */
24 
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #include <asm-generic/sections.h>
28 #include <asm/cpu_device_id.h>
29 #include <asm/imr.h>
30 #include <asm/iosf_mbi.h>
31 #include <linux/debugfs.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/types.h>
36 
37 struct imr_device {
38 	struct dentry	*file;
39 	bool		init;
40 	struct mutex	lock;
41 	int		max_imr;
42 	int		reg_base;
43 };
44 
45 static struct imr_device imr_dev;
46 
47 /*
48  * IMR read/write mask control registers.
49  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
50  * bit definitions.
51  *
52  * addr_hi
53  * 31		Lock bit
54  * 30:24	Reserved
55  * 23:2		1 KiB aligned lo address
56  * 1:0		Reserved
57  *
58  * addr_hi
59  * 31:24	Reserved
60  * 23:2		1 KiB aligned hi address
61  * 1:0		Reserved
62  */
63 #define IMR_LOCK	BIT(31)
64 
65 struct imr_regs {
66 	u32 addr_lo;
67 	u32 addr_hi;
68 	u32 rmask;
69 	u32 wmask;
70 };
71 
72 #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
73 #define IMR_SHIFT	8
74 #define imr_to_phys(x)	((x) << IMR_SHIFT)
75 #define phys_to_imr(x)	((x) >> IMR_SHIFT)
76 
77 /**
78  * imr_is_enabled - true if an IMR is enabled false otherwise.
79  *
80  * Determines if an IMR is enabled based on address range and read/write
81  * mask. An IMR set with an address range set to zero and a read/write
82  * access mask set to all is considered to be disabled. An IMR in any
83  * other state - for example set to zero but without read/write access
84  * all is considered to be enabled. This definition of disabled is how
85  * firmware switches off an IMR and is maintained in kernel for
86  * consistency.
87  *
88  * @imr:	pointer to IMR descriptor.
89  * @return:	true if IMR enabled false if disabled.
90  */
91 static inline int imr_is_enabled(struct imr_regs *imr)
92 {
93 	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
94 		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
95 		 imr_to_phys(imr->addr_lo) == 0 &&
96 		 imr_to_phys(imr->addr_hi) == 0);
97 }
98 
99 /**
100  * imr_read - read an IMR at a given index.
101  *
102  * Requires caller to hold imr mutex.
103  *
104  * @idev:	pointer to imr_device structure.
105  * @imr_id:	IMR entry to read.
106  * @imr:	IMR structure representing address and access masks.
107  * @return:	0 on success or error code passed from mbi_iosf on failure.
108  */
109 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
110 {
111 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
112 	int ret;
113 
114 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
115 	if (ret)
116 		return ret;
117 
118 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
119 	if (ret)
120 		return ret;
121 
122 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
123 	if (ret)
124 		return ret;
125 
126 	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
127 }
128 
129 /**
130  * imr_write - write an IMR at a given index.
131  *
132  * Requires caller to hold imr mutex.
133  * Note lock bits need to be written independently of address bits.
134  *
135  * @idev:	pointer to imr_device structure.
136  * @imr_id:	IMR entry to write.
137  * @imr:	IMR structure representing address and access masks.
138  * @lock:	indicates if the IMR lock bit should be applied.
139  * @return:	0 on success or error code passed from mbi_iosf on failure.
140  */
141 static int imr_write(struct imr_device *idev, u32 imr_id,
142 		     struct imr_regs *imr, bool lock)
143 {
144 	unsigned long flags;
145 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
146 	int ret;
147 
148 	local_irq_save(flags);
149 
150 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
151 	if (ret)
152 		goto failed;
153 
154 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
155 	if (ret)
156 		goto failed;
157 
158 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
159 	if (ret)
160 		goto failed;
161 
162 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
163 	if (ret)
164 		goto failed;
165 
166 	/* Lock bit must be set separately to addr_lo address bits. */
167 	if (lock) {
168 		imr->addr_lo |= IMR_LOCK;
169 		ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE,
170 				     reg - IMR_NUM_REGS, imr->addr_lo);
171 		if (ret)
172 			goto failed;
173 	}
174 
175 	local_irq_restore(flags);
176 	return 0;
177 failed:
178 	/*
179 	 * If writing to the IOSF failed then we're in an unknown state,
180 	 * likely a very bad state. An IMR in an invalid state will almost
181 	 * certainly lead to a memory access violation.
182 	 */
183 	local_irq_restore(flags);
184 	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
185 	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
186 
187 	return ret;
188 }
189 
190 /**
191  * imr_dbgfs_state_show - print state of IMR registers.
192  *
193  * @s:		pointer to seq_file for output.
194  * @unused:	unused parameter.
195  * @return:	0 on success or error code passed from mbi_iosf on failure.
196  */
197 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
198 {
199 	phys_addr_t base;
200 	phys_addr_t end;
201 	int i;
202 	struct imr_device *idev = s->private;
203 	struct imr_regs imr;
204 	size_t size;
205 	int ret = -ENODEV;
206 
207 	mutex_lock(&idev->lock);
208 
209 	for (i = 0; i < idev->max_imr; i++) {
210 
211 		ret = imr_read(idev, i, &imr);
212 		if (ret)
213 			break;
214 
215 		/*
216 		 * Remember to add IMR_ALIGN bytes to size to indicate the
217 		 * inherent IMR_ALIGN size bytes contained in the masked away
218 		 * lower ten bits.
219 		 */
220 		if (imr_is_enabled(&imr)) {
221 			base = imr_to_phys(imr.addr_lo);
222 			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
223 		} else {
224 			base = 0;
225 			end = 0;
226 		}
227 		size = end - base;
228 		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
229 			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
230 			   &base, &end, size, imr.rmask, imr.wmask,
231 			   imr_is_enabled(&imr) ? "enabled " : "disabled",
232 			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
233 	}
234 
235 	mutex_unlock(&idev->lock);
236 	return ret;
237 }
238 
239 /**
240  * imr_state_open - debugfs open callback.
241  *
242  * @inode:	pointer to struct inode.
243  * @file:	pointer to struct file.
244  * @return:	result of single open.
245  */
246 static int imr_state_open(struct inode *inode, struct file *file)
247 {
248 	return single_open(file, imr_dbgfs_state_show, inode->i_private);
249 }
250 
251 static const struct file_operations imr_state_ops = {
252 	.open		= imr_state_open,
253 	.read		= seq_read,
254 	.llseek		= seq_lseek,
255 	.release	= single_release,
256 };
257 
258 /**
259  * imr_debugfs_register - register debugfs hooks.
260  *
261  * @idev:	pointer to imr_device structure.
262  * @return:	0 on success - errno on failure.
263  */
264 static int imr_debugfs_register(struct imr_device *idev)
265 {
266 	idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL,
267 					 idev, &imr_state_ops);
268 	return PTR_ERR_OR_ZERO(idev->file);
269 }
270 
271 /**
272  * imr_debugfs_unregister - unregister debugfs hooks.
273  *
274  * @idev:	pointer to imr_device structure.
275  * @return:
276  */
277 static void imr_debugfs_unregister(struct imr_device *idev)
278 {
279 	debugfs_remove(idev->file);
280 }
281 
282 /**
283  * imr_check_params - check passed address range IMR alignment and non-zero size
284  *
285  * @base:	base address of intended IMR.
286  * @size:	size of intended IMR.
287  * @return:	zero on valid range -EINVAL on unaligned base/size.
288  */
289 static int imr_check_params(phys_addr_t base, size_t size)
290 {
291 	if ((base & IMR_MASK) || (size & IMR_MASK)) {
292 		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
293 			&base, size);
294 		return -EINVAL;
295 	}
296 	if (size == 0)
297 		return -EINVAL;
298 
299 	return 0;
300 }
301 
302 /**
303  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
304  *
305  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
306  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
307  * as a result.
308  *
309  * @size:	input size bytes.
310  * @return:	reduced size.
311  */
312 static inline size_t imr_raw_size(size_t size)
313 {
314 	return size - IMR_ALIGN;
315 }
316 
317 /**
318  * imr_address_overlap - detects an address overlap.
319  *
320  * @addr:	address to check against an existing IMR.
321  * @imr:	imr being checked.
322  * @return:	true for overlap false for no overlap.
323  */
324 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
325 {
326 	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
327 }
328 
329 /**
330  * imr_add_range - add an Isolated Memory Region.
331  *
332  * @base:	physical base address of region aligned to 1KiB.
333  * @size:	physical size of region in bytes must be aligned to 1KiB.
334  * @read_mask:	read access mask.
335  * @write_mask:	write access mask.
336  * @lock:	indicates whether or not to permanently lock this region.
337  * @return:	zero on success or negative value indicating error.
338  */
339 int imr_add_range(phys_addr_t base, size_t size,
340 		  unsigned int rmask, unsigned int wmask, bool lock)
341 {
342 	phys_addr_t end;
343 	unsigned int i;
344 	struct imr_device *idev = &imr_dev;
345 	struct imr_regs imr;
346 	size_t raw_size;
347 	int reg;
348 	int ret;
349 
350 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
351 		return -ENODEV;
352 
353 	ret = imr_check_params(base, size);
354 	if (ret)
355 		return ret;
356 
357 	/* Tweak the size value. */
358 	raw_size = imr_raw_size(size);
359 	end = base + raw_size;
360 
361 	/*
362 	 * Check for reserved IMR value common to firmware, kernel and grub
363 	 * indicating a disabled IMR.
364 	 */
365 	imr.addr_lo = phys_to_imr(base);
366 	imr.addr_hi = phys_to_imr(end);
367 	imr.rmask = rmask;
368 	imr.wmask = wmask;
369 	if (!imr_is_enabled(&imr))
370 		return -ENOTSUPP;
371 
372 	mutex_lock(&idev->lock);
373 
374 	/*
375 	 * Find a free IMR while checking for an existing overlapping range.
376 	 * Note there's no restriction in silicon to prevent IMR overlaps.
377 	 * For the sake of simplicity and ease in defining/debugging an IMR
378 	 * memory map we exclude IMR overlaps.
379 	 */
380 	reg = -1;
381 	for (i = 0; i < idev->max_imr; i++) {
382 		ret = imr_read(idev, i, &imr);
383 		if (ret)
384 			goto failed;
385 
386 		/* Find overlap @ base or end of requested range. */
387 		ret = -EINVAL;
388 		if (imr_is_enabled(&imr)) {
389 			if (imr_address_overlap(base, &imr))
390 				goto failed;
391 			if (imr_address_overlap(end, &imr))
392 				goto failed;
393 		} else {
394 			reg = i;
395 		}
396 	}
397 
398 	/* Error out if we have no free IMR entries. */
399 	if (reg == -1) {
400 		ret = -ENOMEM;
401 		goto failed;
402 	}
403 
404 	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
405 		 reg, &base, &end, raw_size, rmask, wmask);
406 
407 	/* Enable IMR at specified range and access mask. */
408 	imr.addr_lo = phys_to_imr(base);
409 	imr.addr_hi = phys_to_imr(end);
410 	imr.rmask = rmask;
411 	imr.wmask = wmask;
412 
413 	ret = imr_write(idev, reg, &imr, lock);
414 	if (ret < 0) {
415 		/*
416 		 * In the highly unlikely event iosf_mbi_write failed
417 		 * attempt to rollback the IMR setup skipping the trapping
418 		 * of further IOSF write failures.
419 		 */
420 		imr.addr_lo = 0;
421 		imr.addr_hi = 0;
422 		imr.rmask = IMR_READ_ACCESS_ALL;
423 		imr.wmask = IMR_WRITE_ACCESS_ALL;
424 		imr_write(idev, reg, &imr, false);
425 	}
426 failed:
427 	mutex_unlock(&idev->lock);
428 	return ret;
429 }
430 EXPORT_SYMBOL_GPL(imr_add_range);
431 
432 /**
433  * __imr_remove_range - delete an Isolated Memory Region.
434  *
435  * This function allows you to delete an IMR by its index specified by reg or
436  * by address range specified by base and size respectively. If you specify an
437  * index on its own the base and size parameters are ignored.
438  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
439  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
440  *
441  * @reg:	imr index to remove.
442  * @base:	physical base address of region aligned to 1 KiB.
443  * @size:	physical size of region in bytes aligned to 1 KiB.
444  * @return:	-EINVAL on invalid range or out or range id
445  *		-ENODEV if reg is valid but no IMR exists or is locked
446  *		0 on success.
447  */
448 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
449 {
450 	phys_addr_t end;
451 	bool found = false;
452 	unsigned int i;
453 	struct imr_device *idev = &imr_dev;
454 	struct imr_regs imr;
455 	size_t raw_size;
456 	int ret = 0;
457 
458 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
459 		return -ENODEV;
460 
461 	/*
462 	 * Validate address range if deleting by address, else we are
463 	 * deleting by index where base and size will be ignored.
464 	 */
465 	if (reg == -1) {
466 		ret = imr_check_params(base, size);
467 		if (ret)
468 			return ret;
469 	}
470 
471 	/* Tweak the size value. */
472 	raw_size = imr_raw_size(size);
473 	end = base + raw_size;
474 
475 	mutex_lock(&idev->lock);
476 
477 	if (reg >= 0) {
478 		/* If a specific IMR is given try to use it. */
479 		ret = imr_read(idev, reg, &imr);
480 		if (ret)
481 			goto failed;
482 
483 		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
484 			ret = -ENODEV;
485 			goto failed;
486 		}
487 		found = true;
488 	} else {
489 		/* Search for match based on address range. */
490 		for (i = 0; i < idev->max_imr; i++) {
491 			ret = imr_read(idev, i, &imr);
492 			if (ret)
493 				goto failed;
494 
495 			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
496 				continue;
497 
498 			if ((imr_to_phys(imr.addr_lo) == base) &&
499 			    (imr_to_phys(imr.addr_hi) == end)) {
500 				found = true;
501 				reg = i;
502 				break;
503 			}
504 		}
505 	}
506 
507 	if (!found) {
508 		ret = -ENODEV;
509 		goto failed;
510 	}
511 
512 	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
513 
514 	/* Tear down the IMR. */
515 	imr.addr_lo = 0;
516 	imr.addr_hi = 0;
517 	imr.rmask = IMR_READ_ACCESS_ALL;
518 	imr.wmask = IMR_WRITE_ACCESS_ALL;
519 
520 	ret = imr_write(idev, reg, &imr, false);
521 
522 failed:
523 	mutex_unlock(&idev->lock);
524 	return ret;
525 }
526 
527 /**
528  * imr_remove_range - delete an Isolated Memory Region by address
529  *
530  * This function allows you to delete an IMR by an address range specified
531  * by base and size respectively.
532  * imr_remove_range(base, size); delete IMR from base to base+size.
533  *
534  * @base:	physical base address of region aligned to 1 KiB.
535  * @size:	physical size of region in bytes aligned to 1 KiB.
536  * @return:	-EINVAL on invalid range or out or range id
537  *		-ENODEV if reg is valid but no IMR exists or is locked
538  *		0 on success.
539  */
540 int imr_remove_range(phys_addr_t base, size_t size)
541 {
542 	return __imr_remove_range(-1, base, size);
543 }
544 EXPORT_SYMBOL_GPL(imr_remove_range);
545 
546 /**
547  * imr_clear - delete an Isolated Memory Region by index
548  *
549  * This function allows you to delete an IMR by an address range specified
550  * by the index of the IMR. Useful for initial sanitization of the IMR
551  * address map.
552  * imr_ge(base, size); delete IMR from base to base+size.
553  *
554  * @reg:	imr index to remove.
555  * @return:	-EINVAL on invalid range or out or range id
556  *		-ENODEV if reg is valid but no IMR exists or is locked
557  *		0 on success.
558  */
559 static inline int imr_clear(int reg)
560 {
561 	return __imr_remove_range(reg, 0, 0);
562 }
563 
564 /**
565  * imr_fixup_memmap - Tear down IMRs used during bootup.
566  *
567  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
568  * that need to be removed before the kernel hands out one of the IMR
569  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
570  * IMRs on Galileo are setup to immediately reset the system on violation.
571  * As a result if you're running a root filesystem from SD - you'll need
572  * the boot-time IMRs torn down or you'll find seemingly random resets when
573  * using your filesystem.
574  *
575  * @idev:	pointer to imr_device structure.
576  * @return:
577  */
578 static void __init imr_fixup_memmap(struct imr_device *idev)
579 {
580 	phys_addr_t base = virt_to_phys(&_text);
581 	size_t size = virt_to_phys(&__end_rodata) - base;
582 	int i;
583 	int ret;
584 
585 	/* Tear down all existing unlocked IMRs. */
586 	for (i = 0; i < idev->max_imr; i++)
587 		imr_clear(i);
588 
589 	/*
590 	 * Setup a locked IMR around the physical extent of the kernel
591 	 * from the beginning of the .text secton to the end of the
592 	 * .rodata section as one physically contiguous block.
593 	 */
594 	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true);
595 	if (ret < 0) {
596 		pr_err("unable to setup IMR for kernel: (%p - %p)\n",
597 			&_text, &__end_rodata);
598 	} else {
599 		pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n",
600 			size / 1024, &_text, &__end_rodata);
601 	}
602 
603 }
604 
605 static const struct x86_cpu_id imr_ids[] __initconst = {
606 	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
607 	{}
608 };
609 MODULE_DEVICE_TABLE(x86cpu, imr_ids);
610 
611 /**
612  * imr_init - entry point for IMR driver.
613  *
614  * return: -ENODEV for no IMR support 0 if good to go.
615  */
616 static int __init imr_init(void)
617 {
618 	struct imr_device *idev = &imr_dev;
619 	int ret;
620 
621 	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
622 		return -ENODEV;
623 
624 	idev->max_imr = QUARK_X1000_IMR_MAX;
625 	idev->reg_base = QUARK_X1000_IMR_REGBASE;
626 	idev->init = true;
627 
628 	mutex_init(&idev->lock);
629 	ret = imr_debugfs_register(idev);
630 	if (ret != 0)
631 		pr_warn("debugfs register failed!\n");
632 	imr_fixup_memmap(idev);
633 	return 0;
634 }
635 
636 /**
637  * imr_exit - exit point for IMR code.
638  *
639  * Deregisters debugfs, leave IMR state as-is.
640  *
641  * return:
642  */
643 static void __exit imr_exit(void)
644 {
645 	imr_debugfs_unregister(&imr_dev);
646 }
647 
648 module_init(imr_init);
649 module_exit(imr_exit);
650 
651 MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>");
652 MODULE_DESCRIPTION("Intel Isolated Memory Region driver");
653 MODULE_LICENSE("Dual BSD/GPL");
654