xref: /linux/arch/x86/platform/intel-quark/imr.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * imr.c -- Intel Isolated Memory Region driver
4  *
5  * Copyright(c) 2013 Intel Corporation.
6  * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
7  *
8  * IMR registers define an isolated region of memory that can
9  * be masked to prohibit certain system agents from accessing memory.
10  * When a device behind a masked port performs an access - snooped or
11  * not, an IMR may optionally prevent that transaction from changing
12  * the state of memory or from getting correct data in response to the
13  * operation.
14  *
15  * Write data will be dropped and reads will return 0xFFFFFFFF, the
16  * system will reset and system BIOS will print out an error message to
17  * inform the user that an IMR has been violated.
18  *
19  * This code is based on the Linux MTRR code and reference code from
20  * Intel's Quark BSP EFI, Linux and grub code.
21  *
22  * See quark-x1000-datasheet.pdf for register definitions.
23  * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <asm-generic/sections.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/imr.h>
31 #include <asm/iosf_mbi.h>
32 #include <linux/debugfs.h>
33 #include <linux/init.h>
34 #include <linux/mm.h>
35 #include <linux/types.h>
36 
37 struct imr_device {
38 	bool		init;
39 	struct mutex	lock;
40 	int		max_imr;
41 	int		reg_base;
42 };
43 
44 static struct imr_device imr_dev;
45 
46 /*
47  * IMR read/write mask control registers.
48  * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
49  * bit definitions.
50  *
51  * addr_hi
52  * 31		Lock bit
53  * 30:24	Reserved
54  * 23:2		1 KiB aligned lo address
55  * 1:0		Reserved
56  *
57  * addr_hi
58  * 31:24	Reserved
59  * 23:2		1 KiB aligned hi address
60  * 1:0		Reserved
61  */
62 #define IMR_LOCK	BIT(31)
63 
64 struct imr_regs {
65 	u32 addr_lo;
66 	u32 addr_hi;
67 	u32 rmask;
68 	u32 wmask;
69 };
70 
71 #define IMR_NUM_REGS	(sizeof(struct imr_regs)/sizeof(u32))
72 #define IMR_SHIFT	8
73 #define imr_to_phys(x)	((x) << IMR_SHIFT)
74 #define phys_to_imr(x)	((x) >> IMR_SHIFT)
75 
76 /**
77  * imr_is_enabled - true if an IMR is enabled false otherwise.
78  *
79  * Determines if an IMR is enabled based on address range and read/write
80  * mask. An IMR set with an address range set to zero and a read/write
81  * access mask set to all is considered to be disabled. An IMR in any
82  * other state - for example set to zero but without read/write access
83  * all is considered to be enabled. This definition of disabled is how
84  * firmware switches off an IMR and is maintained in kernel for
85  * consistency.
86  *
87  * @imr:	pointer to IMR descriptor.
88  * @return:	true if IMR enabled false if disabled.
89  */
90 static inline int imr_is_enabled(struct imr_regs *imr)
91 {
92 	return !(imr->rmask == IMR_READ_ACCESS_ALL &&
93 		 imr->wmask == IMR_WRITE_ACCESS_ALL &&
94 		 imr_to_phys(imr->addr_lo) == 0 &&
95 		 imr_to_phys(imr->addr_hi) == 0);
96 }
97 
98 /**
99  * imr_read - read an IMR at a given index.
100  *
101  * Requires caller to hold imr mutex.
102  *
103  * @idev:	pointer to imr_device structure.
104  * @imr_id:	IMR entry to read.
105  * @imr:	IMR structure representing address and access masks.
106  * @return:	0 on success or error code passed from mbi_iosf on failure.
107  */
108 static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
109 {
110 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
111 	int ret;
112 
113 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
114 	if (ret)
115 		return ret;
116 
117 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
118 	if (ret)
119 		return ret;
120 
121 	ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
122 	if (ret)
123 		return ret;
124 
125 	return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
126 }
127 
128 /**
129  * imr_write - write an IMR at a given index.
130  *
131  * Requires caller to hold imr mutex.
132  * Note lock bits need to be written independently of address bits.
133  *
134  * @idev:	pointer to imr_device structure.
135  * @imr_id:	IMR entry to write.
136  * @imr:	IMR structure representing address and access masks.
137  * @return:	0 on success or error code passed from mbi_iosf on failure.
138  */
139 static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
140 {
141 	unsigned long flags;
142 	u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
143 	int ret;
144 
145 	local_irq_save(flags);
146 
147 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
148 	if (ret)
149 		goto failed;
150 
151 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
152 	if (ret)
153 		goto failed;
154 
155 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
156 	if (ret)
157 		goto failed;
158 
159 	ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
160 	if (ret)
161 		goto failed;
162 
163 	local_irq_restore(flags);
164 	return 0;
165 failed:
166 	/*
167 	 * If writing to the IOSF failed then we're in an unknown state,
168 	 * likely a very bad state. An IMR in an invalid state will almost
169 	 * certainly lead to a memory access violation.
170 	 */
171 	local_irq_restore(flags);
172 	WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
173 	     imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
174 
175 	return ret;
176 }
177 
178 /**
179  * imr_dbgfs_state_show - print state of IMR registers.
180  *
181  * @s:		pointer to seq_file for output.
182  * @unused:	unused parameter.
183  * @return:	0 on success or error code passed from mbi_iosf on failure.
184  */
185 static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
186 {
187 	phys_addr_t base;
188 	phys_addr_t end;
189 	int i;
190 	struct imr_device *idev = s->private;
191 	struct imr_regs imr;
192 	size_t size;
193 	int ret = -ENODEV;
194 
195 	mutex_lock(&idev->lock);
196 
197 	for (i = 0; i < idev->max_imr; i++) {
198 
199 		ret = imr_read(idev, i, &imr);
200 		if (ret)
201 			break;
202 
203 		/*
204 		 * Remember to add IMR_ALIGN bytes to size to indicate the
205 		 * inherent IMR_ALIGN size bytes contained in the masked away
206 		 * lower ten bits.
207 		 */
208 		if (imr_is_enabled(&imr)) {
209 			base = imr_to_phys(imr.addr_lo);
210 			end = imr_to_phys(imr.addr_hi) + IMR_MASK;
211 			size = end - base + 1;
212 		} else {
213 			base = 0;
214 			end = 0;
215 			size = 0;
216 		}
217 		seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
218 			   "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
219 			   &base, &end, size, imr.rmask, imr.wmask,
220 			   imr_is_enabled(&imr) ? "enabled " : "disabled",
221 			   imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
222 	}
223 
224 	mutex_unlock(&idev->lock);
225 	return ret;
226 }
227 DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
228 
229 /**
230  * imr_debugfs_register - register debugfs hooks.
231  *
232  * @idev:	pointer to imr_device structure.
233  */
234 static void imr_debugfs_register(struct imr_device *idev)
235 {
236 	debugfs_create_file("imr_state", 0444, NULL, idev,
237 			    &imr_dbgfs_state_fops);
238 }
239 
240 /**
241  * imr_check_params - check passed address range IMR alignment and non-zero size
242  *
243  * @base:	base address of intended IMR.
244  * @size:	size of intended IMR.
245  * @return:	zero on valid range -EINVAL on unaligned base/size.
246  */
247 static int imr_check_params(phys_addr_t base, size_t size)
248 {
249 	if ((base & IMR_MASK) || (size & IMR_MASK)) {
250 		pr_err("base %pa size 0x%08zx must align to 1KiB\n",
251 			&base, size);
252 		return -EINVAL;
253 	}
254 	if (size == 0)
255 		return -EINVAL;
256 
257 	return 0;
258 }
259 
260 /**
261  * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
262  *
263  * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
264  * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
265  * as a result.
266  *
267  * @size:	input size bytes.
268  * @return:	reduced size.
269  */
270 static inline size_t imr_raw_size(size_t size)
271 {
272 	return size - IMR_ALIGN;
273 }
274 
275 /**
276  * imr_address_overlap - detects an address overlap.
277  *
278  * @addr:	address to check against an existing IMR.
279  * @imr:	imr being checked.
280  * @return:	true for overlap false for no overlap.
281  */
282 static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
283 {
284 	return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
285 }
286 
287 /**
288  * imr_add_range - add an Isolated Memory Region.
289  *
290  * @base:	physical base address of region aligned to 1KiB.
291  * @size:	physical size of region in bytes must be aligned to 1KiB.
292  * @read_mask:	read access mask.
293  * @write_mask:	write access mask.
294  * @return:	zero on success or negative value indicating error.
295  */
296 int imr_add_range(phys_addr_t base, size_t size,
297 		  unsigned int rmask, unsigned int wmask)
298 {
299 	phys_addr_t end;
300 	unsigned int i;
301 	struct imr_device *idev = &imr_dev;
302 	struct imr_regs imr;
303 	size_t raw_size;
304 	int reg;
305 	int ret;
306 
307 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
308 		return -ENODEV;
309 
310 	ret = imr_check_params(base, size);
311 	if (ret)
312 		return ret;
313 
314 	/* Tweak the size value. */
315 	raw_size = imr_raw_size(size);
316 	end = base + raw_size;
317 
318 	/*
319 	 * Check for reserved IMR value common to firmware, kernel and grub
320 	 * indicating a disabled IMR.
321 	 */
322 	imr.addr_lo = phys_to_imr(base);
323 	imr.addr_hi = phys_to_imr(end);
324 	imr.rmask = rmask;
325 	imr.wmask = wmask;
326 	if (!imr_is_enabled(&imr))
327 		return -ENOTSUPP;
328 
329 	mutex_lock(&idev->lock);
330 
331 	/*
332 	 * Find a free IMR while checking for an existing overlapping range.
333 	 * Note there's no restriction in silicon to prevent IMR overlaps.
334 	 * For the sake of simplicity and ease in defining/debugging an IMR
335 	 * memory map we exclude IMR overlaps.
336 	 */
337 	reg = -1;
338 	for (i = 0; i < idev->max_imr; i++) {
339 		ret = imr_read(idev, i, &imr);
340 		if (ret)
341 			goto failed;
342 
343 		/* Find overlap @ base or end of requested range. */
344 		ret = -EINVAL;
345 		if (imr_is_enabled(&imr)) {
346 			if (imr_address_overlap(base, &imr))
347 				goto failed;
348 			if (imr_address_overlap(end, &imr))
349 				goto failed;
350 		} else {
351 			reg = i;
352 		}
353 	}
354 
355 	/* Error out if we have no free IMR entries. */
356 	if (reg == -1) {
357 		ret = -ENOMEM;
358 		goto failed;
359 	}
360 
361 	pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
362 		 reg, &base, &end, raw_size, rmask, wmask);
363 
364 	/* Enable IMR at specified range and access mask. */
365 	imr.addr_lo = phys_to_imr(base);
366 	imr.addr_hi = phys_to_imr(end);
367 	imr.rmask = rmask;
368 	imr.wmask = wmask;
369 
370 	ret = imr_write(idev, reg, &imr);
371 	if (ret < 0) {
372 		/*
373 		 * In the highly unlikely event iosf_mbi_write failed
374 		 * attempt to rollback the IMR setup skipping the trapping
375 		 * of further IOSF write failures.
376 		 */
377 		imr.addr_lo = 0;
378 		imr.addr_hi = 0;
379 		imr.rmask = IMR_READ_ACCESS_ALL;
380 		imr.wmask = IMR_WRITE_ACCESS_ALL;
381 		imr_write(idev, reg, &imr);
382 	}
383 failed:
384 	mutex_unlock(&idev->lock);
385 	return ret;
386 }
387 EXPORT_SYMBOL_GPL(imr_add_range);
388 
389 /**
390  * __imr_remove_range - delete an Isolated Memory Region.
391  *
392  * This function allows you to delete an IMR by its index specified by reg or
393  * by address range specified by base and size respectively. If you specify an
394  * index on its own the base and size parameters are ignored.
395  * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
396  * imr_remove_range(-1, base, size); delete IMR from base to base+size.
397  *
398  * @reg:	imr index to remove.
399  * @base:	physical base address of region aligned to 1 KiB.
400  * @size:	physical size of region in bytes aligned to 1 KiB.
401  * @return:	-EINVAL on invalid range or out or range id
402  *		-ENODEV if reg is valid but no IMR exists or is locked
403  *		0 on success.
404  */
405 static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
406 {
407 	phys_addr_t end;
408 	bool found = false;
409 	unsigned int i;
410 	struct imr_device *idev = &imr_dev;
411 	struct imr_regs imr;
412 	size_t raw_size;
413 	int ret = 0;
414 
415 	if (WARN_ONCE(idev->init == false, "driver not initialized"))
416 		return -ENODEV;
417 
418 	/*
419 	 * Validate address range if deleting by address, else we are
420 	 * deleting by index where base and size will be ignored.
421 	 */
422 	if (reg == -1) {
423 		ret = imr_check_params(base, size);
424 		if (ret)
425 			return ret;
426 	}
427 
428 	/* Tweak the size value. */
429 	raw_size = imr_raw_size(size);
430 	end = base + raw_size;
431 
432 	mutex_lock(&idev->lock);
433 
434 	if (reg >= 0) {
435 		/* If a specific IMR is given try to use it. */
436 		ret = imr_read(idev, reg, &imr);
437 		if (ret)
438 			goto failed;
439 
440 		if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
441 			ret = -ENODEV;
442 			goto failed;
443 		}
444 		found = true;
445 	} else {
446 		/* Search for match based on address range. */
447 		for (i = 0; i < idev->max_imr; i++) {
448 			ret = imr_read(idev, i, &imr);
449 			if (ret)
450 				goto failed;
451 
452 			if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
453 				continue;
454 
455 			if ((imr_to_phys(imr.addr_lo) == base) &&
456 			    (imr_to_phys(imr.addr_hi) == end)) {
457 				found = true;
458 				reg = i;
459 				break;
460 			}
461 		}
462 	}
463 
464 	if (!found) {
465 		ret = -ENODEV;
466 		goto failed;
467 	}
468 
469 	pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
470 
471 	/* Tear down the IMR. */
472 	imr.addr_lo = 0;
473 	imr.addr_hi = 0;
474 	imr.rmask = IMR_READ_ACCESS_ALL;
475 	imr.wmask = IMR_WRITE_ACCESS_ALL;
476 
477 	ret = imr_write(idev, reg, &imr);
478 
479 failed:
480 	mutex_unlock(&idev->lock);
481 	return ret;
482 }
483 
484 /**
485  * imr_remove_range - delete an Isolated Memory Region by address
486  *
487  * This function allows you to delete an IMR by an address range specified
488  * by base and size respectively.
489  * imr_remove_range(base, size); delete IMR from base to base+size.
490  *
491  * @base:	physical base address of region aligned to 1 KiB.
492  * @size:	physical size of region in bytes aligned to 1 KiB.
493  * @return:	-EINVAL on invalid range or out or range id
494  *		-ENODEV if reg is valid but no IMR exists or is locked
495  *		0 on success.
496  */
497 int imr_remove_range(phys_addr_t base, size_t size)
498 {
499 	return __imr_remove_range(-1, base, size);
500 }
501 EXPORT_SYMBOL_GPL(imr_remove_range);
502 
503 /**
504  * imr_clear - delete an Isolated Memory Region by index
505  *
506  * This function allows you to delete an IMR by an address range specified
507  * by the index of the IMR. Useful for initial sanitization of the IMR
508  * address map.
509  * imr_ge(base, size); delete IMR from base to base+size.
510  *
511  * @reg:	imr index to remove.
512  * @return:	-EINVAL on invalid range or out or range id
513  *		-ENODEV if reg is valid but no IMR exists or is locked
514  *		0 on success.
515  */
516 static inline int imr_clear(int reg)
517 {
518 	return __imr_remove_range(reg, 0, 0);
519 }
520 
521 /**
522  * imr_fixup_memmap - Tear down IMRs used during bootup.
523  *
524  * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
525  * that need to be removed before the kernel hands out one of the IMR
526  * encased addresses to a downstream DMA agent such as the SD or Ethernet.
527  * IMRs on Galileo are setup to immediately reset the system on violation.
528  * As a result if you're running a root filesystem from SD - you'll need
529  * the boot-time IMRs torn down or you'll find seemingly random resets when
530  * using your filesystem.
531  *
532  * @idev:	pointer to imr_device structure.
533  * @return:
534  */
535 static void __init imr_fixup_memmap(struct imr_device *idev)
536 {
537 	phys_addr_t base = virt_to_phys(&_text);
538 	size_t size = virt_to_phys(&__end_rodata) - base;
539 	unsigned long start, end;
540 	int i;
541 	int ret;
542 
543 	/* Tear down all existing unlocked IMRs. */
544 	for (i = 0; i < idev->max_imr; i++)
545 		imr_clear(i);
546 
547 	start = (unsigned long)_text;
548 	end = (unsigned long)__end_rodata - 1;
549 
550 	/*
551 	 * Setup an unlocked IMR around the physical extent of the kernel
552 	 * from the beginning of the .text secton to the end of the
553 	 * .rodata section as one physically contiguous block.
554 	 *
555 	 * We don't round up @size since it is already PAGE_SIZE aligned.
556 	 * See vmlinux.lds.S for details.
557 	 */
558 	ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
559 	if (ret < 0) {
560 		pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
561 			size / 1024, start, end);
562 	} else {
563 		pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
564 			size / 1024, start, end);
565 	}
566 
567 }
568 
569 static const struct x86_cpu_id imr_ids[] __initconst = {
570 	{ X86_VENDOR_INTEL, 5, 9 },	/* Intel Quark SoC X1000. */
571 	{}
572 };
573 
574 /**
575  * imr_init - entry point for IMR driver.
576  *
577  * return: -ENODEV for no IMR support 0 if good to go.
578  */
579 static int __init imr_init(void)
580 {
581 	struct imr_device *idev = &imr_dev;
582 
583 	if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
584 		return -ENODEV;
585 
586 	idev->max_imr = QUARK_X1000_IMR_MAX;
587 	idev->reg_base = QUARK_X1000_IMR_REGBASE;
588 	idev->init = true;
589 
590 	mutex_init(&idev->lock);
591 	imr_debugfs_register(idev);
592 	imr_fixup_memmap(idev);
593 	return 0;
594 }
595 device_initcall(imr_init);
596