xref: /linux/arch/x86/platform/efi/quirks.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 #define pr_fmt(fmt) "efi: " fmt
2 
3 #include <linux/init.h>
4 #include <linux/kernel.h>
5 #include <linux/string.h>
6 #include <linux/time.h>
7 #include <linux/types.h>
8 #include <linux/efi.h>
9 #include <linux/slab.h>
10 #include <linux/memblock.h>
11 #include <linux/bootmem.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
14 #include <asm/efi.h>
15 #include <asm/uv/uv.h>
16 
17 #define EFI_MIN_RESERVE 5120
18 
19 #define EFI_DUMMY_GUID \
20 	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
21 
22 static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
23 
24 static bool efi_no_storage_paranoia;
25 
26 /*
27  * Some firmware implementations refuse to boot if there's insufficient
28  * space in the variable store. The implementation of garbage collection
29  * in some FW versions causes stale (deleted) variables to take up space
30  * longer than intended and space is only freed once the store becomes
31  * almost completely full.
32  *
33  * Enabling this option disables the space checks in
34  * efi_query_variable_store() and forces garbage collection.
35  *
36  * Only enable this option if deleting EFI variables does not free up
37  * space in your variable store, e.g. if despite deleting variables
38  * you're unable to create new ones.
39  */
40 static int __init setup_storage_paranoia(char *arg)
41 {
42 	efi_no_storage_paranoia = true;
43 	return 0;
44 }
45 early_param("efi_no_storage_paranoia", setup_storage_paranoia);
46 
47 /*
48  * Deleting the dummy variable which kicks off garbage collection
49 */
50 void efi_delete_dummy_variable(void)
51 {
52 	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
53 			 EFI_VARIABLE_NON_VOLATILE |
54 			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
55 			 EFI_VARIABLE_RUNTIME_ACCESS,
56 			 0, NULL);
57 }
58 
59 /*
60  * In the nonblocking case we do not attempt to perform garbage
61  * collection if we do not have enough free space. Rather, we do the
62  * bare minimum check and give up immediately if the available space
63  * is below EFI_MIN_RESERVE.
64  *
65  * This function is intended to be small and simple because it is
66  * invoked from crash handler paths.
67  */
68 static efi_status_t
69 query_variable_store_nonblocking(u32 attributes, unsigned long size)
70 {
71 	efi_status_t status;
72 	u64 storage_size, remaining_size, max_size;
73 
74 	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
75 						     &remaining_size,
76 						     &max_size);
77 	if (status != EFI_SUCCESS)
78 		return status;
79 
80 	if (remaining_size - size < EFI_MIN_RESERVE)
81 		return EFI_OUT_OF_RESOURCES;
82 
83 	return EFI_SUCCESS;
84 }
85 
86 /*
87  * Some firmware implementations refuse to boot if there's insufficient space
88  * in the variable store. Ensure that we never use more than a safe limit.
89  *
90  * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
91  * store.
92  */
93 efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
94 				      bool nonblocking)
95 {
96 	efi_status_t status;
97 	u64 storage_size, remaining_size, max_size;
98 
99 	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
100 		return 0;
101 
102 	if (nonblocking)
103 		return query_variable_store_nonblocking(attributes, size);
104 
105 	status = efi.query_variable_info(attributes, &storage_size,
106 					 &remaining_size, &max_size);
107 	if (status != EFI_SUCCESS)
108 		return status;
109 
110 	/*
111 	 * We account for that by refusing the write if permitting it would
112 	 * reduce the available space to under 5KB. This figure was provided by
113 	 * Samsung, so should be safe.
114 	 */
115 	if ((remaining_size - size < EFI_MIN_RESERVE) &&
116 		!efi_no_storage_paranoia) {
117 
118 		/*
119 		 * Triggering garbage collection may require that the firmware
120 		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
121 		 * that by attempting to use more space than is available.
122 		 */
123 		unsigned long dummy_size = remaining_size + 1024;
124 		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
125 
126 		if (!dummy)
127 			return EFI_OUT_OF_RESOURCES;
128 
129 		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
130 					  EFI_VARIABLE_NON_VOLATILE |
131 					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
132 					  EFI_VARIABLE_RUNTIME_ACCESS,
133 					  dummy_size, dummy);
134 
135 		if (status == EFI_SUCCESS) {
136 			/*
137 			 * This should have failed, so if it didn't make sure
138 			 * that we delete it...
139 			 */
140 			efi_delete_dummy_variable();
141 		}
142 
143 		kfree(dummy);
144 
145 		/*
146 		 * The runtime code may now have triggered a garbage collection
147 		 * run, so check the variable info again
148 		 */
149 		status = efi.query_variable_info(attributes, &storage_size,
150 						 &remaining_size, &max_size);
151 
152 		if (status != EFI_SUCCESS)
153 			return status;
154 
155 		/*
156 		 * There still isn't enough room, so return an error
157 		 */
158 		if (remaining_size - size < EFI_MIN_RESERVE)
159 			return EFI_OUT_OF_RESOURCES;
160 	}
161 
162 	return EFI_SUCCESS;
163 }
164 EXPORT_SYMBOL_GPL(efi_query_variable_store);
165 
166 /*
167  * Helper function for efi_reserve_boot_services() to figure out if we
168  * can free regions in efi_free_boot_services().
169  *
170  * Use this function to ensure we do not free regions owned by somebody
171  * else. We must only reserve (and then free) regions:
172  *
173  * - Not within any part of the kernel
174  * - Not the BIOS reserved area (E820_RESERVED, E820_NVS, etc)
175  */
176 static bool can_free_region(u64 start, u64 size)
177 {
178 	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
179 		return false;
180 
181 	if (!e820_all_mapped(start, start+size, E820_RAM))
182 		return false;
183 
184 	return true;
185 }
186 
187 /*
188  * The UEFI specification makes it clear that the operating system is free to do
189  * whatever it wants with boot services code after ExitBootServices() has been
190  * called. Ignoring this recommendation a significant bunch of EFI implementations
191  * continue calling into boot services code (SetVirtualAddressMap). In order to
192  * work around such buggy implementations we reserve boot services region during
193  * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it
194 * is discarded.
195 */
196 void __init efi_reserve_boot_services(void)
197 {
198 	efi_memory_desc_t *md;
199 
200 	for_each_efi_memory_desc(md) {
201 		u64 start = md->phys_addr;
202 		u64 size = md->num_pages << EFI_PAGE_SHIFT;
203 		bool already_reserved;
204 
205 		if (md->type != EFI_BOOT_SERVICES_CODE &&
206 		    md->type != EFI_BOOT_SERVICES_DATA)
207 			continue;
208 
209 		already_reserved = memblock_is_region_reserved(start, size);
210 
211 		/*
212 		 * Because the following memblock_reserve() is paired
213 		 * with free_bootmem_late() for this region in
214 		 * efi_free_boot_services(), we must be extremely
215 		 * careful not to reserve, and subsequently free,
216 		 * critical regions of memory (like the kernel image) or
217 		 * those regions that somebody else has already
218 		 * reserved.
219 		 *
220 		 * A good example of a critical region that must not be
221 		 * freed is page zero (first 4Kb of memory), which may
222 		 * contain boot services code/data but is marked
223 		 * E820_RESERVED by trim_bios_range().
224 		 */
225 		if (!already_reserved) {
226 			memblock_reserve(start, size);
227 
228 			/*
229 			 * If we are the first to reserve the region, no
230 			 * one else cares about it. We own it and can
231 			 * free it later.
232 			 */
233 			if (can_free_region(start, size))
234 				continue;
235 		}
236 
237 		/*
238 		 * We don't own the region. We must not free it.
239 		 *
240 		 * Setting this bit for a boot services region really
241 		 * doesn't make sense as far as the firmware is
242 		 * concerned, but it does provide us with a way to tag
243 		 * those regions that must not be paired with
244 		 * free_bootmem_late().
245 		 */
246 		md->attribute |= EFI_MEMORY_RUNTIME;
247 	}
248 }
249 
250 void __init efi_free_boot_services(void)
251 {
252 	efi_memory_desc_t *md;
253 
254 	for_each_efi_memory_desc(md) {
255 		unsigned long long start = md->phys_addr;
256 		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
257 
258 		if (md->type != EFI_BOOT_SERVICES_CODE &&
259 		    md->type != EFI_BOOT_SERVICES_DATA)
260 			continue;
261 
262 		/* Do not free, someone else owns it: */
263 		if (md->attribute & EFI_MEMORY_RUNTIME)
264 			continue;
265 
266 		free_bootmem_late(start, size);
267 	}
268 
269 	efi_unmap_memmap();
270 }
271 
272 /*
273  * A number of config table entries get remapped to virtual addresses
274  * after entering EFI virtual mode. However, the kexec kernel requires
275  * their physical addresses therefore we pass them via setup_data and
276  * correct those entries to their respective physical addresses here.
277  *
278  * Currently only handles smbios which is necessary for some firmware
279  * implementation.
280  */
281 int __init efi_reuse_config(u64 tables, int nr_tables)
282 {
283 	int i, sz, ret = 0;
284 	void *p, *tablep;
285 	struct efi_setup_data *data;
286 
287 	if (!efi_setup)
288 		return 0;
289 
290 	if (!efi_enabled(EFI_64BIT))
291 		return 0;
292 
293 	data = early_memremap(efi_setup, sizeof(*data));
294 	if (!data) {
295 		ret = -ENOMEM;
296 		goto out;
297 	}
298 
299 	if (!data->smbios)
300 		goto out_memremap;
301 
302 	sz = sizeof(efi_config_table_64_t);
303 
304 	p = tablep = early_memremap(tables, nr_tables * sz);
305 	if (!p) {
306 		pr_err("Could not map Configuration table!\n");
307 		ret = -ENOMEM;
308 		goto out_memremap;
309 	}
310 
311 	for (i = 0; i < efi.systab->nr_tables; i++) {
312 		efi_guid_t guid;
313 
314 		guid = ((efi_config_table_64_t *)p)->guid;
315 
316 		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
317 			((efi_config_table_64_t *)p)->table = data->smbios;
318 		p += sz;
319 	}
320 	early_memunmap(tablep, nr_tables * sz);
321 
322 out_memremap:
323 	early_memunmap(data, sizeof(*data));
324 out:
325 	return ret;
326 }
327 
328 static const struct dmi_system_id sgi_uv1_dmi[] = {
329 	{ NULL, "SGI UV1",
330 		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
331 			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
332 			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
333 		}
334 	},
335 	{ } /* NULL entry stops DMI scanning */
336 };
337 
338 void __init efi_apply_memmap_quirks(void)
339 {
340 	/*
341 	 * Once setup is done earlier, unmap the EFI memory map on mismatched
342 	 * firmware/kernel architectures since there is no support for runtime
343 	 * services.
344 	 */
345 	if (!efi_runtime_supported()) {
346 		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
347 		efi_unmap_memmap();
348 	}
349 
350 	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
351 	if (dmi_check_system(sgi_uv1_dmi))
352 		set_bit(EFI_OLD_MEMMAP, &efi.flags);
353 }
354 
355 /*
356  * For most modern platforms the preferred method of powering off is via
357  * ACPI. However, there are some that are known to require the use of
358  * EFI runtime services and for which ACPI does not work at all.
359  *
360  * Using EFI is a last resort, to be used only if no other option
361  * exists.
362  */
363 bool efi_reboot_required(void)
364 {
365 	if (!acpi_gbl_reduced_hardware)
366 		return false;
367 
368 	efi_reboot_quirk_mode = EFI_RESET_WARM;
369 	return true;
370 }
371 
372 bool efi_poweroff_required(void)
373 {
374 	return acpi_gbl_reduced_hardware || acpi_no_s5;
375 }
376