xref: /linux/arch/x86/platform/efi/memmap.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI memory map functions.
4  */
5 
6 #define pr_fmt(fmt) "efi: " fmt
7 
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/efi.h>
11 #include <linux/io.h>
12 #include <asm/early_ioremap.h>
13 #include <asm/efi.h>
14 #include <linux/memblock.h>
15 #include <linux/slab.h>
16 
17 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
18 {
19 	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
20 }
21 
22 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
23 {
24 	unsigned int order = get_order(size);
25 	struct page *p = alloc_pages(GFP_KERNEL, order);
26 
27 	if (!p)
28 		return 0;
29 
30 	return PFN_PHYS(page_to_pfn(p));
31 }
32 
33 static
34 void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags)
35 {
36 	if (flags & EFI_MEMMAP_MEMBLOCK) {
37 		if (slab_is_available())
38 			memblock_free_late(phys, size);
39 		else
40 			memblock_phys_free(phys, size);
41 	} else if (flags & EFI_MEMMAP_SLAB) {
42 		struct page *p = pfn_to_page(PHYS_PFN(phys));
43 		unsigned int order = get_order(size);
44 
45 		free_pages((unsigned long) page_address(p), order);
46 	}
47 }
48 
49 /**
50  * efi_memmap_alloc - Allocate memory for the EFI memory map
51  * @num_entries: Number of entries in the allocated map.
52  * @data: efi memmap installation parameters
53  *
54  * Depending on whether mm_init() has already been invoked or not,
55  * either memblock or "normal" page allocation is used.
56  *
57  * Returns zero on success, a negative error code on failure.
58  */
59 int __init efi_memmap_alloc(unsigned int num_entries,
60 		struct efi_memory_map_data *data)
61 {
62 	/* Expect allocation parameters are zero initialized */
63 	WARN_ON(data->phys_map || data->size);
64 
65 	data->size = num_entries * efi.memmap.desc_size;
66 	data->desc_version = efi.memmap.desc_version;
67 	data->desc_size = efi.memmap.desc_size;
68 	data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK);
69 	data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE;
70 
71 	if (slab_is_available()) {
72 		data->flags |= EFI_MEMMAP_SLAB;
73 		data->phys_map = __efi_memmap_alloc_late(data->size);
74 	} else {
75 		data->flags |= EFI_MEMMAP_MEMBLOCK;
76 		data->phys_map = __efi_memmap_alloc_early(data->size);
77 	}
78 
79 	if (!data->phys_map)
80 		return -ENOMEM;
81 	return 0;
82 }
83 
84 /**
85  * efi_memmap_install - Install a new EFI memory map in efi.memmap
86  * @data: efi memmap installation parameters
87  *
88  * Unlike efi_memmap_init_*(), this function does not allow the caller
89  * to switch from early to late mappings. It simply uses the existing
90  * mapping function and installs the new memmap.
91  *
92  * Returns zero on success, a negative error code on failure.
93  */
94 int __init efi_memmap_install(struct efi_memory_map_data *data)
95 {
96 	unsigned long size = efi.memmap.desc_size * efi.memmap.nr_map;
97 	unsigned long flags = efi.memmap.flags;
98 	u64 phys = efi.memmap.phys_map;
99 	int ret;
100 
101 	efi_memmap_unmap();
102 
103 	if (efi_enabled(EFI_PARAVIRT))
104 		return 0;
105 
106 	ret = __efi_memmap_init(data);
107 	if (ret)
108 		return ret;
109 
110 	__efi_memmap_free(phys, size, flags);
111 	return 0;
112 }
113 
114 /**
115  * efi_memmap_split_count - Count number of additional EFI memmap entries
116  * @md: EFI memory descriptor to split
117  * @range: Address range (start, end) to split around
118  *
119  * Returns the number of additional EFI memmap entries required to
120  * accommodate @range.
121  */
122 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
123 {
124 	u64 m_start, m_end;
125 	u64 start, end;
126 	int count = 0;
127 
128 	start = md->phys_addr;
129 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
130 
131 	/* modifying range */
132 	m_start = range->start;
133 	m_end = range->end;
134 
135 	if (m_start <= start) {
136 		/* split into 2 parts */
137 		if (start < m_end && m_end < end)
138 			count++;
139 	}
140 
141 	if (start < m_start && m_start < end) {
142 		/* split into 3 parts */
143 		if (m_end < end)
144 			count += 2;
145 		/* split into 2 parts */
146 		if (end <= m_end)
147 			count++;
148 	}
149 
150 	return count;
151 }
152 
153 /**
154  * efi_memmap_insert - Insert a memory region in an EFI memmap
155  * @old_memmap: The existing EFI memory map structure
156  * @buf: Address of buffer to store new map
157  * @mem: Memory map entry to insert
158  *
159  * It is suggested that you call efi_memmap_split_count() first
160  * to see how large @buf needs to be.
161  */
162 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
163 			      struct efi_mem_range *mem)
164 {
165 	u64 m_start, m_end, m_attr;
166 	efi_memory_desc_t *md;
167 	u64 start, end;
168 	void *old, *new;
169 
170 	/* modifying range */
171 	m_start = mem->range.start;
172 	m_end = mem->range.end;
173 	m_attr = mem->attribute;
174 
175 	/*
176 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
177 	 * units. Ensure that the region described by 'mem' is aligned
178 	 * correctly.
179 	 */
180 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
181 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
182 		WARN_ON(1);
183 		return;
184 	}
185 
186 	for (old = old_memmap->map, new = buf;
187 	     old < old_memmap->map_end;
188 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
189 
190 		/* copy original EFI memory descriptor */
191 		memcpy(new, old, old_memmap->desc_size);
192 		md = new;
193 		start = md->phys_addr;
194 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
195 
196 		if (m_start <= start && end <= m_end)
197 			md->attribute |= m_attr;
198 
199 		if (m_start <= start &&
200 		    (start < m_end && m_end < end)) {
201 			/* first part */
202 			md->attribute |= m_attr;
203 			md->num_pages = (m_end - md->phys_addr + 1) >>
204 				EFI_PAGE_SHIFT;
205 			/* latter part */
206 			new += old_memmap->desc_size;
207 			memcpy(new, old, old_memmap->desc_size);
208 			md = new;
209 			md->phys_addr = m_end + 1;
210 			md->num_pages = (end - md->phys_addr + 1) >>
211 				EFI_PAGE_SHIFT;
212 		}
213 
214 		if ((start < m_start && m_start < end) && m_end < end) {
215 			/* first part */
216 			md->num_pages = (m_start - md->phys_addr) >>
217 				EFI_PAGE_SHIFT;
218 			/* middle part */
219 			new += old_memmap->desc_size;
220 			memcpy(new, old, old_memmap->desc_size);
221 			md = new;
222 			md->attribute |= m_attr;
223 			md->phys_addr = m_start;
224 			md->num_pages = (m_end - m_start + 1) >>
225 				EFI_PAGE_SHIFT;
226 			/* last part */
227 			new += old_memmap->desc_size;
228 			memcpy(new, old, old_memmap->desc_size);
229 			md = new;
230 			md->phys_addr = m_end + 1;
231 			md->num_pages = (end - m_end) >>
232 				EFI_PAGE_SHIFT;
233 		}
234 
235 		if ((start < m_start && m_start < end) &&
236 		    (end <= m_end)) {
237 			/* first part */
238 			md->num_pages = (m_start - md->phys_addr) >>
239 				EFI_PAGE_SHIFT;
240 			/* latter part */
241 			new += old_memmap->desc_size;
242 			memcpy(new, old, old_memmap->desc_size);
243 			md = new;
244 			md->phys_addr = m_start;
245 			md->num_pages = (end - md->phys_addr + 1) >>
246 				EFI_PAGE_SHIFT;
247 			md->attribute |= m_attr;
248 		}
249 	}
250 }
251