xref: /linux/arch/x86/platform/efi/efi_64.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *	Fenghua Yu <fenghua.yu@intel.com>
7  *	Bibo Mao <bibo.mao@intel.com>
8  *	Chandramouli Narayanan <mouli@linux.intel.com>
9  *	Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17 
18 #define pr_fmt(fmt) "efi: " fmt
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35 
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48 
49 /*
50  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
51  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52  */
53 static u64 efi_va = EFI_VA_START;
54 
55 struct efi_scratch efi_scratch;
56 
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59 	efi_memory_desc_t *md;
60 
61 	if (!(__supported_pte_mask & _PAGE_NX))
62 		return;
63 
64 	/* Make EFI service code area executable */
65 	for_each_efi_memory_desc(md) {
66 		if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 		    md->type == EFI_BOOT_SERVICES_CODE)
68 			efi_set_executable(md, executable);
69 	}
70 }
71 
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74 	unsigned long vaddress;
75 	pgd_t *save_pgd;
76 
77 	int pgd;
78 	int n_pgds;
79 
80 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
81 		save_pgd = (pgd_t *)read_cr3();
82 		write_cr3((unsigned long)efi_scratch.efi_pgt);
83 		goto out;
84 	}
85 
86 	early_code_mapping_set_exec(1);
87 
88 	n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
89 	save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
90 
91 	for (pgd = 0; pgd < n_pgds; pgd++) {
92 		save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93 		vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94 		set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95 	}
96 out:
97 	__flush_tlb_all();
98 
99 	return save_pgd;
100 }
101 
102 void __init efi_call_phys_epilog(pgd_t *save_pgd)
103 {
104 	/*
105 	 * After the lock is released, the original page table is restored.
106 	 */
107 	int pgd_idx;
108 	int nr_pgds;
109 
110 	if (!efi_enabled(EFI_OLD_MEMMAP)) {
111 		write_cr3((unsigned long)save_pgd);
112 		__flush_tlb_all();
113 		return;
114 	}
115 
116 	nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117 
118 	for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119 		set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120 
121 	kfree(save_pgd);
122 
123 	__flush_tlb_all();
124 	early_code_mapping_set_exec(0);
125 }
126 
127 static pgd_t *efi_pgd;
128 
129 /*
130  * We need our own copy of the higher levels of the page tables
131  * because we want to avoid inserting EFI region mappings (EFI_VA_END
132  * to EFI_VA_START) into the standard kernel page tables. Everything
133  * else can be shared, see efi_sync_low_kernel_mappings().
134  */
135 int __init efi_alloc_page_tables(void)
136 {
137 	pgd_t *pgd;
138 	pud_t *pud;
139 	gfp_t gfp_mask;
140 
141 	if (efi_enabled(EFI_OLD_MEMMAP))
142 		return 0;
143 
144 	gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
145 	efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
146 	if (!efi_pgd)
147 		return -ENOMEM;
148 
149 	pgd = efi_pgd + pgd_index(EFI_VA_END);
150 
151 	pud = pud_alloc_one(NULL, 0);
152 	if (!pud) {
153 		free_page((unsigned long)efi_pgd);
154 		return -ENOMEM;
155 	}
156 
157 	pgd_populate(NULL, pgd, pud);
158 
159 	return 0;
160 }
161 
162 /*
163  * Add low kernel mappings for passing arguments to EFI functions.
164  */
165 void efi_sync_low_kernel_mappings(void)
166 {
167 	unsigned num_entries;
168 	pgd_t *pgd_k, *pgd_efi;
169 	pud_t *pud_k, *pud_efi;
170 
171 	if (efi_enabled(EFI_OLD_MEMMAP))
172 		return;
173 
174 	/*
175 	 * We can share all PGD entries apart from the one entry that
176 	 * covers the EFI runtime mapping space.
177 	 *
178 	 * Make sure the EFI runtime region mappings are guaranteed to
179 	 * only span a single PGD entry and that the entry also maps
180 	 * other important kernel regions.
181 	 */
182 	BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
183 	BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
184 			(EFI_VA_END & PGDIR_MASK));
185 
186 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
187 	pgd_k = pgd_offset_k(PAGE_OFFSET);
188 
189 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
190 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
191 
192 	/*
193 	 * We share all the PUD entries apart from those that map the
194 	 * EFI regions. Copy around them.
195 	 */
196 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
197 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
198 
199 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
200 	pud_efi = pud_offset(pgd_efi, 0);
201 
202 	pgd_k = pgd_offset_k(EFI_VA_END);
203 	pud_k = pud_offset(pgd_k, 0);
204 
205 	num_entries = pud_index(EFI_VA_END);
206 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
207 
208 	pud_efi = pud_offset(pgd_efi, EFI_VA_START);
209 	pud_k = pud_offset(pgd_k, EFI_VA_START);
210 
211 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
212 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
213 }
214 
215 /*
216  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
217  */
218 static inline phys_addr_t
219 virt_to_phys_or_null_size(void *va, unsigned long size)
220 {
221 	bool bad_size;
222 
223 	if (!va)
224 		return 0;
225 
226 	if (virt_addr_valid(va))
227 		return virt_to_phys(va);
228 
229 	/*
230 	 * A fully aligned variable on the stack is guaranteed not to
231 	 * cross a page bounary. Try to catch strings on the stack by
232 	 * checking that 'size' is a power of two.
233 	 */
234 	bad_size = size > PAGE_SIZE || !is_power_of_2(size);
235 
236 	WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
237 
238 	return slow_virt_to_phys(va);
239 }
240 
241 #define virt_to_phys_or_null(addr)				\
242 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
243 
244 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
245 {
246 	unsigned long pfn, text;
247 	struct page *page;
248 	unsigned npages;
249 	pgd_t *pgd;
250 
251 	if (efi_enabled(EFI_OLD_MEMMAP))
252 		return 0;
253 
254 	efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
255 	pgd = efi_pgd;
256 
257 	/*
258 	 * It can happen that the physical address of new_memmap lands in memory
259 	 * which is not mapped in the EFI page table. Therefore we need to go
260 	 * and ident-map those pages containing the map before calling
261 	 * phys_efi_set_virtual_address_map().
262 	 */
263 	pfn = pa_memmap >> PAGE_SHIFT;
264 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
265 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
266 		return 1;
267 	}
268 
269 	efi_scratch.use_pgd = true;
270 
271 	/*
272 	 * Certain firmware versions are way too sentimential and still believe
273 	 * they are exclusive and unquestionable owners of the first physical page,
274 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
275 	 * (but then write-access it later during SetVirtualAddressMap()).
276 	 *
277 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
278 	 * boot with such firmware. We are free to hand this page to the BIOS,
279 	 * as trim_bios_range() will reserve the first page and isolate it away
280 	 * from memory allocators anyway.
281 	 */
282 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
283 		pr_err("Failed to create 1:1 mapping for the first page!\n");
284 		return 1;
285 	}
286 
287 	/*
288 	 * When making calls to the firmware everything needs to be 1:1
289 	 * mapped and addressable with 32-bit pointers. Map the kernel
290 	 * text and allocate a new stack because we can't rely on the
291 	 * stack pointer being < 4GB.
292 	 */
293 	if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
294 		return 0;
295 
296 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
297 	if (!page)
298 		panic("Unable to allocate EFI runtime stack < 4GB\n");
299 
300 	efi_scratch.phys_stack = virt_to_phys(page_address(page));
301 	efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
302 
303 	npages = (_etext - _text) >> PAGE_SHIFT;
304 	text = __pa(_text);
305 	pfn = text >> PAGE_SHIFT;
306 
307 	if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
308 		pr_err("Failed to map kernel text 1:1\n");
309 		return 1;
310 	}
311 
312 	return 0;
313 }
314 
315 static void __init __map_region(efi_memory_desc_t *md, u64 va)
316 {
317 	unsigned long flags = _PAGE_RW;
318 	unsigned long pfn;
319 	pgd_t *pgd = efi_pgd;
320 
321 	if (!(md->attribute & EFI_MEMORY_WB))
322 		flags |= _PAGE_PCD;
323 
324 	pfn = md->phys_addr >> PAGE_SHIFT;
325 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
326 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
327 			   md->phys_addr, va);
328 }
329 
330 void __init efi_map_region(efi_memory_desc_t *md)
331 {
332 	unsigned long size = md->num_pages << PAGE_SHIFT;
333 	u64 pa = md->phys_addr;
334 
335 	if (efi_enabled(EFI_OLD_MEMMAP))
336 		return old_map_region(md);
337 
338 	/*
339 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
340 	 * firmware which doesn't update all internal pointers after switching
341 	 * to virtual mode and would otherwise crap on us.
342 	 */
343 	__map_region(md, md->phys_addr);
344 
345 	/*
346 	 * Enforce the 1:1 mapping as the default virtual address when
347 	 * booting in EFI mixed mode, because even though we may be
348 	 * running a 64-bit kernel, the firmware may only be 32-bit.
349 	 */
350 	if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
351 		md->virt_addr = md->phys_addr;
352 		return;
353 	}
354 
355 	efi_va -= size;
356 
357 	/* Is PA 2M-aligned? */
358 	if (!(pa & (PMD_SIZE - 1))) {
359 		efi_va &= PMD_MASK;
360 	} else {
361 		u64 pa_offset = pa & (PMD_SIZE - 1);
362 		u64 prev_va = efi_va;
363 
364 		/* get us the same offset within this 2M page */
365 		efi_va = (efi_va & PMD_MASK) + pa_offset;
366 
367 		if (efi_va > prev_va)
368 			efi_va -= PMD_SIZE;
369 	}
370 
371 	if (efi_va < EFI_VA_END) {
372 		pr_warn(FW_WARN "VA address range overflow!\n");
373 		return;
374 	}
375 
376 	/* Do the VA map */
377 	__map_region(md, efi_va);
378 	md->virt_addr = efi_va;
379 }
380 
381 /*
382  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
383  * md->virt_addr is the original virtual address which had been mapped in kexec
384  * 1st kernel.
385  */
386 void __init efi_map_region_fixed(efi_memory_desc_t *md)
387 {
388 	__map_region(md, md->phys_addr);
389 	__map_region(md, md->virt_addr);
390 }
391 
392 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
393 				 u32 type, u64 attribute)
394 {
395 	unsigned long last_map_pfn;
396 
397 	if (type == EFI_MEMORY_MAPPED_IO)
398 		return ioremap(phys_addr, size);
399 
400 	last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
401 	if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
402 		unsigned long top = last_map_pfn << PAGE_SHIFT;
403 		efi_ioremap(top, size - (top - phys_addr), type, attribute);
404 	}
405 
406 	if (!(attribute & EFI_MEMORY_WB))
407 		efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
408 
409 	return (void __iomem *)__va(phys_addr);
410 }
411 
412 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
413 {
414 	efi_setup = phys_addr + sizeof(struct setup_data);
415 }
416 
417 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
418 {
419 	unsigned long pfn;
420 	pgd_t *pgd = efi_pgd;
421 	int err1, err2;
422 
423 	/* Update the 1:1 mapping */
424 	pfn = md->phys_addr >> PAGE_SHIFT;
425 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
426 	if (err1) {
427 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
428 			   md->phys_addr, md->virt_addr);
429 	}
430 
431 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
432 	if (err2) {
433 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
434 			   md->phys_addr, md->virt_addr);
435 	}
436 
437 	return err1 || err2;
438 }
439 
440 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
441 {
442 	unsigned long pf = 0;
443 
444 	if (md->attribute & EFI_MEMORY_XP)
445 		pf |= _PAGE_NX;
446 
447 	if (!(md->attribute & EFI_MEMORY_RO))
448 		pf |= _PAGE_RW;
449 
450 	return efi_update_mappings(md, pf);
451 }
452 
453 void __init efi_runtime_update_mappings(void)
454 {
455 	efi_memory_desc_t *md;
456 
457 	if (efi_enabled(EFI_OLD_MEMMAP)) {
458 		if (__supported_pte_mask & _PAGE_NX)
459 			runtime_code_page_mkexec();
460 		return;
461 	}
462 
463 	/*
464 	 * Use the EFI Memory Attribute Table for mapping permissions if it
465 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
466 	 */
467 	if (efi_enabled(EFI_MEM_ATTR)) {
468 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
469 		return;
470 	}
471 
472 	/*
473 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
474 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
475 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
476 	 * published by the firmware. Even if we find a buggy implementation of
477 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
478 	 * EFI_PROPERTIES_TABLE, because of the same reason.
479 	 */
480 
481 	if (!efi_enabled(EFI_NX_PE_DATA))
482 		return;
483 
484 	for_each_efi_memory_desc(md) {
485 		unsigned long pf = 0;
486 
487 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
488 			continue;
489 
490 		if (!(md->attribute & EFI_MEMORY_WB))
491 			pf |= _PAGE_PCD;
492 
493 		if ((md->attribute & EFI_MEMORY_XP) ||
494 			(md->type == EFI_RUNTIME_SERVICES_DATA))
495 			pf |= _PAGE_NX;
496 
497 		if (!(md->attribute & EFI_MEMORY_RO) &&
498 			(md->type != EFI_RUNTIME_SERVICES_CODE))
499 			pf |= _PAGE_RW;
500 
501 		efi_update_mappings(md, pf);
502 	}
503 }
504 
505 void __init efi_dump_pagetable(void)
506 {
507 #ifdef CONFIG_EFI_PGT_DUMP
508 	ptdump_walk_pgd_level(NULL, efi_pgd);
509 #endif
510 }
511 
512 #ifdef CONFIG_EFI_MIXED
513 extern efi_status_t efi64_thunk(u32, ...);
514 
515 #define runtime_service32(func)						 \
516 ({									 \
517 	u32 table = (u32)(unsigned long)efi.systab;			 \
518 	u32 *rt, *___f;							 \
519 									 \
520 	rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));	 \
521 	___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
522 	*___f;								 \
523 })
524 
525 /*
526  * Switch to the EFI page tables early so that we can access the 1:1
527  * runtime services mappings which are not mapped in any other page
528  * tables. This function must be called before runtime_service32().
529  *
530  * Also, disable interrupts because the IDT points to 64-bit handlers,
531  * which aren't going to function correctly when we switch to 32-bit.
532  */
533 #define efi_thunk(f, ...)						\
534 ({									\
535 	efi_status_t __s;						\
536 	unsigned long __flags;						\
537 	u32 __func;							\
538 									\
539 	local_irq_save(__flags);					\
540 	arch_efi_call_virt_setup();					\
541 									\
542 	__func = runtime_service32(f);					\
543 	__s = efi64_thunk(__func, __VA_ARGS__);				\
544 									\
545 	arch_efi_call_virt_teardown();					\
546 	local_irq_restore(__flags);					\
547 									\
548 	__s;								\
549 })
550 
551 efi_status_t efi_thunk_set_virtual_address_map(
552 	void *phys_set_virtual_address_map,
553 	unsigned long memory_map_size,
554 	unsigned long descriptor_size,
555 	u32 descriptor_version,
556 	efi_memory_desc_t *virtual_map)
557 {
558 	efi_status_t status;
559 	unsigned long flags;
560 	u32 func;
561 
562 	efi_sync_low_kernel_mappings();
563 	local_irq_save(flags);
564 
565 	efi_scratch.prev_cr3 = read_cr3();
566 	write_cr3((unsigned long)efi_scratch.efi_pgt);
567 	__flush_tlb_all();
568 
569 	func = (u32)(unsigned long)phys_set_virtual_address_map;
570 	status = efi64_thunk(func, memory_map_size, descriptor_size,
571 			     descriptor_version, virtual_map);
572 
573 	write_cr3(efi_scratch.prev_cr3);
574 	__flush_tlb_all();
575 	local_irq_restore(flags);
576 
577 	return status;
578 }
579 
580 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
581 {
582 	efi_status_t status;
583 	u32 phys_tm, phys_tc;
584 
585 	spin_lock(&rtc_lock);
586 
587 	phys_tm = virt_to_phys_or_null(tm);
588 	phys_tc = virt_to_phys_or_null(tc);
589 
590 	status = efi_thunk(get_time, phys_tm, phys_tc);
591 
592 	spin_unlock(&rtc_lock);
593 
594 	return status;
595 }
596 
597 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
598 {
599 	efi_status_t status;
600 	u32 phys_tm;
601 
602 	spin_lock(&rtc_lock);
603 
604 	phys_tm = virt_to_phys_or_null(tm);
605 
606 	status = efi_thunk(set_time, phys_tm);
607 
608 	spin_unlock(&rtc_lock);
609 
610 	return status;
611 }
612 
613 static efi_status_t
614 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
615 			  efi_time_t *tm)
616 {
617 	efi_status_t status;
618 	u32 phys_enabled, phys_pending, phys_tm;
619 
620 	spin_lock(&rtc_lock);
621 
622 	phys_enabled = virt_to_phys_or_null(enabled);
623 	phys_pending = virt_to_phys_or_null(pending);
624 	phys_tm = virt_to_phys_or_null(tm);
625 
626 	status = efi_thunk(get_wakeup_time, phys_enabled,
627 			     phys_pending, phys_tm);
628 
629 	spin_unlock(&rtc_lock);
630 
631 	return status;
632 }
633 
634 static efi_status_t
635 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
636 {
637 	efi_status_t status;
638 	u32 phys_tm;
639 
640 	spin_lock(&rtc_lock);
641 
642 	phys_tm = virt_to_phys_or_null(tm);
643 
644 	status = efi_thunk(set_wakeup_time, enabled, phys_tm);
645 
646 	spin_unlock(&rtc_lock);
647 
648 	return status;
649 }
650 
651 static unsigned long efi_name_size(efi_char16_t *name)
652 {
653 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
654 }
655 
656 static efi_status_t
657 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
658 		       u32 *attr, unsigned long *data_size, void *data)
659 {
660 	efi_status_t status;
661 	u32 phys_name, phys_vendor, phys_attr;
662 	u32 phys_data_size, phys_data;
663 
664 	phys_data_size = virt_to_phys_or_null(data_size);
665 	phys_vendor = virt_to_phys_or_null(vendor);
666 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
667 	phys_attr = virt_to_phys_or_null(attr);
668 	phys_data = virt_to_phys_or_null_size(data, *data_size);
669 
670 	status = efi_thunk(get_variable, phys_name, phys_vendor,
671 			   phys_attr, phys_data_size, phys_data);
672 
673 	return status;
674 }
675 
676 static efi_status_t
677 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
678 		       u32 attr, unsigned long data_size, void *data)
679 {
680 	u32 phys_name, phys_vendor, phys_data;
681 	efi_status_t status;
682 
683 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
684 	phys_vendor = virt_to_phys_or_null(vendor);
685 	phys_data = virt_to_phys_or_null_size(data, data_size);
686 
687 	/* If data_size is > sizeof(u32) we've got problems */
688 	status = efi_thunk(set_variable, phys_name, phys_vendor,
689 			   attr, data_size, phys_data);
690 
691 	return status;
692 }
693 
694 static efi_status_t
695 efi_thunk_get_next_variable(unsigned long *name_size,
696 			    efi_char16_t *name,
697 			    efi_guid_t *vendor)
698 {
699 	efi_status_t status;
700 	u32 phys_name_size, phys_name, phys_vendor;
701 
702 	phys_name_size = virt_to_phys_or_null(name_size);
703 	phys_vendor = virt_to_phys_or_null(vendor);
704 	phys_name = virt_to_phys_or_null_size(name, *name_size);
705 
706 	status = efi_thunk(get_next_variable, phys_name_size,
707 			   phys_name, phys_vendor);
708 
709 	return status;
710 }
711 
712 static efi_status_t
713 efi_thunk_get_next_high_mono_count(u32 *count)
714 {
715 	efi_status_t status;
716 	u32 phys_count;
717 
718 	phys_count = virt_to_phys_or_null(count);
719 	status = efi_thunk(get_next_high_mono_count, phys_count);
720 
721 	return status;
722 }
723 
724 static void
725 efi_thunk_reset_system(int reset_type, efi_status_t status,
726 		       unsigned long data_size, efi_char16_t *data)
727 {
728 	u32 phys_data;
729 
730 	phys_data = virt_to_phys_or_null_size(data, data_size);
731 
732 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
733 }
734 
735 static efi_status_t
736 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
737 			 unsigned long count, unsigned long sg_list)
738 {
739 	/*
740 	 * To properly support this function we would need to repackage
741 	 * 'capsules' because the firmware doesn't understand 64-bit
742 	 * pointers.
743 	 */
744 	return EFI_UNSUPPORTED;
745 }
746 
747 static efi_status_t
748 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
749 			      u64 *remaining_space,
750 			      u64 *max_variable_size)
751 {
752 	efi_status_t status;
753 	u32 phys_storage, phys_remaining, phys_max;
754 
755 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
756 		return EFI_UNSUPPORTED;
757 
758 	phys_storage = virt_to_phys_or_null(storage_space);
759 	phys_remaining = virt_to_phys_or_null(remaining_space);
760 	phys_max = virt_to_phys_or_null(max_variable_size);
761 
762 	status = efi_thunk(query_variable_info, attr, phys_storage,
763 			   phys_remaining, phys_max);
764 
765 	return status;
766 }
767 
768 static efi_status_t
769 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
770 			     unsigned long count, u64 *max_size,
771 			     int *reset_type)
772 {
773 	/*
774 	 * To properly support this function we would need to repackage
775 	 * 'capsules' because the firmware doesn't understand 64-bit
776 	 * pointers.
777 	 */
778 	return EFI_UNSUPPORTED;
779 }
780 
781 void efi_thunk_runtime_setup(void)
782 {
783 	efi.get_time = efi_thunk_get_time;
784 	efi.set_time = efi_thunk_set_time;
785 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
786 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
787 	efi.get_variable = efi_thunk_get_variable;
788 	efi.get_next_variable = efi_thunk_get_next_variable;
789 	efi.set_variable = efi_thunk_set_variable;
790 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
791 	efi.reset_system = efi_thunk_reset_system;
792 	efi.query_variable_info = efi_thunk_query_variable_info;
793 	efi.update_capsule = efi_thunk_update_capsule;
794 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
795 }
796 #endif /* CONFIG_EFI_MIXED */
797