1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19 #define pr_fmt(fmt) "efi: " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/mm.h> 24 #include <linux/types.h> 25 #include <linux/spinlock.h> 26 #include <linux/bootmem.h> 27 #include <linux/ioport.h> 28 #include <linux/mc146818rtc.h> 29 #include <linux/efi.h> 30 #include <linux/export.h> 31 #include <linux/uaccess.h> 32 #include <linux/io.h> 33 #include <linux/reboot.h> 34 #include <linux/slab.h> 35 #include <linux/ucs2_string.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/sched/task.h> 38 39 #include <asm/setup.h> 40 #include <asm/page.h> 41 #include <asm/e820/api.h> 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <asm/proto.h> 45 #include <asm/efi.h> 46 #include <asm/cacheflush.h> 47 #include <asm/fixmap.h> 48 #include <asm/realmode.h> 49 #include <asm/time.h> 50 #include <asm/pgalloc.h> 51 52 /* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56 static u64 efi_va = EFI_VA_START; 57 58 struct efi_scratch efi_scratch; 59 60 static void __init early_code_mapping_set_exec(int executable) 61 { 62 efi_memory_desc_t *md; 63 64 if (!(__supported_pte_mask & _PAGE_NX)) 65 return; 66 67 /* Make EFI service code area executable */ 68 for_each_efi_memory_desc(md) { 69 if (md->type == EFI_RUNTIME_SERVICES_CODE || 70 md->type == EFI_BOOT_SERVICES_CODE) 71 efi_set_executable(md, executable); 72 } 73 } 74 75 pgd_t * __init efi_call_phys_prolog(void) 76 { 77 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud; 78 pgd_t *save_pgd, *pgd_k, *pgd_efi; 79 p4d_t *p4d, *p4d_k, *p4d_efi; 80 pud_t *pud; 81 82 int pgd; 83 int n_pgds, i, j; 84 85 if (!efi_enabled(EFI_OLD_MEMMAP)) { 86 efi_switch_mm(&efi_mm); 87 return NULL; 88 } 89 90 early_code_mapping_set_exec(1); 91 92 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 93 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL); 94 95 /* 96 * Build 1:1 identity mapping for efi=old_map usage. Note that 97 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while 98 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical 99 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy 100 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping. 101 * This means here we can only reuse the PMD tables of the direct mapping. 102 */ 103 for (pgd = 0; pgd < n_pgds; pgd++) { 104 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE); 105 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE); 106 pgd_efi = pgd_offset_k(addr_pgd); 107 save_pgd[pgd] = *pgd_efi; 108 109 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd); 110 if (!p4d) { 111 pr_err("Failed to allocate p4d table!\n"); 112 goto out; 113 } 114 115 for (i = 0; i < PTRS_PER_P4D; i++) { 116 addr_p4d = addr_pgd + i * P4D_SIZE; 117 p4d_efi = p4d + p4d_index(addr_p4d); 118 119 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d); 120 if (!pud) { 121 pr_err("Failed to allocate pud table!\n"); 122 goto out; 123 } 124 125 for (j = 0; j < PTRS_PER_PUD; j++) { 126 addr_pud = addr_p4d + j * PUD_SIZE; 127 128 if (addr_pud > (max_pfn << PAGE_SHIFT)) 129 break; 130 131 vaddr = (unsigned long)__va(addr_pud); 132 133 pgd_k = pgd_offset_k(vaddr); 134 p4d_k = p4d_offset(pgd_k, vaddr); 135 pud[j] = *pud_offset(p4d_k, vaddr); 136 } 137 } 138 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX; 139 } 140 141 out: 142 __flush_tlb_all(); 143 144 return save_pgd; 145 } 146 147 void __init efi_call_phys_epilog(pgd_t *save_pgd) 148 { 149 /* 150 * After the lock is released, the original page table is restored. 151 */ 152 int pgd_idx, i; 153 int nr_pgds; 154 pgd_t *pgd; 155 p4d_t *p4d; 156 pud_t *pud; 157 158 if (!efi_enabled(EFI_OLD_MEMMAP)) { 159 efi_switch_mm(efi_scratch.prev_mm); 160 return; 161 } 162 163 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 164 165 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) { 166 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE); 167 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 168 169 if (!pgd_present(*pgd)) 170 continue; 171 172 for (i = 0; i < PTRS_PER_P4D; i++) { 173 p4d = p4d_offset(pgd, 174 pgd_idx * PGDIR_SIZE + i * P4D_SIZE); 175 176 if (!p4d_present(*p4d)) 177 continue; 178 179 pud = (pud_t *)p4d_page_vaddr(*p4d); 180 pud_free(&init_mm, pud); 181 } 182 183 p4d = (p4d_t *)pgd_page_vaddr(*pgd); 184 p4d_free(&init_mm, p4d); 185 } 186 187 kfree(save_pgd); 188 189 __flush_tlb_all(); 190 early_code_mapping_set_exec(0); 191 } 192 193 EXPORT_SYMBOL_GPL(efi_mm); 194 195 /* 196 * We need our own copy of the higher levels of the page tables 197 * because we want to avoid inserting EFI region mappings (EFI_VA_END 198 * to EFI_VA_START) into the standard kernel page tables. Everything 199 * else can be shared, see efi_sync_low_kernel_mappings(). 200 * 201 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 202 * allocation. 203 */ 204 int __init efi_alloc_page_tables(void) 205 { 206 pgd_t *pgd, *efi_pgd; 207 p4d_t *p4d; 208 pud_t *pud; 209 gfp_t gfp_mask; 210 211 if (efi_enabled(EFI_OLD_MEMMAP)) 212 return 0; 213 214 gfp_mask = GFP_KERNEL | __GFP_ZERO; 215 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 216 if (!efi_pgd) 217 return -ENOMEM; 218 219 pgd = efi_pgd + pgd_index(EFI_VA_END); 220 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 221 if (!p4d) { 222 free_page((unsigned long)efi_pgd); 223 return -ENOMEM; 224 } 225 226 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 227 if (!pud) { 228 if (pgtable_l5_enabled()) 229 free_page((unsigned long) pgd_page_vaddr(*pgd)); 230 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 231 return -ENOMEM; 232 } 233 234 efi_mm.pgd = efi_pgd; 235 mm_init_cpumask(&efi_mm); 236 init_new_context(NULL, &efi_mm); 237 238 return 0; 239 } 240 241 /* 242 * Add low kernel mappings for passing arguments to EFI functions. 243 */ 244 void efi_sync_low_kernel_mappings(void) 245 { 246 unsigned num_entries; 247 pgd_t *pgd_k, *pgd_efi; 248 p4d_t *p4d_k, *p4d_efi; 249 pud_t *pud_k, *pud_efi; 250 pgd_t *efi_pgd = efi_mm.pgd; 251 252 if (efi_enabled(EFI_OLD_MEMMAP)) 253 return; 254 255 /* 256 * We can share all PGD entries apart from the one entry that 257 * covers the EFI runtime mapping space. 258 * 259 * Make sure the EFI runtime region mappings are guaranteed to 260 * only span a single PGD entry and that the entry also maps 261 * other important kernel regions. 262 */ 263 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 264 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 265 (EFI_VA_END & PGDIR_MASK)); 266 267 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 268 pgd_k = pgd_offset_k(PAGE_OFFSET); 269 270 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 271 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 272 273 /* 274 * As with PGDs, we share all P4D entries apart from the one entry 275 * that covers the EFI runtime mapping space. 276 */ 277 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END)); 278 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK)); 279 280 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 281 pgd_k = pgd_offset_k(EFI_VA_END); 282 p4d_efi = p4d_offset(pgd_efi, 0); 283 p4d_k = p4d_offset(pgd_k, 0); 284 285 num_entries = p4d_index(EFI_VA_END); 286 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 287 288 /* 289 * We share all the PUD entries apart from those that map the 290 * EFI regions. Copy around them. 291 */ 292 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 293 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 294 295 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 296 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 297 pud_efi = pud_offset(p4d_efi, 0); 298 pud_k = pud_offset(p4d_k, 0); 299 300 num_entries = pud_index(EFI_VA_END); 301 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 302 303 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 304 pud_k = pud_offset(p4d_k, EFI_VA_START); 305 306 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 307 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 308 } 309 310 /* 311 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 312 */ 313 static inline phys_addr_t 314 virt_to_phys_or_null_size(void *va, unsigned long size) 315 { 316 bool bad_size; 317 318 if (!va) 319 return 0; 320 321 if (virt_addr_valid(va)) 322 return virt_to_phys(va); 323 324 /* 325 * A fully aligned variable on the stack is guaranteed not to 326 * cross a page bounary. Try to catch strings on the stack by 327 * checking that 'size' is a power of two. 328 */ 329 bad_size = size > PAGE_SIZE || !is_power_of_2(size); 330 331 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size); 332 333 return slow_virt_to_phys(va); 334 } 335 336 #define virt_to_phys_or_null(addr) \ 337 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 338 339 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 340 { 341 unsigned long pfn, text, pf; 342 struct page *page; 343 unsigned npages; 344 pgd_t *pgd = efi_mm.pgd; 345 346 if (efi_enabled(EFI_OLD_MEMMAP)) 347 return 0; 348 349 /* 350 * It can happen that the physical address of new_memmap lands in memory 351 * which is not mapped in the EFI page table. Therefore we need to go 352 * and ident-map those pages containing the map before calling 353 * phys_efi_set_virtual_address_map(). 354 */ 355 pfn = pa_memmap >> PAGE_SHIFT; 356 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 357 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 358 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 359 return 1; 360 } 361 362 /* 363 * Certain firmware versions are way too sentimential and still believe 364 * they are exclusive and unquestionable owners of the first physical page, 365 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 366 * (but then write-access it later during SetVirtualAddressMap()). 367 * 368 * Create a 1:1 mapping for this page, to avoid triple faults during early 369 * boot with such firmware. We are free to hand this page to the BIOS, 370 * as trim_bios_range() will reserve the first page and isolate it away 371 * from memory allocators anyway. 372 */ 373 pf = _PAGE_RW; 374 if (sev_active()) 375 pf |= _PAGE_ENC; 376 377 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 378 pr_err("Failed to create 1:1 mapping for the first page!\n"); 379 return 1; 380 } 381 382 /* 383 * When making calls to the firmware everything needs to be 1:1 384 * mapped and addressable with 32-bit pointers. Map the kernel 385 * text and allocate a new stack because we can't rely on the 386 * stack pointer being < 4GB. 387 */ 388 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native()) 389 return 0; 390 391 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 392 if (!page) 393 panic("Unable to allocate EFI runtime stack < 4GB\n"); 394 395 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 396 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 397 398 npages = (_etext - _text) >> PAGE_SHIFT; 399 text = __pa(_text); 400 pfn = text >> PAGE_SHIFT; 401 402 pf = _PAGE_RW | _PAGE_ENC; 403 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 404 pr_err("Failed to map kernel text 1:1\n"); 405 return 1; 406 } 407 408 return 0; 409 } 410 411 static void __init __map_region(efi_memory_desc_t *md, u64 va) 412 { 413 unsigned long flags = _PAGE_RW; 414 unsigned long pfn; 415 pgd_t *pgd = efi_mm.pgd; 416 417 if (!(md->attribute & EFI_MEMORY_WB)) 418 flags |= _PAGE_PCD; 419 420 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO) 421 flags |= _PAGE_ENC; 422 423 pfn = md->phys_addr >> PAGE_SHIFT; 424 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 425 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 426 md->phys_addr, va); 427 } 428 429 void __init efi_map_region(efi_memory_desc_t *md) 430 { 431 unsigned long size = md->num_pages << PAGE_SHIFT; 432 u64 pa = md->phys_addr; 433 434 if (efi_enabled(EFI_OLD_MEMMAP)) 435 return old_map_region(md); 436 437 /* 438 * Make sure the 1:1 mappings are present as a catch-all for b0rked 439 * firmware which doesn't update all internal pointers after switching 440 * to virtual mode and would otherwise crap on us. 441 */ 442 __map_region(md, md->phys_addr); 443 444 /* 445 * Enforce the 1:1 mapping as the default virtual address when 446 * booting in EFI mixed mode, because even though we may be 447 * running a 64-bit kernel, the firmware may only be 32-bit. 448 */ 449 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 450 md->virt_addr = md->phys_addr; 451 return; 452 } 453 454 efi_va -= size; 455 456 /* Is PA 2M-aligned? */ 457 if (!(pa & (PMD_SIZE - 1))) { 458 efi_va &= PMD_MASK; 459 } else { 460 u64 pa_offset = pa & (PMD_SIZE - 1); 461 u64 prev_va = efi_va; 462 463 /* get us the same offset within this 2M page */ 464 efi_va = (efi_va & PMD_MASK) + pa_offset; 465 466 if (efi_va > prev_va) 467 efi_va -= PMD_SIZE; 468 } 469 470 if (efi_va < EFI_VA_END) { 471 pr_warn(FW_WARN "VA address range overflow!\n"); 472 return; 473 } 474 475 /* Do the VA map */ 476 __map_region(md, efi_va); 477 md->virt_addr = efi_va; 478 } 479 480 /* 481 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 482 * md->virt_addr is the original virtual address which had been mapped in kexec 483 * 1st kernel. 484 */ 485 void __init efi_map_region_fixed(efi_memory_desc_t *md) 486 { 487 __map_region(md, md->phys_addr); 488 __map_region(md, md->virt_addr); 489 } 490 491 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 492 u32 type, u64 attribute) 493 { 494 unsigned long last_map_pfn; 495 496 if (type == EFI_MEMORY_MAPPED_IO) 497 return ioremap(phys_addr, size); 498 499 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 500 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 501 unsigned long top = last_map_pfn << PAGE_SHIFT; 502 efi_ioremap(top, size - (top - phys_addr), type, attribute); 503 } 504 505 if (!(attribute & EFI_MEMORY_WB)) 506 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 507 508 return (void __iomem *)__va(phys_addr); 509 } 510 511 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 512 { 513 efi_setup = phys_addr + sizeof(struct setup_data); 514 } 515 516 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 517 { 518 unsigned long pfn; 519 pgd_t *pgd = efi_mm.pgd; 520 int err1, err2; 521 522 /* Update the 1:1 mapping */ 523 pfn = md->phys_addr >> PAGE_SHIFT; 524 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 525 if (err1) { 526 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 527 md->phys_addr, md->virt_addr); 528 } 529 530 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 531 if (err2) { 532 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 533 md->phys_addr, md->virt_addr); 534 } 535 536 return err1 || err2; 537 } 538 539 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 540 { 541 unsigned long pf = 0; 542 543 if (md->attribute & EFI_MEMORY_XP) 544 pf |= _PAGE_NX; 545 546 if (!(md->attribute & EFI_MEMORY_RO)) 547 pf |= _PAGE_RW; 548 549 if (sev_active()) 550 pf |= _PAGE_ENC; 551 552 return efi_update_mappings(md, pf); 553 } 554 555 void __init efi_runtime_update_mappings(void) 556 { 557 efi_memory_desc_t *md; 558 559 if (efi_enabled(EFI_OLD_MEMMAP)) { 560 if (__supported_pte_mask & _PAGE_NX) 561 runtime_code_page_mkexec(); 562 return; 563 } 564 565 /* 566 * Use the EFI Memory Attribute Table for mapping permissions if it 567 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 568 */ 569 if (efi_enabled(EFI_MEM_ATTR)) { 570 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 571 return; 572 } 573 574 /* 575 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 576 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 577 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 578 * published by the firmware. Even if we find a buggy implementation of 579 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 580 * EFI_PROPERTIES_TABLE, because of the same reason. 581 */ 582 583 if (!efi_enabled(EFI_NX_PE_DATA)) 584 return; 585 586 for_each_efi_memory_desc(md) { 587 unsigned long pf = 0; 588 589 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 590 continue; 591 592 if (!(md->attribute & EFI_MEMORY_WB)) 593 pf |= _PAGE_PCD; 594 595 if ((md->attribute & EFI_MEMORY_XP) || 596 (md->type == EFI_RUNTIME_SERVICES_DATA)) 597 pf |= _PAGE_NX; 598 599 if (!(md->attribute & EFI_MEMORY_RO) && 600 (md->type != EFI_RUNTIME_SERVICES_CODE)) 601 pf |= _PAGE_RW; 602 603 if (sev_active()) 604 pf |= _PAGE_ENC; 605 606 efi_update_mappings(md, pf); 607 } 608 } 609 610 void __init efi_dump_pagetable(void) 611 { 612 #ifdef CONFIG_EFI_PGT_DUMP 613 if (efi_enabled(EFI_OLD_MEMMAP)) 614 ptdump_walk_pgd_level(NULL, swapper_pg_dir); 615 else 616 ptdump_walk_pgd_level(NULL, efi_mm.pgd); 617 #endif 618 } 619 620 /* 621 * Makes the calling thread switch to/from efi_mm context. Can be used 622 * for SetVirtualAddressMap() i.e. current->active_mm == init_mm as well 623 * as during efi runtime calls i.e current->active_mm == current_mm. 624 * We are not mm_dropping()/mm_grabbing() any mm, because we are not 625 * losing/creating any references. 626 */ 627 void efi_switch_mm(struct mm_struct *mm) 628 { 629 task_lock(current); 630 efi_scratch.prev_mm = current->active_mm; 631 current->active_mm = mm; 632 switch_mm(efi_scratch.prev_mm, mm, NULL); 633 task_unlock(current); 634 } 635 636 #ifdef CONFIG_EFI_MIXED 637 extern efi_status_t efi64_thunk(u32, ...); 638 639 #define runtime_service32(func) \ 640 ({ \ 641 u32 table = (u32)(unsigned long)efi.systab; \ 642 u32 *rt, *___f; \ 643 \ 644 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 645 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 646 *___f; \ 647 }) 648 649 /* 650 * Switch to the EFI page tables early so that we can access the 1:1 651 * runtime services mappings which are not mapped in any other page 652 * tables. This function must be called before runtime_service32(). 653 * 654 * Also, disable interrupts because the IDT points to 64-bit handlers, 655 * which aren't going to function correctly when we switch to 32-bit. 656 */ 657 #define efi_thunk(f, ...) \ 658 ({ \ 659 efi_status_t __s; \ 660 unsigned long __flags; \ 661 u32 __func; \ 662 \ 663 local_irq_save(__flags); \ 664 arch_efi_call_virt_setup(); \ 665 \ 666 __func = runtime_service32(f); \ 667 __s = efi64_thunk(__func, __VA_ARGS__); \ 668 \ 669 arch_efi_call_virt_teardown(); \ 670 local_irq_restore(__flags); \ 671 \ 672 __s; \ 673 }) 674 675 efi_status_t efi_thunk_set_virtual_address_map( 676 void *phys_set_virtual_address_map, 677 unsigned long memory_map_size, 678 unsigned long descriptor_size, 679 u32 descriptor_version, 680 efi_memory_desc_t *virtual_map) 681 { 682 efi_status_t status; 683 unsigned long flags; 684 u32 func; 685 686 efi_sync_low_kernel_mappings(); 687 local_irq_save(flags); 688 689 efi_switch_mm(&efi_mm); 690 691 func = (u32)(unsigned long)phys_set_virtual_address_map; 692 status = efi64_thunk(func, memory_map_size, descriptor_size, 693 descriptor_version, virtual_map); 694 695 efi_switch_mm(efi_scratch.prev_mm); 696 local_irq_restore(flags); 697 698 return status; 699 } 700 701 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 702 { 703 efi_status_t status; 704 u32 phys_tm, phys_tc; 705 706 spin_lock(&rtc_lock); 707 708 phys_tm = virt_to_phys_or_null(tm); 709 phys_tc = virt_to_phys_or_null(tc); 710 711 status = efi_thunk(get_time, phys_tm, phys_tc); 712 713 spin_unlock(&rtc_lock); 714 715 return status; 716 } 717 718 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 719 { 720 efi_status_t status; 721 u32 phys_tm; 722 723 spin_lock(&rtc_lock); 724 725 phys_tm = virt_to_phys_or_null(tm); 726 727 status = efi_thunk(set_time, phys_tm); 728 729 spin_unlock(&rtc_lock); 730 731 return status; 732 } 733 734 static efi_status_t 735 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 736 efi_time_t *tm) 737 { 738 efi_status_t status; 739 u32 phys_enabled, phys_pending, phys_tm; 740 741 spin_lock(&rtc_lock); 742 743 phys_enabled = virt_to_phys_or_null(enabled); 744 phys_pending = virt_to_phys_or_null(pending); 745 phys_tm = virt_to_phys_or_null(tm); 746 747 status = efi_thunk(get_wakeup_time, phys_enabled, 748 phys_pending, phys_tm); 749 750 spin_unlock(&rtc_lock); 751 752 return status; 753 } 754 755 static efi_status_t 756 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 757 { 758 efi_status_t status; 759 u32 phys_tm; 760 761 spin_lock(&rtc_lock); 762 763 phys_tm = virt_to_phys_or_null(tm); 764 765 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 766 767 spin_unlock(&rtc_lock); 768 769 return status; 770 } 771 772 static unsigned long efi_name_size(efi_char16_t *name) 773 { 774 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 775 } 776 777 static efi_status_t 778 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 779 u32 *attr, unsigned long *data_size, void *data) 780 { 781 efi_status_t status; 782 u32 phys_name, phys_vendor, phys_attr; 783 u32 phys_data_size, phys_data; 784 785 phys_data_size = virt_to_phys_or_null(data_size); 786 phys_vendor = virt_to_phys_or_null(vendor); 787 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 788 phys_attr = virt_to_phys_or_null(attr); 789 phys_data = virt_to_phys_or_null_size(data, *data_size); 790 791 status = efi_thunk(get_variable, phys_name, phys_vendor, 792 phys_attr, phys_data_size, phys_data); 793 794 return status; 795 } 796 797 static efi_status_t 798 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 799 u32 attr, unsigned long data_size, void *data) 800 { 801 u32 phys_name, phys_vendor, phys_data; 802 efi_status_t status; 803 804 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 805 phys_vendor = virt_to_phys_or_null(vendor); 806 phys_data = virt_to_phys_or_null_size(data, data_size); 807 808 /* If data_size is > sizeof(u32) we've got problems */ 809 status = efi_thunk(set_variable, phys_name, phys_vendor, 810 attr, data_size, phys_data); 811 812 return status; 813 } 814 815 static efi_status_t 816 efi_thunk_get_next_variable(unsigned long *name_size, 817 efi_char16_t *name, 818 efi_guid_t *vendor) 819 { 820 efi_status_t status; 821 u32 phys_name_size, phys_name, phys_vendor; 822 823 phys_name_size = virt_to_phys_or_null(name_size); 824 phys_vendor = virt_to_phys_or_null(vendor); 825 phys_name = virt_to_phys_or_null_size(name, *name_size); 826 827 status = efi_thunk(get_next_variable, phys_name_size, 828 phys_name, phys_vendor); 829 830 return status; 831 } 832 833 static efi_status_t 834 efi_thunk_get_next_high_mono_count(u32 *count) 835 { 836 efi_status_t status; 837 u32 phys_count; 838 839 phys_count = virt_to_phys_or_null(count); 840 status = efi_thunk(get_next_high_mono_count, phys_count); 841 842 return status; 843 } 844 845 static void 846 efi_thunk_reset_system(int reset_type, efi_status_t status, 847 unsigned long data_size, efi_char16_t *data) 848 { 849 u32 phys_data; 850 851 phys_data = virt_to_phys_or_null_size(data, data_size); 852 853 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 854 } 855 856 static efi_status_t 857 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 858 unsigned long count, unsigned long sg_list) 859 { 860 /* 861 * To properly support this function we would need to repackage 862 * 'capsules' because the firmware doesn't understand 64-bit 863 * pointers. 864 */ 865 return EFI_UNSUPPORTED; 866 } 867 868 static efi_status_t 869 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 870 u64 *remaining_space, 871 u64 *max_variable_size) 872 { 873 efi_status_t status; 874 u32 phys_storage, phys_remaining, phys_max; 875 876 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 877 return EFI_UNSUPPORTED; 878 879 phys_storage = virt_to_phys_or_null(storage_space); 880 phys_remaining = virt_to_phys_or_null(remaining_space); 881 phys_max = virt_to_phys_or_null(max_variable_size); 882 883 status = efi_thunk(query_variable_info, attr, phys_storage, 884 phys_remaining, phys_max); 885 886 return status; 887 } 888 889 static efi_status_t 890 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 891 unsigned long count, u64 *max_size, 892 int *reset_type) 893 { 894 /* 895 * To properly support this function we would need to repackage 896 * 'capsules' because the firmware doesn't understand 64-bit 897 * pointers. 898 */ 899 return EFI_UNSUPPORTED; 900 } 901 902 void efi_thunk_runtime_setup(void) 903 { 904 efi.get_time = efi_thunk_get_time; 905 efi.set_time = efi_thunk_set_time; 906 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 907 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 908 efi.get_variable = efi_thunk_get_variable; 909 efi.get_next_variable = efi_thunk_get_next_variable; 910 efi.set_variable = efi_thunk_set_variable; 911 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 912 efi.reset_system = efi_thunk_reset_system; 913 efi.query_variable_info = efi_thunk_query_variable_info; 914 efi.update_capsule = efi_thunk_update_capsule; 915 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 916 } 917 #endif /* CONFIG_EFI_MIXED */ 918