xref: /linux/arch/x86/platform/efi/efi_64.c (revision a36e9f5cfe9eb3a1dce8769c7058251c42705357)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *	Fenghua Yu <fenghua.yu@intel.com>
8  *	Bibo Mao <bibo.mao@intel.com>
9  *	Chandramouli Narayanan <mouli@linux.intel.com>
10  *	Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18 
19 #define pr_fmt(fmt) "efi: " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/cc_platform.h>
37 #include <linux/sched/task.h>
38 
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev.h>
51 
52 /*
53  * We allocate runtime services regions top-down, starting from -4G, i.e.
54  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55  */
56 static u64 efi_va = EFI_VA_START;
57 static struct mm_struct *efi_prev_mm;
58 
59 /*
60  * We need our own copy of the higher levels of the page tables
61  * because we want to avoid inserting EFI region mappings (EFI_VA_END
62  * to EFI_VA_START) into the standard kernel page tables. Everything
63  * else can be shared, see efi_sync_low_kernel_mappings().
64  *
65  * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
66  * allocation.
67  */
68 int __init efi_alloc_page_tables(void)
69 {
70 	pgd_t *pgd, *efi_pgd;
71 	p4d_t *p4d;
72 	pud_t *pud;
73 	gfp_t gfp_mask;
74 
75 	gfp_mask = GFP_KERNEL | __GFP_ZERO;
76 	efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
77 	if (!efi_pgd)
78 		goto fail;
79 
80 	pgd = efi_pgd + pgd_index(EFI_VA_END);
81 	p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
82 	if (!p4d)
83 		goto free_pgd;
84 
85 	pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
86 	if (!pud)
87 		goto free_p4d;
88 
89 	efi_mm.pgd = efi_pgd;
90 	mm_init_cpumask(&efi_mm);
91 	init_new_context(NULL, &efi_mm);
92 
93 	return 0;
94 
95 free_p4d:
96 	if (pgtable_l5_enabled())
97 		free_page((unsigned long)pgd_page_vaddr(*pgd));
98 free_pgd:
99 	free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
100 fail:
101 	return -ENOMEM;
102 }
103 
104 /*
105  * Add low kernel mappings for passing arguments to EFI functions.
106  */
107 void efi_sync_low_kernel_mappings(void)
108 {
109 	unsigned num_entries;
110 	pgd_t *pgd_k, *pgd_efi;
111 	p4d_t *p4d_k, *p4d_efi;
112 	pud_t *pud_k, *pud_efi;
113 	pgd_t *efi_pgd = efi_mm.pgd;
114 
115 	pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
116 	pgd_k = pgd_offset_k(PAGE_OFFSET);
117 
118 	num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
119 	memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
120 
121 	pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
122 	pgd_k = pgd_offset_k(EFI_VA_END);
123 	p4d_efi = p4d_offset(pgd_efi, 0);
124 	p4d_k = p4d_offset(pgd_k, 0);
125 
126 	num_entries = p4d_index(EFI_VA_END);
127 	memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
128 
129 	/*
130 	 * We share all the PUD entries apart from those that map the
131 	 * EFI regions. Copy around them.
132 	 */
133 	BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
134 	BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
135 
136 	p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
137 	p4d_k = p4d_offset(pgd_k, EFI_VA_END);
138 	pud_efi = pud_offset(p4d_efi, 0);
139 	pud_k = pud_offset(p4d_k, 0);
140 
141 	num_entries = pud_index(EFI_VA_END);
142 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
143 
144 	pud_efi = pud_offset(p4d_efi, EFI_VA_START);
145 	pud_k = pud_offset(p4d_k, EFI_VA_START);
146 
147 	num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
148 	memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
149 }
150 
151 /*
152  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
153  */
154 static inline phys_addr_t
155 virt_to_phys_or_null_size(void *va, unsigned long size)
156 {
157 	phys_addr_t pa;
158 
159 	if (!va)
160 		return 0;
161 
162 	if (virt_addr_valid(va))
163 		return virt_to_phys(va);
164 
165 	pa = slow_virt_to_phys(va);
166 
167 	/* check if the object crosses a page boundary */
168 	if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
169 		return 0;
170 
171 	return pa;
172 }
173 
174 #define virt_to_phys_or_null(addr)				\
175 	virt_to_phys_or_null_size((addr), sizeof(*(addr)))
176 
177 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
178 {
179 	extern const u8 __efi64_thunk_ret_tramp[];
180 	unsigned long pfn, text, pf, rodata, tramp;
181 	struct page *page;
182 	unsigned npages;
183 	pgd_t *pgd = efi_mm.pgd;
184 
185 	/*
186 	 * It can happen that the physical address of new_memmap lands in memory
187 	 * which is not mapped in the EFI page table. Therefore we need to go
188 	 * and ident-map those pages containing the map before calling
189 	 * phys_efi_set_virtual_address_map().
190 	 */
191 	pfn = pa_memmap >> PAGE_SHIFT;
192 	pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
193 	if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
194 		pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
195 		return 1;
196 	}
197 
198 	/*
199 	 * Certain firmware versions are way too sentimental and still believe
200 	 * they are exclusive and unquestionable owners of the first physical page,
201 	 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
202 	 * (but then write-access it later during SetVirtualAddressMap()).
203 	 *
204 	 * Create a 1:1 mapping for this page, to avoid triple faults during early
205 	 * boot with such firmware. We are free to hand this page to the BIOS,
206 	 * as trim_bios_range() will reserve the first page and isolate it away
207 	 * from memory allocators anyway.
208 	 */
209 	if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
210 		pr_err("Failed to create 1:1 mapping for the first page!\n");
211 		return 1;
212 	}
213 
214 	/*
215 	 * When SEV-ES is active, the GHCB as set by the kernel will be used
216 	 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
217 	 */
218 	if (sev_es_efi_map_ghcbs(pgd)) {
219 		pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
220 		return 1;
221 	}
222 
223 	/*
224 	 * When making calls to the firmware everything needs to be 1:1
225 	 * mapped and addressable with 32-bit pointers. Map the kernel
226 	 * text and allocate a new stack because we can't rely on the
227 	 * stack pointer being < 4GB.
228 	 */
229 	if (!efi_is_mixed())
230 		return 0;
231 
232 	page = alloc_page(GFP_KERNEL|__GFP_DMA32);
233 	if (!page) {
234 		pr_err("Unable to allocate EFI runtime stack < 4GB\n");
235 		return 1;
236 	}
237 
238 	efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */
239 
240 	npages = (_etext - _text) >> PAGE_SHIFT;
241 	text = __pa(_text);
242 
243 	if (kernel_unmap_pages_in_pgd(pgd, text, npages)) {
244 		pr_err("Failed to unmap kernel text 1:1 mapping\n");
245 		return 1;
246 	}
247 
248 	npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
249 	rodata = __pa(__start_rodata);
250 	pfn = rodata >> PAGE_SHIFT;
251 
252 	pf = _PAGE_NX | _PAGE_ENC;
253 	if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
254 		pr_err("Failed to map kernel rodata 1:1\n");
255 		return 1;
256 	}
257 
258 	tramp = __pa(__efi64_thunk_ret_tramp);
259 	pfn = tramp >> PAGE_SHIFT;
260 
261 	pf = _PAGE_ENC;
262 	if (kernel_map_pages_in_pgd(pgd, pfn, tramp, 1, pf)) {
263 		pr_err("Failed to map mixed mode return trampoline\n");
264 		return 1;
265 	}
266 
267 	return 0;
268 }
269 
270 static void __init __map_region(efi_memory_desc_t *md, u64 va)
271 {
272 	unsigned long flags = _PAGE_RW;
273 	unsigned long pfn;
274 	pgd_t *pgd = efi_mm.pgd;
275 
276 	/*
277 	 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
278 	 * executable images in memory that consist of both R-X and
279 	 * RW- sections, so we cannot apply read-only or non-exec
280 	 * permissions just yet. However, modern EFI systems provide
281 	 * a memory attributes table that describes those sections
282 	 * with the appropriate restricted permissions, which are
283 	 * applied in efi_runtime_update_mappings() below. All other
284 	 * regions can be mapped non-executable at this point, with
285 	 * the exception of boot services code regions, but those will
286 	 * be unmapped again entirely in efi_free_boot_services().
287 	 */
288 	if (md->type != EFI_BOOT_SERVICES_CODE &&
289 	    md->type != EFI_RUNTIME_SERVICES_CODE)
290 		flags |= _PAGE_NX;
291 
292 	if (!(md->attribute & EFI_MEMORY_WB))
293 		flags |= _PAGE_PCD;
294 
295 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
296 	    md->type != EFI_MEMORY_MAPPED_IO)
297 		flags |= _PAGE_ENC;
298 
299 	pfn = md->phys_addr >> PAGE_SHIFT;
300 	if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
301 		pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
302 			   md->phys_addr, va);
303 }
304 
305 void __init efi_map_region(efi_memory_desc_t *md)
306 {
307 	unsigned long size = md->num_pages << PAGE_SHIFT;
308 	u64 pa = md->phys_addr;
309 
310 	/*
311 	 * Make sure the 1:1 mappings are present as a catch-all for b0rked
312 	 * firmware which doesn't update all internal pointers after switching
313 	 * to virtual mode and would otherwise crap on us.
314 	 */
315 	__map_region(md, md->phys_addr);
316 
317 	/*
318 	 * Enforce the 1:1 mapping as the default virtual address when
319 	 * booting in EFI mixed mode, because even though we may be
320 	 * running a 64-bit kernel, the firmware may only be 32-bit.
321 	 */
322 	if (efi_is_mixed()) {
323 		md->virt_addr = md->phys_addr;
324 		return;
325 	}
326 
327 	efi_va -= size;
328 
329 	/* Is PA 2M-aligned? */
330 	if (!(pa & (PMD_SIZE - 1))) {
331 		efi_va &= PMD_MASK;
332 	} else {
333 		u64 pa_offset = pa & (PMD_SIZE - 1);
334 		u64 prev_va = efi_va;
335 
336 		/* get us the same offset within this 2M page */
337 		efi_va = (efi_va & PMD_MASK) + pa_offset;
338 
339 		if (efi_va > prev_va)
340 			efi_va -= PMD_SIZE;
341 	}
342 
343 	if (efi_va < EFI_VA_END) {
344 		pr_warn(FW_WARN "VA address range overflow!\n");
345 		return;
346 	}
347 
348 	/* Do the VA map */
349 	__map_region(md, efi_va);
350 	md->virt_addr = efi_va;
351 }
352 
353 /*
354  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
355  * md->virt_addr is the original virtual address which had been mapped in kexec
356  * 1st kernel.
357  */
358 void __init efi_map_region_fixed(efi_memory_desc_t *md)
359 {
360 	__map_region(md, md->phys_addr);
361 	__map_region(md, md->virt_addr);
362 }
363 
364 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
365 {
366 	efi_setup = phys_addr + sizeof(struct setup_data);
367 }
368 
369 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
370 {
371 	unsigned long pfn;
372 	pgd_t *pgd = efi_mm.pgd;
373 	int err1, err2;
374 
375 	/* Update the 1:1 mapping */
376 	pfn = md->phys_addr >> PAGE_SHIFT;
377 	err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
378 	if (err1) {
379 		pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
380 			   md->phys_addr, md->virt_addr);
381 	}
382 
383 	err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
384 	if (err2) {
385 		pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
386 			   md->phys_addr, md->virt_addr);
387 	}
388 
389 	return err1 || err2;
390 }
391 
392 bool efi_disable_ibt_for_runtime __ro_after_init = true;
393 
394 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md,
395 				      bool has_ibt)
396 {
397 	unsigned long pf = 0;
398 
399 	efi_disable_ibt_for_runtime |= !has_ibt;
400 
401 	if (md->attribute & EFI_MEMORY_XP)
402 		pf |= _PAGE_NX;
403 
404 	if (!(md->attribute & EFI_MEMORY_RO))
405 		pf |= _PAGE_RW;
406 
407 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
408 		pf |= _PAGE_ENC;
409 
410 	return efi_update_mappings(md, pf);
411 }
412 
413 void __init efi_runtime_update_mappings(void)
414 {
415 	efi_memory_desc_t *md;
416 
417 	/*
418 	 * Use the EFI Memory Attribute Table for mapping permissions if it
419 	 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
420 	 */
421 	if (efi_enabled(EFI_MEM_ATTR)) {
422 		efi_disable_ibt_for_runtime = false;
423 		efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
424 		return;
425 	}
426 
427 	/*
428 	 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
429 	 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
430 	 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
431 	 * published by the firmware. Even if we find a buggy implementation of
432 	 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
433 	 * EFI_PROPERTIES_TABLE, because of the same reason.
434 	 */
435 
436 	if (!efi_enabled(EFI_NX_PE_DATA))
437 		return;
438 
439 	for_each_efi_memory_desc(md) {
440 		unsigned long pf = 0;
441 
442 		if (!(md->attribute & EFI_MEMORY_RUNTIME))
443 			continue;
444 
445 		if (!(md->attribute & EFI_MEMORY_WB))
446 			pf |= _PAGE_PCD;
447 
448 		if ((md->attribute & EFI_MEMORY_XP) ||
449 			(md->type == EFI_RUNTIME_SERVICES_DATA))
450 			pf |= _PAGE_NX;
451 
452 		if (!(md->attribute & EFI_MEMORY_RO) &&
453 			(md->type != EFI_RUNTIME_SERVICES_CODE))
454 			pf |= _PAGE_RW;
455 
456 		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
457 			pf |= _PAGE_ENC;
458 
459 		efi_update_mappings(md, pf);
460 	}
461 }
462 
463 void __init efi_dump_pagetable(void)
464 {
465 #ifdef CONFIG_EFI_PGT_DUMP
466 	ptdump_walk_pgd_level(NULL, &efi_mm);
467 #endif
468 }
469 
470 /*
471  * Makes the calling thread switch to/from efi_mm context. Can be used
472  * in a kernel thread and user context. Preemption needs to remain disabled
473  * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
474  * can not change under us.
475  * It should be ensured that there are no concurrent calls to this function.
476  */
477 static void efi_enter_mm(void)
478 {
479 	efi_prev_mm = current->active_mm;
480 	current->active_mm = &efi_mm;
481 	switch_mm(efi_prev_mm, &efi_mm, NULL);
482 }
483 
484 static void efi_leave_mm(void)
485 {
486 	current->active_mm = efi_prev_mm;
487 	switch_mm(&efi_mm, efi_prev_mm, NULL);
488 }
489 
490 void arch_efi_call_virt_setup(void)
491 {
492 	efi_sync_low_kernel_mappings();
493 	efi_fpu_begin();
494 	firmware_restrict_branch_speculation_start();
495 	efi_enter_mm();
496 }
497 
498 void arch_efi_call_virt_teardown(void)
499 {
500 	efi_leave_mm();
501 	firmware_restrict_branch_speculation_end();
502 	efi_fpu_end();
503 }
504 
505 static DEFINE_SPINLOCK(efi_runtime_lock);
506 
507 /*
508  * DS and ES contain user values.  We need to save them.
509  * The 32-bit EFI code needs a valid DS, ES, and SS.  There's no
510  * need to save the old SS: __KERNEL_DS is always acceptable.
511  */
512 #define __efi_thunk(func, ...)						\
513 ({									\
514 	unsigned short __ds, __es;					\
515 	efi_status_t ____s;						\
516 									\
517 	savesegment(ds, __ds);						\
518 	savesegment(es, __es);						\
519 									\
520 	loadsegment(ss, __KERNEL_DS);					\
521 	loadsegment(ds, __KERNEL_DS);					\
522 	loadsegment(es, __KERNEL_DS);					\
523 									\
524 	____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__);	\
525 									\
526 	loadsegment(ds, __ds);						\
527 	loadsegment(es, __es);						\
528 									\
529 	____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32;	\
530 	____s;								\
531 })
532 
533 /*
534  * Switch to the EFI page tables early so that we can access the 1:1
535  * runtime services mappings which are not mapped in any other page
536  * tables.
537  *
538  * Also, disable interrupts because the IDT points to 64-bit handlers,
539  * which aren't going to function correctly when we switch to 32-bit.
540  */
541 #define efi_thunk(func...)						\
542 ({									\
543 	efi_status_t __s;						\
544 									\
545 	arch_efi_call_virt_setup();					\
546 									\
547 	__s = __efi_thunk(func);					\
548 									\
549 	arch_efi_call_virt_teardown();					\
550 									\
551 	__s;								\
552 })
553 
554 static efi_status_t __init __no_sanitize_address
555 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
556 				  unsigned long descriptor_size,
557 				  u32 descriptor_version,
558 				  efi_memory_desc_t *virtual_map)
559 {
560 	efi_status_t status;
561 	unsigned long flags;
562 
563 	efi_sync_low_kernel_mappings();
564 	local_irq_save(flags);
565 
566 	efi_enter_mm();
567 
568 	status = __efi_thunk(set_virtual_address_map, memory_map_size,
569 			     descriptor_size, descriptor_version, virtual_map);
570 
571 	efi_leave_mm();
572 	local_irq_restore(flags);
573 
574 	return status;
575 }
576 
577 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
578 {
579 	return EFI_UNSUPPORTED;
580 }
581 
582 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
583 {
584 	return EFI_UNSUPPORTED;
585 }
586 
587 static efi_status_t
588 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
589 			  efi_time_t *tm)
590 {
591 	return EFI_UNSUPPORTED;
592 }
593 
594 static efi_status_t
595 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
596 {
597 	return EFI_UNSUPPORTED;
598 }
599 
600 static unsigned long efi_name_size(efi_char16_t *name)
601 {
602 	return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
603 }
604 
605 static efi_status_t
606 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
607 		       u32 *attr, unsigned long *data_size, void *data)
608 {
609 	u8 buf[24] __aligned(8);
610 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
611 	efi_status_t status;
612 	u32 phys_name, phys_vendor, phys_attr;
613 	u32 phys_data_size, phys_data;
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&efi_runtime_lock, flags);
617 
618 	*vnd = *vendor;
619 
620 	phys_data_size = virt_to_phys_or_null(data_size);
621 	phys_vendor = virt_to_phys_or_null(vnd);
622 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
623 	phys_attr = virt_to_phys_or_null(attr);
624 	phys_data = virt_to_phys_or_null_size(data, *data_size);
625 
626 	if (!phys_name || (data && !phys_data))
627 		status = EFI_INVALID_PARAMETER;
628 	else
629 		status = efi_thunk(get_variable, phys_name, phys_vendor,
630 				   phys_attr, phys_data_size, phys_data);
631 
632 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
633 
634 	return status;
635 }
636 
637 static efi_status_t
638 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
639 		       u32 attr, unsigned long data_size, void *data)
640 {
641 	u8 buf[24] __aligned(8);
642 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
643 	u32 phys_name, phys_vendor, phys_data;
644 	efi_status_t status;
645 	unsigned long flags;
646 
647 	spin_lock_irqsave(&efi_runtime_lock, flags);
648 
649 	*vnd = *vendor;
650 
651 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
652 	phys_vendor = virt_to_phys_or_null(vnd);
653 	phys_data = virt_to_phys_or_null_size(data, data_size);
654 
655 	if (!phys_name || (data && !phys_data))
656 		status = EFI_INVALID_PARAMETER;
657 	else
658 		status = efi_thunk(set_variable, phys_name, phys_vendor,
659 				   attr, data_size, phys_data);
660 
661 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
662 
663 	return status;
664 }
665 
666 static efi_status_t
667 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
668 				   u32 attr, unsigned long data_size,
669 				   void *data)
670 {
671 	u8 buf[24] __aligned(8);
672 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
673 	u32 phys_name, phys_vendor, phys_data;
674 	efi_status_t status;
675 	unsigned long flags;
676 
677 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
678 		return EFI_NOT_READY;
679 
680 	*vnd = *vendor;
681 
682 	phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
683 	phys_vendor = virt_to_phys_or_null(vnd);
684 	phys_data = virt_to_phys_or_null_size(data, data_size);
685 
686 	if (!phys_name || (data && !phys_data))
687 		status = EFI_INVALID_PARAMETER;
688 	else
689 		status = efi_thunk(set_variable, phys_name, phys_vendor,
690 				   attr, data_size, phys_data);
691 
692 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
693 
694 	return status;
695 }
696 
697 static efi_status_t
698 efi_thunk_get_next_variable(unsigned long *name_size,
699 			    efi_char16_t *name,
700 			    efi_guid_t *vendor)
701 {
702 	u8 buf[24] __aligned(8);
703 	efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
704 	efi_status_t status;
705 	u32 phys_name_size, phys_name, phys_vendor;
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&efi_runtime_lock, flags);
709 
710 	*vnd = *vendor;
711 
712 	phys_name_size = virt_to_phys_or_null(name_size);
713 	phys_vendor = virt_to_phys_or_null(vnd);
714 	phys_name = virt_to_phys_or_null_size(name, *name_size);
715 
716 	if (!phys_name)
717 		status = EFI_INVALID_PARAMETER;
718 	else
719 		status = efi_thunk(get_next_variable, phys_name_size,
720 				   phys_name, phys_vendor);
721 
722 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
723 
724 	*vendor = *vnd;
725 	return status;
726 }
727 
728 static efi_status_t
729 efi_thunk_get_next_high_mono_count(u32 *count)
730 {
731 	return EFI_UNSUPPORTED;
732 }
733 
734 static void
735 efi_thunk_reset_system(int reset_type, efi_status_t status,
736 		       unsigned long data_size, efi_char16_t *data)
737 {
738 	u32 phys_data;
739 	unsigned long flags;
740 
741 	spin_lock_irqsave(&efi_runtime_lock, flags);
742 
743 	phys_data = virt_to_phys_or_null_size(data, data_size);
744 
745 	efi_thunk(reset_system, reset_type, status, data_size, phys_data);
746 
747 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
748 }
749 
750 static efi_status_t
751 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
752 			 unsigned long count, unsigned long sg_list)
753 {
754 	/*
755 	 * To properly support this function we would need to repackage
756 	 * 'capsules' because the firmware doesn't understand 64-bit
757 	 * pointers.
758 	 */
759 	return EFI_UNSUPPORTED;
760 }
761 
762 static efi_status_t
763 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
764 			      u64 *remaining_space,
765 			      u64 *max_variable_size)
766 {
767 	efi_status_t status;
768 	u32 phys_storage, phys_remaining, phys_max;
769 	unsigned long flags;
770 
771 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
772 		return EFI_UNSUPPORTED;
773 
774 	spin_lock_irqsave(&efi_runtime_lock, flags);
775 
776 	phys_storage = virt_to_phys_or_null(storage_space);
777 	phys_remaining = virt_to_phys_or_null(remaining_space);
778 	phys_max = virt_to_phys_or_null(max_variable_size);
779 
780 	status = efi_thunk(query_variable_info, attr, phys_storage,
781 			   phys_remaining, phys_max);
782 
783 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
784 
785 	return status;
786 }
787 
788 static efi_status_t
789 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
790 					  u64 *remaining_space,
791 					  u64 *max_variable_size)
792 {
793 	efi_status_t status;
794 	u32 phys_storage, phys_remaining, phys_max;
795 	unsigned long flags;
796 
797 	if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
798 		return EFI_UNSUPPORTED;
799 
800 	if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
801 		return EFI_NOT_READY;
802 
803 	phys_storage = virt_to_phys_or_null(storage_space);
804 	phys_remaining = virt_to_phys_or_null(remaining_space);
805 	phys_max = virt_to_phys_or_null(max_variable_size);
806 
807 	status = efi_thunk(query_variable_info, attr, phys_storage,
808 			   phys_remaining, phys_max);
809 
810 	spin_unlock_irqrestore(&efi_runtime_lock, flags);
811 
812 	return status;
813 }
814 
815 static efi_status_t
816 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
817 			     unsigned long count, u64 *max_size,
818 			     int *reset_type)
819 {
820 	/*
821 	 * To properly support this function we would need to repackage
822 	 * 'capsules' because the firmware doesn't understand 64-bit
823 	 * pointers.
824 	 */
825 	return EFI_UNSUPPORTED;
826 }
827 
828 void __init efi_thunk_runtime_setup(void)
829 {
830 	if (!IS_ENABLED(CONFIG_EFI_MIXED))
831 		return;
832 
833 	efi.get_time = efi_thunk_get_time;
834 	efi.set_time = efi_thunk_set_time;
835 	efi.get_wakeup_time = efi_thunk_get_wakeup_time;
836 	efi.set_wakeup_time = efi_thunk_set_wakeup_time;
837 	efi.get_variable = efi_thunk_get_variable;
838 	efi.get_next_variable = efi_thunk_get_next_variable;
839 	efi.set_variable = efi_thunk_set_variable;
840 	efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
841 	efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
842 	efi.reset_system = efi_thunk_reset_system;
843 	efi.query_variable_info = efi_thunk_query_variable_info;
844 	efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
845 	efi.update_capsule = efi_thunk_update_capsule;
846 	efi.query_capsule_caps = efi_thunk_query_capsule_caps;
847 }
848 
849 efi_status_t __init __no_sanitize_address
850 efi_set_virtual_address_map(unsigned long memory_map_size,
851 			    unsigned long descriptor_size,
852 			    u32 descriptor_version,
853 			    efi_memory_desc_t *virtual_map,
854 			    unsigned long systab_phys)
855 {
856 	const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
857 	efi_status_t status;
858 	unsigned long flags;
859 
860 	if (efi_is_mixed())
861 		return efi_thunk_set_virtual_address_map(memory_map_size,
862 							 descriptor_size,
863 							 descriptor_version,
864 							 virtual_map);
865 	efi_enter_mm();
866 
867 	efi_fpu_begin();
868 
869 	/* Disable interrupts around EFI calls: */
870 	local_irq_save(flags);
871 	status = arch_efi_call_virt(efi.runtime, set_virtual_address_map,
872 				    memory_map_size, descriptor_size,
873 				    descriptor_version, virtual_map);
874 	local_irq_restore(flags);
875 
876 	efi_fpu_end();
877 
878 	/* grab the virtually remapped EFI runtime services table pointer */
879 	efi.runtime = READ_ONCE(systab->runtime);
880 
881 	efi_leave_mm();
882 
883 	return status;
884 }
885