1 /* 2 * x86_64 specific EFI support functions 3 * Based on Extensible Firmware Interface Specification version 1.0 4 * 5 * Copyright (C) 2005-2008 Intel Co. 6 * Fenghua Yu <fenghua.yu@intel.com> 7 * Bibo Mao <bibo.mao@intel.com> 8 * Chandramouli Narayanan <mouli@linux.intel.com> 9 * Huang Ying <ying.huang@intel.com> 10 * 11 * Code to convert EFI to E820 map has been implemented in elilo bootloader 12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 13 * is setup appropriately for EFI runtime code. 14 * - mouli 06/14/2007. 15 * 16 */ 17 18 #define pr_fmt(fmt) "efi: " fmt 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/mm.h> 23 #include <linux/types.h> 24 #include <linux/spinlock.h> 25 #include <linux/bootmem.h> 26 #include <linux/ioport.h> 27 #include <linux/module.h> 28 #include <linux/efi.h> 29 #include <linux/uaccess.h> 30 #include <linux/io.h> 31 #include <linux/reboot.h> 32 #include <linux/slab.h> 33 34 #include <asm/setup.h> 35 #include <asm/page.h> 36 #include <asm/e820.h> 37 #include <asm/pgtable.h> 38 #include <asm/tlbflush.h> 39 #include <asm/proto.h> 40 #include <asm/efi.h> 41 #include <asm/cacheflush.h> 42 #include <asm/fixmap.h> 43 #include <asm/realmode.h> 44 #include <asm/time.h> 45 #include <asm/pgalloc.h> 46 47 /* 48 * We allocate runtime services regions bottom-up, starting from -4G, i.e. 49 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 50 */ 51 static u64 efi_va = EFI_VA_START; 52 53 struct efi_scratch efi_scratch; 54 55 static void __init early_code_mapping_set_exec(int executable) 56 { 57 efi_memory_desc_t *md; 58 59 if (!(__supported_pte_mask & _PAGE_NX)) 60 return; 61 62 /* Make EFI service code area executable */ 63 for_each_efi_memory_desc(md) { 64 if (md->type == EFI_RUNTIME_SERVICES_CODE || 65 md->type == EFI_BOOT_SERVICES_CODE) 66 efi_set_executable(md, executable); 67 } 68 } 69 70 pgd_t * __init efi_call_phys_prolog(void) 71 { 72 unsigned long vaddress; 73 pgd_t *save_pgd; 74 75 int pgd; 76 int n_pgds; 77 78 if (!efi_enabled(EFI_OLD_MEMMAP)) { 79 save_pgd = (pgd_t *)read_cr3(); 80 write_cr3((unsigned long)efi_scratch.efi_pgt); 81 goto out; 82 } 83 84 early_code_mapping_set_exec(1); 85 86 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE); 87 save_pgd = kmalloc(n_pgds * sizeof(pgd_t), GFP_KERNEL); 88 89 for (pgd = 0; pgd < n_pgds; pgd++) { 90 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE); 91 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE); 92 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress)); 93 } 94 out: 95 __flush_tlb_all(); 96 97 return save_pgd; 98 } 99 100 void __init efi_call_phys_epilog(pgd_t *save_pgd) 101 { 102 /* 103 * After the lock is released, the original page table is restored. 104 */ 105 int pgd_idx; 106 int nr_pgds; 107 108 if (!efi_enabled(EFI_OLD_MEMMAP)) { 109 write_cr3((unsigned long)save_pgd); 110 __flush_tlb_all(); 111 return; 112 } 113 114 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE); 115 116 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) 117 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]); 118 119 kfree(save_pgd); 120 121 __flush_tlb_all(); 122 early_code_mapping_set_exec(0); 123 } 124 125 static pgd_t *efi_pgd; 126 127 /* 128 * We need our own copy of the higher levels of the page tables 129 * because we want to avoid inserting EFI region mappings (EFI_VA_END 130 * to EFI_VA_START) into the standard kernel page tables. Everything 131 * else can be shared, see efi_sync_low_kernel_mappings(). 132 */ 133 int __init efi_alloc_page_tables(void) 134 { 135 pgd_t *pgd; 136 pud_t *pud; 137 gfp_t gfp_mask; 138 139 if (efi_enabled(EFI_OLD_MEMMAP)) 140 return 0; 141 142 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO; 143 efi_pgd = (pgd_t *)__get_free_page(gfp_mask); 144 if (!efi_pgd) 145 return -ENOMEM; 146 147 pgd = efi_pgd + pgd_index(EFI_VA_END); 148 149 pud = pud_alloc_one(NULL, 0); 150 if (!pud) { 151 free_page((unsigned long)efi_pgd); 152 return -ENOMEM; 153 } 154 155 pgd_populate(NULL, pgd, pud); 156 157 return 0; 158 } 159 160 /* 161 * Add low kernel mappings for passing arguments to EFI functions. 162 */ 163 void efi_sync_low_kernel_mappings(void) 164 { 165 unsigned num_entries; 166 pgd_t *pgd_k, *pgd_efi; 167 pud_t *pud_k, *pud_efi; 168 169 if (efi_enabled(EFI_OLD_MEMMAP)) 170 return; 171 172 /* 173 * We can share all PGD entries apart from the one entry that 174 * covers the EFI runtime mapping space. 175 * 176 * Make sure the EFI runtime region mappings are guaranteed to 177 * only span a single PGD entry and that the entry also maps 178 * other important kernel regions. 179 */ 180 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END)); 181 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) != 182 (EFI_VA_END & PGDIR_MASK)); 183 184 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 185 pgd_k = pgd_offset_k(PAGE_OFFSET); 186 187 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 188 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 189 190 /* 191 * We share all the PUD entries apart from those that map the 192 * EFI regions. Copy around them. 193 */ 194 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 195 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 196 197 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 198 pud_efi = pud_offset(pgd_efi, 0); 199 200 pgd_k = pgd_offset_k(EFI_VA_END); 201 pud_k = pud_offset(pgd_k, 0); 202 203 num_entries = pud_index(EFI_VA_END); 204 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 205 206 pud_efi = pud_offset(pgd_efi, EFI_VA_START); 207 pud_k = pud_offset(pgd_k, EFI_VA_START); 208 209 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 210 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 211 } 212 213 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 214 { 215 unsigned long pfn, text; 216 efi_memory_desc_t *md; 217 struct page *page; 218 unsigned npages; 219 pgd_t *pgd; 220 221 if (efi_enabled(EFI_OLD_MEMMAP)) 222 return 0; 223 224 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd); 225 pgd = efi_pgd; 226 227 /* 228 * It can happen that the physical address of new_memmap lands in memory 229 * which is not mapped in the EFI page table. Therefore we need to go 230 * and ident-map those pages containing the map before calling 231 * phys_efi_set_virtual_address_map(). 232 */ 233 pfn = pa_memmap >> PAGE_SHIFT; 234 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) { 235 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 236 return 1; 237 } 238 239 efi_scratch.use_pgd = true; 240 241 /* 242 * When making calls to the firmware everything needs to be 1:1 243 * mapped and addressable with 32-bit pointers. Map the kernel 244 * text and allocate a new stack because we can't rely on the 245 * stack pointer being < 4GB. 246 */ 247 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 248 return 0; 249 250 /* 251 * Map all of RAM so that we can access arguments in the 1:1 252 * mapping when making EFI runtime calls. 253 */ 254 for_each_efi_memory_desc(md) { 255 if (md->type != EFI_CONVENTIONAL_MEMORY && 256 md->type != EFI_LOADER_DATA && 257 md->type != EFI_LOADER_CODE) 258 continue; 259 260 pfn = md->phys_addr >> PAGE_SHIFT; 261 npages = md->num_pages; 262 263 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, npages, _PAGE_RW)) { 264 pr_err("Failed to map 1:1 memory\n"); 265 return 1; 266 } 267 } 268 269 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 270 if (!page) 271 panic("Unable to allocate EFI runtime stack < 4GB\n"); 272 273 efi_scratch.phys_stack = virt_to_phys(page_address(page)); 274 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */ 275 276 npages = (_etext - _text) >> PAGE_SHIFT; 277 text = __pa(_text); 278 pfn = text >> PAGE_SHIFT; 279 280 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) { 281 pr_err("Failed to map kernel text 1:1\n"); 282 return 1; 283 } 284 285 return 0; 286 } 287 288 void __init efi_cleanup_page_tables(unsigned long pa_memmap, unsigned num_pages) 289 { 290 kernel_unmap_pages_in_pgd(efi_pgd, pa_memmap, num_pages); 291 } 292 293 static void __init __map_region(efi_memory_desc_t *md, u64 va) 294 { 295 unsigned long flags = _PAGE_RW; 296 unsigned long pfn; 297 pgd_t *pgd = efi_pgd; 298 299 if (!(md->attribute & EFI_MEMORY_WB)) 300 flags |= _PAGE_PCD; 301 302 pfn = md->phys_addr >> PAGE_SHIFT; 303 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 304 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 305 md->phys_addr, va); 306 } 307 308 void __init efi_map_region(efi_memory_desc_t *md) 309 { 310 unsigned long size = md->num_pages << PAGE_SHIFT; 311 u64 pa = md->phys_addr; 312 313 if (efi_enabled(EFI_OLD_MEMMAP)) 314 return old_map_region(md); 315 316 /* 317 * Make sure the 1:1 mappings are present as a catch-all for b0rked 318 * firmware which doesn't update all internal pointers after switching 319 * to virtual mode and would otherwise crap on us. 320 */ 321 __map_region(md, md->phys_addr); 322 323 /* 324 * Enforce the 1:1 mapping as the default virtual address when 325 * booting in EFI mixed mode, because even though we may be 326 * running a 64-bit kernel, the firmware may only be 32-bit. 327 */ 328 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) { 329 md->virt_addr = md->phys_addr; 330 return; 331 } 332 333 efi_va -= size; 334 335 /* Is PA 2M-aligned? */ 336 if (!(pa & (PMD_SIZE - 1))) { 337 efi_va &= PMD_MASK; 338 } else { 339 u64 pa_offset = pa & (PMD_SIZE - 1); 340 u64 prev_va = efi_va; 341 342 /* get us the same offset within this 2M page */ 343 efi_va = (efi_va & PMD_MASK) + pa_offset; 344 345 if (efi_va > prev_va) 346 efi_va -= PMD_SIZE; 347 } 348 349 if (efi_va < EFI_VA_END) { 350 pr_warn(FW_WARN "VA address range overflow!\n"); 351 return; 352 } 353 354 /* Do the VA map */ 355 __map_region(md, efi_va); 356 md->virt_addr = efi_va; 357 } 358 359 /* 360 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 361 * md->virt_addr is the original virtual address which had been mapped in kexec 362 * 1st kernel. 363 */ 364 void __init efi_map_region_fixed(efi_memory_desc_t *md) 365 { 366 __map_region(md, md->virt_addr); 367 } 368 369 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size, 370 u32 type, u64 attribute) 371 { 372 unsigned long last_map_pfn; 373 374 if (type == EFI_MEMORY_MAPPED_IO) 375 return ioremap(phys_addr, size); 376 377 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size); 378 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) { 379 unsigned long top = last_map_pfn << PAGE_SHIFT; 380 efi_ioremap(top, size - (top - phys_addr), type, attribute); 381 } 382 383 if (!(attribute & EFI_MEMORY_WB)) 384 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size); 385 386 return (void __iomem *)__va(phys_addr); 387 } 388 389 void __init parse_efi_setup(u64 phys_addr, u32 data_len) 390 { 391 efi_setup = phys_addr + sizeof(struct setup_data); 392 } 393 394 void __init efi_runtime_update_mappings(void) 395 { 396 unsigned long pfn; 397 pgd_t *pgd = efi_pgd; 398 efi_memory_desc_t *md; 399 400 if (efi_enabled(EFI_OLD_MEMMAP)) { 401 if (__supported_pte_mask & _PAGE_NX) 402 runtime_code_page_mkexec(); 403 return; 404 } 405 406 if (!efi_enabled(EFI_NX_PE_DATA)) 407 return; 408 409 for_each_efi_memory_desc(md) { 410 unsigned long pf = 0; 411 412 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 413 continue; 414 415 if (!(md->attribute & EFI_MEMORY_WB)) 416 pf |= _PAGE_PCD; 417 418 if ((md->attribute & EFI_MEMORY_XP) || 419 (md->type == EFI_RUNTIME_SERVICES_DATA)) 420 pf |= _PAGE_NX; 421 422 if (!(md->attribute & EFI_MEMORY_RO) && 423 (md->type != EFI_RUNTIME_SERVICES_CODE)) 424 pf |= _PAGE_RW; 425 426 /* Update the 1:1 mapping */ 427 pfn = md->phys_addr >> PAGE_SHIFT; 428 if (kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf)) 429 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 430 md->phys_addr, md->virt_addr); 431 432 if (kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf)) 433 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 434 md->phys_addr, md->virt_addr); 435 } 436 } 437 438 void __init efi_dump_pagetable(void) 439 { 440 #ifdef CONFIG_EFI_PGT_DUMP 441 ptdump_walk_pgd_level(NULL, efi_pgd); 442 #endif 443 } 444 445 #ifdef CONFIG_EFI_MIXED 446 extern efi_status_t efi64_thunk(u32, ...); 447 448 #define runtime_service32(func) \ 449 ({ \ 450 u32 table = (u32)(unsigned long)efi.systab; \ 451 u32 *rt, *___f; \ 452 \ 453 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \ 454 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \ 455 *___f; \ 456 }) 457 458 /* 459 * Switch to the EFI page tables early so that we can access the 1:1 460 * runtime services mappings which are not mapped in any other page 461 * tables. This function must be called before runtime_service32(). 462 * 463 * Also, disable interrupts because the IDT points to 64-bit handlers, 464 * which aren't going to function correctly when we switch to 32-bit. 465 */ 466 #define efi_thunk(f, ...) \ 467 ({ \ 468 efi_status_t __s; \ 469 unsigned long flags; \ 470 u32 func; \ 471 \ 472 efi_sync_low_kernel_mappings(); \ 473 local_irq_save(flags); \ 474 \ 475 efi_scratch.prev_cr3 = read_cr3(); \ 476 write_cr3((unsigned long)efi_scratch.efi_pgt); \ 477 __flush_tlb_all(); \ 478 \ 479 func = runtime_service32(f); \ 480 __s = efi64_thunk(func, __VA_ARGS__); \ 481 \ 482 write_cr3(efi_scratch.prev_cr3); \ 483 __flush_tlb_all(); \ 484 local_irq_restore(flags); \ 485 \ 486 __s; \ 487 }) 488 489 efi_status_t efi_thunk_set_virtual_address_map( 490 void *phys_set_virtual_address_map, 491 unsigned long memory_map_size, 492 unsigned long descriptor_size, 493 u32 descriptor_version, 494 efi_memory_desc_t *virtual_map) 495 { 496 efi_status_t status; 497 unsigned long flags; 498 u32 func; 499 500 efi_sync_low_kernel_mappings(); 501 local_irq_save(flags); 502 503 efi_scratch.prev_cr3 = read_cr3(); 504 write_cr3((unsigned long)efi_scratch.efi_pgt); 505 __flush_tlb_all(); 506 507 func = (u32)(unsigned long)phys_set_virtual_address_map; 508 status = efi64_thunk(func, memory_map_size, descriptor_size, 509 descriptor_version, virtual_map); 510 511 write_cr3(efi_scratch.prev_cr3); 512 __flush_tlb_all(); 513 local_irq_restore(flags); 514 515 return status; 516 } 517 518 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 519 { 520 efi_status_t status; 521 u32 phys_tm, phys_tc; 522 523 spin_lock(&rtc_lock); 524 525 phys_tm = virt_to_phys(tm); 526 phys_tc = virt_to_phys(tc); 527 528 status = efi_thunk(get_time, phys_tm, phys_tc); 529 530 spin_unlock(&rtc_lock); 531 532 return status; 533 } 534 535 static efi_status_t efi_thunk_set_time(efi_time_t *tm) 536 { 537 efi_status_t status; 538 u32 phys_tm; 539 540 spin_lock(&rtc_lock); 541 542 phys_tm = virt_to_phys(tm); 543 544 status = efi_thunk(set_time, phys_tm); 545 546 spin_unlock(&rtc_lock); 547 548 return status; 549 } 550 551 static efi_status_t 552 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 553 efi_time_t *tm) 554 { 555 efi_status_t status; 556 u32 phys_enabled, phys_pending, phys_tm; 557 558 spin_lock(&rtc_lock); 559 560 phys_enabled = virt_to_phys(enabled); 561 phys_pending = virt_to_phys(pending); 562 phys_tm = virt_to_phys(tm); 563 564 status = efi_thunk(get_wakeup_time, phys_enabled, 565 phys_pending, phys_tm); 566 567 spin_unlock(&rtc_lock); 568 569 return status; 570 } 571 572 static efi_status_t 573 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 574 { 575 efi_status_t status; 576 u32 phys_tm; 577 578 spin_lock(&rtc_lock); 579 580 phys_tm = virt_to_phys(tm); 581 582 status = efi_thunk(set_wakeup_time, enabled, phys_tm); 583 584 spin_unlock(&rtc_lock); 585 586 return status; 587 } 588 589 590 static efi_status_t 591 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 592 u32 *attr, unsigned long *data_size, void *data) 593 { 594 efi_status_t status; 595 u32 phys_name, phys_vendor, phys_attr; 596 u32 phys_data_size, phys_data; 597 598 phys_data_size = virt_to_phys(data_size); 599 phys_vendor = virt_to_phys(vendor); 600 phys_name = virt_to_phys(name); 601 phys_attr = virt_to_phys(attr); 602 phys_data = virt_to_phys(data); 603 604 status = efi_thunk(get_variable, phys_name, phys_vendor, 605 phys_attr, phys_data_size, phys_data); 606 607 return status; 608 } 609 610 static efi_status_t 611 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 612 u32 attr, unsigned long data_size, void *data) 613 { 614 u32 phys_name, phys_vendor, phys_data; 615 efi_status_t status; 616 617 phys_name = virt_to_phys(name); 618 phys_vendor = virt_to_phys(vendor); 619 phys_data = virt_to_phys(data); 620 621 /* If data_size is > sizeof(u32) we've got problems */ 622 status = efi_thunk(set_variable, phys_name, phys_vendor, 623 attr, data_size, phys_data); 624 625 return status; 626 } 627 628 static efi_status_t 629 efi_thunk_get_next_variable(unsigned long *name_size, 630 efi_char16_t *name, 631 efi_guid_t *vendor) 632 { 633 efi_status_t status; 634 u32 phys_name_size, phys_name, phys_vendor; 635 636 phys_name_size = virt_to_phys(name_size); 637 phys_vendor = virt_to_phys(vendor); 638 phys_name = virt_to_phys(name); 639 640 status = efi_thunk(get_next_variable, phys_name_size, 641 phys_name, phys_vendor); 642 643 return status; 644 } 645 646 static efi_status_t 647 efi_thunk_get_next_high_mono_count(u32 *count) 648 { 649 efi_status_t status; 650 u32 phys_count; 651 652 phys_count = virt_to_phys(count); 653 status = efi_thunk(get_next_high_mono_count, phys_count); 654 655 return status; 656 } 657 658 static void 659 efi_thunk_reset_system(int reset_type, efi_status_t status, 660 unsigned long data_size, efi_char16_t *data) 661 { 662 u32 phys_data; 663 664 phys_data = virt_to_phys(data); 665 666 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 667 } 668 669 static efi_status_t 670 efi_thunk_update_capsule(efi_capsule_header_t **capsules, 671 unsigned long count, unsigned long sg_list) 672 { 673 /* 674 * To properly support this function we would need to repackage 675 * 'capsules' because the firmware doesn't understand 64-bit 676 * pointers. 677 */ 678 return EFI_UNSUPPORTED; 679 } 680 681 static efi_status_t 682 efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 683 u64 *remaining_space, 684 u64 *max_variable_size) 685 { 686 efi_status_t status; 687 u32 phys_storage, phys_remaining, phys_max; 688 689 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 690 return EFI_UNSUPPORTED; 691 692 phys_storage = virt_to_phys(storage_space); 693 phys_remaining = virt_to_phys(remaining_space); 694 phys_max = virt_to_phys(max_variable_size); 695 696 status = efi_thunk(query_variable_info, attr, phys_storage, 697 phys_remaining, phys_max); 698 699 return status; 700 } 701 702 static efi_status_t 703 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 704 unsigned long count, u64 *max_size, 705 int *reset_type) 706 { 707 /* 708 * To properly support this function we would need to repackage 709 * 'capsules' because the firmware doesn't understand 64-bit 710 * pointers. 711 */ 712 return EFI_UNSUPPORTED; 713 } 714 715 void efi_thunk_runtime_setup(void) 716 { 717 efi.get_time = efi_thunk_get_time; 718 efi.set_time = efi_thunk_set_time; 719 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 720 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 721 efi.get_variable = efi_thunk_get_variable; 722 efi.get_next_variable = efi_thunk_get_next_variable; 723 efi.set_variable = efi_thunk_set_variable; 724 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 725 efi.reset_system = efi_thunk_reset_system; 726 efi.query_variable_info = efi_thunk_query_variable_info; 727 efi.update_capsule = efi_thunk_update_capsule; 728 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 729 } 730 #endif /* CONFIG_EFI_MIXED */ 731