1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common EFI (Extensible Firmware Interface) support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 1999 VA Linux Systems 7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 8 * Copyright (C) 1999-2002 Hewlett-Packard Co. 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * Stephane Eranian <eranian@hpl.hp.com> 11 * Copyright (C) 2005-2008 Intel Co. 12 * Fenghua Yu <fenghua.yu@intel.com> 13 * Bibo Mao <bibo.mao@intel.com> 14 * Chandramouli Narayanan <mouli@linux.intel.com> 15 * Huang Ying <ying.huang@intel.com> 16 * Copyright (C) 2013 SuSE Labs 17 * Borislav Petkov <bp@suse.de> - runtime services VA mapping 18 * 19 * Copied from efi_32.c to eliminate the duplicated code between EFI 20 * 32/64 support code. --ying 2007-10-26 21 * 22 * All EFI Runtime Services are not implemented yet as EFI only 23 * supports physical mode addressing on SoftSDV. This is to be fixed 24 * in a future version. --drummond 1999-07-20 25 * 26 * Implemented EFI runtime services and virtual mode calls. --davidm 27 * 28 * Goutham Rao: <goutham.rao@intel.com> 29 * Skip non-WB memory and ignore empty memory ranges. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/efi.h> 37 #include <linux/efi-bgrt.h> 38 #include <linux/export.h> 39 #include <linux/memblock.h> 40 #include <linux/slab.h> 41 #include <linux/spinlock.h> 42 #include <linux/uaccess.h> 43 #include <linux/time.h> 44 #include <linux/io.h> 45 #include <linux/reboot.h> 46 #include <linux/bcd.h> 47 48 #include <asm/setup.h> 49 #include <asm/efi.h> 50 #include <asm/e820/api.h> 51 #include <asm/time.h> 52 #include <asm/tlbflush.h> 53 #include <asm/x86_init.h> 54 #include <asm/uv/uv.h> 55 56 static unsigned long efi_systab_phys __initdata; 57 static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR; 58 static unsigned long efi_runtime, efi_nr_tables; 59 60 unsigned long efi_fw_vendor, efi_config_table; 61 62 static const efi_config_table_type_t arch_tables[] __initconst = { 63 {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" }, 64 #ifdef CONFIG_X86_UV 65 {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" }, 66 #endif 67 {}, 68 }; 69 70 static const unsigned long * const efi_tables[] = { 71 &efi.acpi, 72 &efi.acpi20, 73 &efi.smbios, 74 &efi.smbios3, 75 &uga_phys, 76 #ifdef CONFIG_X86_UV 77 &uv_systab_phys, 78 #endif 79 &efi_fw_vendor, 80 &efi_runtime, 81 &efi_config_table, 82 &efi.esrt, 83 &efi_mem_attr_table, 84 #ifdef CONFIG_EFI_RCI2_TABLE 85 &rci2_table_phys, 86 #endif 87 &efi.tpm_log, 88 &efi.tpm_final_log, 89 &efi_rng_seed, 90 #ifdef CONFIG_LOAD_UEFI_KEYS 91 &efi.mokvar_table, 92 #endif 93 #ifdef CONFIG_EFI_COCO_SECRET 94 &efi.coco_secret, 95 #endif 96 #ifdef CONFIG_UNACCEPTED_MEMORY 97 &efi.unaccepted, 98 #endif 99 }; 100 101 u64 efi_setup; /* efi setup_data physical address */ 102 103 static int add_efi_memmap __initdata; 104 static int __init setup_add_efi_memmap(char *arg) 105 { 106 add_efi_memmap = 1; 107 return 0; 108 } 109 early_param("add_efi_memmap", setup_add_efi_memmap); 110 111 /* 112 * Tell the kernel about the EFI memory map. This might include 113 * more than the max 128 entries that can fit in the passed in e820 114 * legacy (zeropage) memory map, but the kernel's e820 table can hold 115 * E820_MAX_ENTRIES. 116 */ 117 118 static void __init do_add_efi_memmap(void) 119 { 120 efi_memory_desc_t *md; 121 122 if (!efi_enabled(EFI_MEMMAP)) 123 return; 124 125 for_each_efi_memory_desc(md) { 126 unsigned long long start = md->phys_addr; 127 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; 128 int e820_type; 129 130 switch (md->type) { 131 case EFI_LOADER_CODE: 132 case EFI_LOADER_DATA: 133 case EFI_BOOT_SERVICES_CODE: 134 case EFI_BOOT_SERVICES_DATA: 135 case EFI_CONVENTIONAL_MEMORY: 136 if (efi_soft_reserve_enabled() 137 && (md->attribute & EFI_MEMORY_SP)) 138 e820_type = E820_TYPE_SOFT_RESERVED; 139 else if (md->attribute & EFI_MEMORY_WB) 140 e820_type = E820_TYPE_RAM; 141 else 142 e820_type = E820_TYPE_RESERVED; 143 break; 144 case EFI_ACPI_RECLAIM_MEMORY: 145 e820_type = E820_TYPE_ACPI; 146 break; 147 case EFI_ACPI_MEMORY_NVS: 148 e820_type = E820_TYPE_NVS; 149 break; 150 case EFI_UNUSABLE_MEMORY: 151 e820_type = E820_TYPE_UNUSABLE; 152 break; 153 case EFI_PERSISTENT_MEMORY: 154 e820_type = E820_TYPE_PMEM; 155 break; 156 default: 157 /* 158 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE 159 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO 160 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE 161 */ 162 e820_type = E820_TYPE_RESERVED; 163 break; 164 } 165 166 e820__range_add(start, size, e820_type); 167 } 168 e820__update_table(e820_table); 169 } 170 171 /* 172 * Given add_efi_memmap defaults to 0 and there is no alternative 173 * e820 mechanism for soft-reserved memory, import the full EFI memory 174 * map if soft reservations are present and enabled. Otherwise, the 175 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is 176 * the efi=nosoftreserve option. 177 */ 178 static bool do_efi_soft_reserve(void) 179 { 180 efi_memory_desc_t *md; 181 182 if (!efi_enabled(EFI_MEMMAP)) 183 return false; 184 185 if (!efi_soft_reserve_enabled()) 186 return false; 187 188 for_each_efi_memory_desc(md) 189 if (md->type == EFI_CONVENTIONAL_MEMORY && 190 (md->attribute & EFI_MEMORY_SP)) 191 return true; 192 return false; 193 } 194 195 int __init efi_memblock_x86_reserve_range(void) 196 { 197 struct efi_info *e = &boot_params.efi_info; 198 struct efi_memory_map_data data; 199 phys_addr_t pmap; 200 int rv; 201 202 if (efi_enabled(EFI_PARAVIRT)) 203 return 0; 204 205 /* Can't handle firmware tables above 4GB on i386 */ 206 if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) { 207 pr_err("Memory map is above 4GB, disabling EFI.\n"); 208 return -EINVAL; 209 } 210 pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32)); 211 212 data.phys_map = pmap; 213 data.size = e->efi_memmap_size; 214 data.desc_size = e->efi_memdesc_size; 215 data.desc_version = e->efi_memdesc_version; 216 217 if (!efi_enabled(EFI_PARAVIRT)) { 218 rv = efi_memmap_init_early(&data); 219 if (rv) 220 return rv; 221 } 222 223 if (add_efi_memmap || do_efi_soft_reserve()) 224 do_add_efi_memmap(); 225 226 WARN(efi.memmap.desc_version != 1, 227 "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", 228 efi.memmap.desc_version); 229 230 memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); 231 set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags); 232 233 return 0; 234 } 235 236 #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) 237 #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) 238 #define U64_HIGH_BIT (~(U64_MAX >> 1)) 239 240 static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) 241 { 242 u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; 243 u64 end_hi = 0; 244 char buf[64]; 245 246 if (md->num_pages == 0) { 247 end = 0; 248 } else if (md->num_pages > EFI_PAGES_MAX || 249 EFI_PAGES_MAX - md->num_pages < 250 (md->phys_addr >> EFI_PAGE_SHIFT)) { 251 end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) 252 >> OVERFLOW_ADDR_SHIFT; 253 254 if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) 255 end_hi += 1; 256 } else { 257 return true; 258 } 259 260 pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); 261 262 if (end_hi) { 263 pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", 264 i, efi_md_typeattr_format(buf, sizeof(buf), md), 265 md->phys_addr, end_hi, end); 266 } else { 267 pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", 268 i, efi_md_typeattr_format(buf, sizeof(buf), md), 269 md->phys_addr, end); 270 } 271 return false; 272 } 273 274 static void __init efi_clean_memmap(void) 275 { 276 efi_memory_desc_t *out = efi.memmap.map; 277 const efi_memory_desc_t *in = out; 278 const efi_memory_desc_t *end = efi.memmap.map_end; 279 int i, n_removal; 280 281 for (i = n_removal = 0; in < end; i++) { 282 if (efi_memmap_entry_valid(in, i)) { 283 if (out != in) 284 memcpy(out, in, efi.memmap.desc_size); 285 out = (void *)out + efi.memmap.desc_size; 286 } else { 287 n_removal++; 288 } 289 in = (void *)in + efi.memmap.desc_size; 290 } 291 292 if (n_removal > 0) { 293 struct efi_memory_map_data data = { 294 .phys_map = efi.memmap.phys_map, 295 .desc_version = efi.memmap.desc_version, 296 .desc_size = efi.memmap.desc_size, 297 .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal), 298 .flags = 0, 299 }; 300 301 pr_warn("Removing %d invalid memory map entries.\n", n_removal); 302 efi_memmap_install(&data); 303 } 304 } 305 306 /* 307 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be 308 * mapped by the OS so they can be accessed by EFI runtime services, but 309 * should have no other significance to the OS (UEFI r2.10, sec 7.2). 310 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO 311 * regions to E820_TYPE_RESERVED entries, which prevent Linux from 312 * allocating space from them (see remove_e820_regions()). 313 * 314 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and 315 * PCI host bridge windows, which means Linux can't allocate BAR space for 316 * hot-added devices. 317 * 318 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this 319 * problem. 320 * 321 * Retain small EfiMemoryMappedIO regions because on some platforms, these 322 * describe non-window space that's included in host bridge _CRS. If we 323 * assign that space to PCI devices, they don't work. 324 */ 325 static void __init efi_remove_e820_mmio(void) 326 { 327 efi_memory_desc_t *md; 328 u64 size, start, end; 329 int i = 0; 330 331 for_each_efi_memory_desc(md) { 332 if (md->type == EFI_MEMORY_MAPPED_IO) { 333 size = md->num_pages << EFI_PAGE_SHIFT; 334 start = md->phys_addr; 335 end = start + size - 1; 336 if (size >= 256*1024) { 337 pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n", 338 i, start, end, size >> 20); 339 e820__range_remove(start, size, 340 E820_TYPE_RESERVED, 1); 341 } else { 342 pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n", 343 i, start, end, size >> 10); 344 } 345 } 346 i++; 347 } 348 } 349 350 void __init efi_print_memmap(void) 351 { 352 efi_memory_desc_t *md; 353 int i = 0; 354 355 for_each_efi_memory_desc(md) { 356 char buf[64]; 357 358 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", 359 i++, efi_md_typeattr_format(buf, sizeof(buf), md), 360 md->phys_addr, 361 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, 362 (md->num_pages >> (20 - EFI_PAGE_SHIFT))); 363 } 364 } 365 366 static int __init efi_systab_init(unsigned long phys) 367 { 368 int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t) 369 : sizeof(efi_system_table_32_t); 370 const efi_table_hdr_t *hdr; 371 bool over4g = false; 372 void *p; 373 int ret; 374 375 hdr = p = early_memremap_ro(phys, size); 376 if (p == NULL) { 377 pr_err("Couldn't map the system table!\n"); 378 return -ENOMEM; 379 } 380 381 ret = efi_systab_check_header(hdr); 382 if (ret) { 383 early_memunmap(p, size); 384 return ret; 385 } 386 387 if (efi_enabled(EFI_64BIT)) { 388 const efi_system_table_64_t *systab64 = p; 389 390 efi_runtime = systab64->runtime; 391 over4g = systab64->runtime > U32_MAX; 392 393 if (efi_setup) { 394 struct efi_setup_data *data; 395 396 data = early_memremap_ro(efi_setup, sizeof(*data)); 397 if (!data) { 398 early_memunmap(p, size); 399 return -ENOMEM; 400 } 401 402 efi_fw_vendor = (unsigned long)data->fw_vendor; 403 efi_config_table = (unsigned long)data->tables; 404 405 over4g |= data->fw_vendor > U32_MAX || 406 data->tables > U32_MAX; 407 408 early_memunmap(data, sizeof(*data)); 409 } else { 410 efi_fw_vendor = systab64->fw_vendor; 411 efi_config_table = systab64->tables; 412 413 over4g |= systab64->fw_vendor > U32_MAX || 414 systab64->tables > U32_MAX; 415 } 416 efi_nr_tables = systab64->nr_tables; 417 } else { 418 const efi_system_table_32_t *systab32 = p; 419 420 efi_fw_vendor = systab32->fw_vendor; 421 efi_runtime = systab32->runtime; 422 efi_config_table = systab32->tables; 423 efi_nr_tables = systab32->nr_tables; 424 } 425 426 efi.runtime_version = hdr->revision; 427 428 efi_systab_report_header(hdr, efi_fw_vendor); 429 early_memunmap(p, size); 430 431 if (IS_ENABLED(CONFIG_X86_32) && over4g) { 432 pr_err("EFI data located above 4GB, disabling EFI.\n"); 433 return -EINVAL; 434 } 435 436 return 0; 437 } 438 439 static int __init efi_config_init(const efi_config_table_type_t *arch_tables) 440 { 441 void *config_tables; 442 int sz, ret; 443 444 if (efi_nr_tables == 0) 445 return 0; 446 447 if (efi_enabled(EFI_64BIT)) 448 sz = sizeof(efi_config_table_64_t); 449 else 450 sz = sizeof(efi_config_table_32_t); 451 452 /* 453 * Let's see what config tables the firmware passed to us. 454 */ 455 config_tables = early_memremap(efi_config_table, efi_nr_tables * sz); 456 if (config_tables == NULL) { 457 pr_err("Could not map Configuration table!\n"); 458 return -ENOMEM; 459 } 460 461 ret = efi_config_parse_tables(config_tables, efi_nr_tables, 462 arch_tables); 463 464 early_memunmap(config_tables, efi_nr_tables * sz); 465 return ret; 466 } 467 468 void __init efi_init(void) 469 { 470 if (IS_ENABLED(CONFIG_X86_32) && 471 (boot_params.efi_info.efi_systab_hi || 472 boot_params.efi_info.efi_memmap_hi)) { 473 pr_info("Table located above 4GB, disabling EFI.\n"); 474 return; 475 } 476 477 efi_systab_phys = boot_params.efi_info.efi_systab | 478 ((__u64)boot_params.efi_info.efi_systab_hi << 32); 479 480 if (efi_systab_init(efi_systab_phys)) 481 return; 482 483 if (efi_reuse_config(efi_config_table, efi_nr_tables)) 484 return; 485 486 if (efi_config_init(arch_tables)) 487 return; 488 489 /* 490 * Note: We currently don't support runtime services on an EFI 491 * that doesn't match the kernel 32/64-bit mode. 492 */ 493 494 if (!efi_runtime_supported()) 495 pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n"); 496 497 if (!efi_runtime_supported() || efi_runtime_disabled()) { 498 efi_memmap_unmap(); 499 return; 500 } 501 502 set_bit(EFI_RUNTIME_SERVICES, &efi.flags); 503 efi_clean_memmap(); 504 505 efi_remove_e820_mmio(); 506 507 if (efi_enabled(EFI_DBG)) 508 efi_print_memmap(); 509 } 510 511 /* Merge contiguous regions of the same type and attribute */ 512 static void __init efi_merge_regions(void) 513 { 514 efi_memory_desc_t *md, *prev_md = NULL; 515 516 for_each_efi_memory_desc(md) { 517 u64 prev_size; 518 519 if (!prev_md) { 520 prev_md = md; 521 continue; 522 } 523 524 if (prev_md->type != md->type || 525 prev_md->attribute != md->attribute) { 526 prev_md = md; 527 continue; 528 } 529 530 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; 531 532 if (md->phys_addr == (prev_md->phys_addr + prev_size)) { 533 prev_md->num_pages += md->num_pages; 534 md->type = EFI_RESERVED_TYPE; 535 md->attribute = 0; 536 continue; 537 } 538 prev_md = md; 539 } 540 } 541 542 static void *realloc_pages(void *old_memmap, int old_shift) 543 { 544 void *ret; 545 546 ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); 547 if (!ret) 548 goto out; 549 550 /* 551 * A first-time allocation doesn't have anything to copy. 552 */ 553 if (!old_memmap) 554 return ret; 555 556 memcpy(ret, old_memmap, PAGE_SIZE << old_shift); 557 558 out: 559 free_pages((unsigned long)old_memmap, old_shift); 560 return ret; 561 } 562 563 /* 564 * Iterate the EFI memory map in reverse order because the regions 565 * will be mapped top-down. The end result is the same as if we had 566 * mapped things forward, but doesn't require us to change the 567 * existing implementation of efi_map_region(). 568 */ 569 static inline void *efi_map_next_entry_reverse(void *entry) 570 { 571 /* Initial call */ 572 if (!entry) 573 return efi.memmap.map_end - efi.memmap.desc_size; 574 575 entry -= efi.memmap.desc_size; 576 if (entry < efi.memmap.map) 577 return NULL; 578 579 return entry; 580 } 581 582 /* 583 * efi_map_next_entry - Return the next EFI memory map descriptor 584 * @entry: Previous EFI memory map descriptor 585 * 586 * This is a helper function to iterate over the EFI memory map, which 587 * we do in different orders depending on the current configuration. 588 * 589 * To begin traversing the memory map @entry must be %NULL. 590 * 591 * Returns %NULL when we reach the end of the memory map. 592 */ 593 static void *efi_map_next_entry(void *entry) 594 { 595 if (efi_enabled(EFI_64BIT)) { 596 /* 597 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE 598 * config table feature requires us to map all entries 599 * in the same order as they appear in the EFI memory 600 * map. That is to say, entry N must have a lower 601 * virtual address than entry N+1. This is because the 602 * firmware toolchain leaves relative references in 603 * the code/data sections, which are split and become 604 * separate EFI memory regions. Mapping things 605 * out-of-order leads to the firmware accessing 606 * unmapped addresses. 607 * 608 * Since we need to map things this way whether or not 609 * the kernel actually makes use of 610 * EFI_PROPERTIES_TABLE, let's just switch to this 611 * scheme by default for 64-bit. 612 */ 613 return efi_map_next_entry_reverse(entry); 614 } 615 616 /* Initial call */ 617 if (!entry) 618 return efi.memmap.map; 619 620 entry += efi.memmap.desc_size; 621 if (entry >= efi.memmap.map_end) 622 return NULL; 623 624 return entry; 625 } 626 627 static bool should_map_region(efi_memory_desc_t *md) 628 { 629 /* 630 * Runtime regions always require runtime mappings (obviously). 631 */ 632 if (md->attribute & EFI_MEMORY_RUNTIME) 633 return true; 634 635 /* 636 * 32-bit EFI doesn't suffer from the bug that requires us to 637 * reserve boot services regions, and mixed mode support 638 * doesn't exist for 32-bit kernels. 639 */ 640 if (IS_ENABLED(CONFIG_X86_32)) 641 return false; 642 643 /* 644 * EFI specific purpose memory may be reserved by default 645 * depending on kernel config and boot options. 646 */ 647 if (md->type == EFI_CONVENTIONAL_MEMORY && 648 efi_soft_reserve_enabled() && 649 (md->attribute & EFI_MEMORY_SP)) 650 return false; 651 652 /* 653 * Map all of RAM so that we can access arguments in the 1:1 654 * mapping when making EFI runtime calls. 655 */ 656 if (efi_is_mixed()) { 657 if (md->type == EFI_CONVENTIONAL_MEMORY || 658 md->type == EFI_LOADER_DATA || 659 md->type == EFI_LOADER_CODE) 660 return true; 661 } 662 663 /* 664 * Map boot services regions as a workaround for buggy 665 * firmware that accesses them even when they shouldn't. 666 * 667 * See efi_{reserve,free}_boot_services(). 668 */ 669 if (md->type == EFI_BOOT_SERVICES_CODE || 670 md->type == EFI_BOOT_SERVICES_DATA) 671 return true; 672 673 return false; 674 } 675 676 /* 677 * Map the efi memory ranges of the runtime services and update new_mmap with 678 * virtual addresses. 679 */ 680 static void * __init efi_map_regions(int *count, int *pg_shift) 681 { 682 void *p, *new_memmap = NULL; 683 unsigned long left = 0; 684 unsigned long desc_size; 685 efi_memory_desc_t *md; 686 687 desc_size = efi.memmap.desc_size; 688 689 p = NULL; 690 while ((p = efi_map_next_entry(p))) { 691 md = p; 692 693 if (!should_map_region(md)) 694 continue; 695 696 efi_map_region(md); 697 698 if (left < desc_size) { 699 new_memmap = realloc_pages(new_memmap, *pg_shift); 700 if (!new_memmap) 701 return NULL; 702 703 left += PAGE_SIZE << *pg_shift; 704 (*pg_shift)++; 705 } 706 707 memcpy(new_memmap + (*count * desc_size), md, desc_size); 708 709 left -= desc_size; 710 (*count)++; 711 } 712 713 return new_memmap; 714 } 715 716 static void __init kexec_enter_virtual_mode(void) 717 { 718 #ifdef CONFIG_KEXEC_CORE 719 efi_memory_desc_t *md; 720 unsigned int num_pages; 721 722 /* 723 * We don't do virtual mode, since we don't do runtime services, on 724 * non-native EFI. 725 */ 726 if (efi_is_mixed()) { 727 efi_memmap_unmap(); 728 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 729 return; 730 } 731 732 if (efi_alloc_page_tables()) { 733 pr_err("Failed to allocate EFI page tables\n"); 734 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 735 return; 736 } 737 738 /* 739 * Map efi regions which were passed via setup_data. The virt_addr is a 740 * fixed addr which was used in first kernel of a kexec boot. 741 */ 742 for_each_efi_memory_desc(md) 743 efi_map_region_fixed(md); /* FIXME: add error handling */ 744 745 /* 746 * Unregister the early EFI memmap from efi_init() and install 747 * the new EFI memory map. 748 */ 749 efi_memmap_unmap(); 750 751 if (efi_memmap_init_late(efi.memmap.phys_map, 752 efi.memmap.desc_size * efi.memmap.nr_map)) { 753 pr_err("Failed to remap late EFI memory map\n"); 754 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 755 return; 756 } 757 758 num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); 759 num_pages >>= PAGE_SHIFT; 760 761 if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { 762 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 763 return; 764 } 765 766 efi_sync_low_kernel_mappings(); 767 efi_native_runtime_setup(); 768 efi_runtime_update_mappings(); 769 #endif 770 } 771 772 /* 773 * This function will switch the EFI runtime services to virtual mode. 774 * Essentially, we look through the EFI memmap and map every region that 775 * has the runtime attribute bit set in its memory descriptor into the 776 * efi_pgd page table. 777 * 778 * The new method does a pagetable switch in a preemption-safe manner 779 * so that we're in a different address space when calling a runtime 780 * function. For function arguments passing we do copy the PUDs of the 781 * kernel page table into efi_pgd prior to each call. 782 * 783 * Specially for kexec boot, efi runtime maps in previous kernel should 784 * be passed in via setup_data. In that case runtime ranges will be mapped 785 * to the same virtual addresses as the first kernel, see 786 * kexec_enter_virtual_mode(). 787 */ 788 static void __init __efi_enter_virtual_mode(void) 789 { 790 int count = 0, pg_shift = 0; 791 void *new_memmap = NULL; 792 efi_status_t status; 793 unsigned long pa; 794 795 if (efi_alloc_page_tables()) { 796 pr_err("Failed to allocate EFI page tables\n"); 797 goto err; 798 } 799 800 efi_merge_regions(); 801 new_memmap = efi_map_regions(&count, &pg_shift); 802 if (!new_memmap) { 803 pr_err("Error reallocating memory, EFI runtime non-functional!\n"); 804 goto err; 805 } 806 807 pa = __pa(new_memmap); 808 809 /* 810 * Unregister the early EFI memmap from efi_init() and install 811 * the new EFI memory map that we are about to pass to the 812 * firmware via SetVirtualAddressMap(). 813 */ 814 efi_memmap_unmap(); 815 816 if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { 817 pr_err("Failed to remap late EFI memory map\n"); 818 goto err; 819 } 820 821 if (efi_enabled(EFI_DBG)) { 822 pr_info("EFI runtime memory map:\n"); 823 efi_print_memmap(); 824 } 825 826 if (efi_setup_page_tables(pa, 1 << pg_shift)) 827 goto err; 828 829 efi_sync_low_kernel_mappings(); 830 831 status = efi_set_virtual_address_map(efi.memmap.desc_size * count, 832 efi.memmap.desc_size, 833 efi.memmap.desc_version, 834 (efi_memory_desc_t *)pa, 835 efi_systab_phys); 836 if (status != EFI_SUCCESS) { 837 pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n", 838 status); 839 goto err; 840 } 841 842 efi_check_for_embedded_firmwares(); 843 efi_free_boot_services(); 844 845 if (!efi_is_mixed()) 846 efi_native_runtime_setup(); 847 else 848 efi_thunk_runtime_setup(); 849 850 /* 851 * Apply more restrictive page table mapping attributes now that 852 * SVAM() has been called and the firmware has performed all 853 * necessary relocation fixups for the new virtual addresses. 854 */ 855 efi_runtime_update_mappings(); 856 857 /* clean DUMMY object */ 858 efi_delete_dummy_variable(); 859 return; 860 861 err: 862 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); 863 } 864 865 void __init efi_enter_virtual_mode(void) 866 { 867 if (efi_enabled(EFI_PARAVIRT)) 868 return; 869 870 efi.runtime = (efi_runtime_services_t *)efi_runtime; 871 872 if (efi_setup) 873 kexec_enter_virtual_mode(); 874 else 875 __efi_enter_virtual_mode(); 876 877 efi_dump_pagetable(); 878 } 879 880 bool efi_is_table_address(unsigned long phys_addr) 881 { 882 unsigned int i; 883 884 if (phys_addr == EFI_INVALID_TABLE_ADDR) 885 return false; 886 887 for (i = 0; i < ARRAY_SIZE(efi_tables); i++) 888 if (*(efi_tables[i]) == phys_addr) 889 return true; 890 891 return false; 892 } 893 894 char *efi_systab_show_arch(char *str) 895 { 896 if (uga_phys != EFI_INVALID_TABLE_ADDR) 897 str += sprintf(str, "UGA=0x%lx\n", uga_phys); 898 return str; 899 } 900 901 #define EFI_FIELD(var) efi_ ## var 902 903 #define EFI_ATTR_SHOW(name) \ 904 static ssize_t name##_show(struct kobject *kobj, \ 905 struct kobj_attribute *attr, char *buf) \ 906 { \ 907 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ 908 } 909 910 EFI_ATTR_SHOW(fw_vendor); 911 EFI_ATTR_SHOW(runtime); 912 EFI_ATTR_SHOW(config_table); 913 914 struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); 915 struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); 916 struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); 917 918 umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) 919 { 920 if (attr == &efi_attr_fw_vendor.attr) { 921 if (efi_enabled(EFI_PARAVIRT) || 922 efi_fw_vendor == EFI_INVALID_TABLE_ADDR) 923 return 0; 924 } else if (attr == &efi_attr_runtime.attr) { 925 if (efi_runtime == EFI_INVALID_TABLE_ADDR) 926 return 0; 927 } else if (attr == &efi_attr_config_table.attr) { 928 if (efi_config_table == EFI_INVALID_TABLE_ADDR) 929 return 0; 930 } 931 return attr->mode; 932 } 933 934 enum efi_secureboot_mode __x86_ima_efi_boot_mode(void) 935 { 936 return boot_params.secure_boot; 937 } 938