xref: /linux/arch/x86/pci/olpc.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Low-level PCI config space access for OLPC systems who lack the VSA
3  * PCI virtualization software.
4  *
5  * Copyright © 2006  Advanced Micro Devices, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
13  * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
14  * that more or less behave like PCI devices, but the hardware doesn't
15  * directly implement the PCI configuration space headers.  AMD provides
16  * "VSA" (Virtual System Architecture) software that emulates PCI config
17  * space for these devices, by trapping I/O accesses to PCI config register
18  * (CF8/CFC) and running some code in System Management Mode interrupt state.
19  * On the OLPC platform, we don't want to use that VSA code because
20  * (a) it slows down suspend/resume, and (b) recompiling it requires special
21  * compilers that are hard to get.  So instead of letting the complex VSA
22  * code simulate the PCI config registers for the on-chip devices, we
23  * just simulate them the easy way, by inserting the code into the
24  * pci_write_config and pci_read_config path.  Most of the config registers
25  * are read-only anyway, so the bulk of the simulation is just table lookup.
26  */
27 
28 #include <linux/pci.h>
29 #include <linux/init.h>
30 #include <asm/olpc.h>
31 #include <asm/geode.h>
32 #include <asm/pci_x86.h>
33 
34 /*
35  * In the tables below, the first two line (8 longwords) are the
36  * size masks that are used when the higher level PCI code determines
37  * the size of the region by writing ~0 to a base address register
38  * and reading back the result.
39  *
40  * The following lines are the values that are read during normal
41  * PCI config access cycles, i.e. not after just having written
42  * ~0 to a base address register.
43  */
44 
45 static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
46 	0x0,	0x0,	0x0,	0x0,
47 	0x0,	0x0,	0x0,	0x0,
48 
49 	0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */
50 	0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */
51 	0x0,	0x0,	0x0,	0x28100b,
52 	0x0,	0x0,	0x0,	0x0,
53 	0x0,	0x0,	0x0,	0x0,
54 	0x0,	0x0,	0x0,	0x0,
55 	0x0,	0x0,	0x0,	0x0,
56 };
57 
58 static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
59 	0xfffffffd, 0x0, 0x0,	0x0,
60 	0x0,	0x0,	0x0,	0x0,
61 
62 	0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */
63 	0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */
64 	0x0,	0x0,	0x0,	0x28100b,
65 	0x0,	0x0,	0x0,	0x0,
66 	0x0,	0x0,	0x0,	0x0,
67 	0x0,	0x0,	0x0,	0x0,
68 	0x0,	0x0,	0x0,	0x0,
69 };
70 
71 static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
72 	0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
73 	0xffffc000,	0x0,	0x0,	0x0,
74 
75 	0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */
76 	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
77 	0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */
78 	0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */
79 	0x0,	0x0,	0x0,	0x0,
80 	0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */
81 	0x0,	0x0,	0x0,	0x0,
82 };
83 
84 static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
85 	0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
86 	0x0,	0x0,	0x0,	0x0,
87 
88 	0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */
89 	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */
90 	0x0,	0x0,	0x0,	0x30100b,
91 	0x0,	0x0,	0x0,	0x0,
92 	0x0,	0x0,	0x0,	0x0,
93 	0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */
94 	0x0,	0x0,	0x0,	0x0,
95 };
96 
97 static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */
98 	0xffffc000, 0x0, 0x0,	0x0,
99 	0x0,	0x0,	0x0,	0x0,
100 
101 	0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */
102 	0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */
103 	0x0,	0x0,	0x0,	0x20821022,
104 	0x0,	0x0,	0x0,	0x0,
105 	0x0,	0x0,	0x0,	0x0,
106 	0x0,	0x0,	0x0,	0x0,
107 	0x0,	0x0,	0x0,	0x0,
108 };
109 
110 
111 static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
112 	0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
113 	0xffffff81, 0xffffffc1, 0x0, 0x0,
114 
115 	0x20901022, 0x2a00049, 0x6010003, 0x802000,
116 	0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
117 	0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */
118 	0x0,	0x0,	0x0,	0x0,
119 	0x0,	0x0,	0x0,	0x0,
120 	0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */
121 	0x0,	0x0,	0x0,	0x0,
122 };
123 
124 static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
125 	0xffffff81, 0x0, 0x0,	0x0,
126 	0x0,	0x0,	0x0,	0x0,
127 
128 	0x20931022, 0x2a00041, 0x4010001, 0x0,
129 	0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */
130 	0x0,	0x0,	0x0,	0x20931022,
131 	0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */
132 	0x0,	0x0,	0x0,	0x0,
133 	0x0,	0x0,	0x0,	0x0,
134 	0x0,	0x0,	0x0,	0x0,
135 };
136 
137 static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
138 	0xfffff000, 0x0, 0x0,	0x0,
139 	0x0,	0x0,	0x0,	0x0,
140 
141 	0x20941022, 0x2300006, 0xc031002, 0x0,
142 	0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
143 	0x0,	0x0,	0x0,	0x20941022,
144 	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
145 	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O,
146 					   44 is mask 8103 (power control) */
147 	0x0,	0x0,	0x0,	0x0,
148 	0x0,	0x0,	0x0,	0x0,
149 };
150 
151 static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
152 	0xfffff000, 0x0, 0x0,	0x0,
153 	0x0,	0x0,	0x0,	0x0,
154 
155 	0x20951022, 0x2300006, 0xc032002, 0x0,
156 	0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
157 	0x0,	0x0,	0x0,	0x20951022,
158 	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
159 	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is
160 					   mask 8103 (power control) */
161 #if 0
162 	0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */
163 #endif
164 	0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */
165 	0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O),
166 					   61 FLADJ (R/W), PORTWAKECAP  */
167 };
168 
169 static uint32_t ff_loc = ~0;
170 static uint32_t zero_loc;
171 static int bar_probing;		/* Set after a write of ~0 to a BAR */
172 static int is_lx;
173 
174 #define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */
175 #define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */
176 
177 static int is_simulated(unsigned int bus, unsigned int devfn)
178 {
179 	return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
180 			(PCI_SLOT(devfn) == SB_SLOT)));
181 }
182 
183 static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
184 {
185 	uint32_t addr;
186 
187 	/*
188 	 * This is a little bit tricky.  The header maps consist of
189 	 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
190 	 * In the normal case, when not probing a BAR's size, we want
191 	 * to access the header data, so we add 0x20 to the reg offset,
192 	 * thus skipping the size mask area.
193 	 * In the BAR probing case, we want to access the size mask for
194 	 * the BAR, so we subtract 0x10 (the config header offset for
195 	 * BAR0), and don't skip the size mask area.
196 	 */
197 
198 	addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
199 
200 	bar_probing = 0;
201 	return (uint32_t *)addr;
202 }
203 
204 static int pci_olpc_read(unsigned int seg, unsigned int bus,
205 		unsigned int devfn, int reg, int len, uint32_t *value)
206 {
207 	uint32_t *addr;
208 
209 	WARN_ON(seg);
210 
211 	/* Use the hardware mechanism for non-simulated devices */
212 	if (!is_simulated(bus, devfn))
213 		return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
214 
215 	/*
216 	 * No device has config registers past 0x70, so we save table space
217 	 * by not storing entries for the nonexistent registers
218 	 */
219 	if (reg >= 0x70)
220 		addr = &zero_loc;
221 	else {
222 		switch (devfn) {
223 		case  0x8:
224 			addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
225 			break;
226 		case  0x9:
227 			addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
228 			break;
229 		case  0xa:
230 			addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
231 			break;
232 		case 0x78:
233 			addr = hdr_addr(isa_hdr, reg);
234 			break;
235 		case 0x7b:
236 			addr = hdr_addr(ac97_hdr, reg);
237 			break;
238 		case 0x7c:
239 			addr = hdr_addr(ohci_hdr, reg);
240 			break;
241 		case 0x7d:
242 			addr = hdr_addr(ehci_hdr, reg);
243 			break;
244 		default:
245 			addr = &ff_loc;
246 			break;
247 		}
248 	}
249 	switch (len) {
250 	case 1:
251 		*value = *(uint8_t *)addr;
252 		break;
253 	case 2:
254 		*value = *(uint16_t *)addr;
255 		break;
256 	case 4:
257 		*value = *addr;
258 		break;
259 	default:
260 		BUG();
261 	}
262 
263 	return 0;
264 }
265 
266 static int pci_olpc_write(unsigned int seg, unsigned int bus,
267 		unsigned int devfn, int reg, int len, uint32_t value)
268 {
269 	WARN_ON(seg);
270 
271 	/* Use the hardware mechanism for non-simulated devices */
272 	if (!is_simulated(bus, devfn))
273 		return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
274 
275 	/* XXX we may want to extend this to simulate EHCI power management */
276 
277 	/*
278 	 * Mostly we just discard writes, but if the write is a size probe
279 	 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
280 	 * the appropriate size mask on the next read.  This is cheating
281 	 * to some extent, because it depends on the fact that the next
282 	 * access after such a write will always be a read to the same BAR.
283 	 */
284 
285 	if ((reg >= 0x10) && (reg < 0x2c)) {
286 		/* write is to a BAR */
287 		if (value == ~0)
288 			bar_probing = 1;
289 	} else {
290 		/*
291 		 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
292 		 * CACHE_LINE_SIZE, or PM registers.
293 		 */
294 		if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
295 				(reg != PCI_LATENCY_TIMER) &&
296 				(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
297 			printk(KERN_WARNING "OLPC PCI: Config write to devfn"
298 				" %x reg %x value %x\n", devfn, reg, value);
299 	}
300 
301 	return 0;
302 }
303 
304 static const struct pci_raw_ops pci_olpc_conf = {
305 	.read =	pci_olpc_read,
306 	.write = pci_olpc_write,
307 };
308 
309 int __init pci_olpc_init(void)
310 {
311 	printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
312 	raw_pci_ops = &pci_olpc_conf;
313 	is_lx = is_geode_lx();
314 	return 0;
315 }
316