xref: /linux/arch/x86/pci/olpc.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Low-level PCI config space access for OLPC systems who lack the VSA
4  * PCI virtualization software.
5  *
6  * Copyright © 2006  Advanced Micro Devices, Inc.
7  *
8  * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
9  * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
10  * that more or less behave like PCI devices, but the hardware doesn't
11  * directly implement the PCI configuration space headers.  AMD provides
12  * "VSA" (Virtual System Architecture) software that emulates PCI config
13  * space for these devices, by trapping I/O accesses to PCI config register
14  * (CF8/CFC) and running some code in System Management Mode interrupt state.
15  * On the OLPC platform, we don't want to use that VSA code because
16  * (a) it slows down suspend/resume, and (b) recompiling it requires special
17  * compilers that are hard to get.  So instead of letting the complex VSA
18  * code simulate the PCI config registers for the on-chip devices, we
19  * just simulate them the easy way, by inserting the code into the
20  * pci_write_config and pci_read_config path.  Most of the config registers
21  * are read-only anyway, so the bulk of the simulation is just table lookup.
22  */
23 
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <asm/olpc.h>
27 #include <asm/geode.h>
28 #include <asm/pci_x86.h>
29 
30 /*
31  * In the tables below, the first two line (8 longwords) are the
32  * size masks that are used when the higher level PCI code determines
33  * the size of the region by writing ~0 to a base address register
34  * and reading back the result.
35  *
36  * The following lines are the values that are read during normal
37  * PCI config access cycles, i.e. not after just having written
38  * ~0 to a base address register.
39  */
40 
41 static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
42 	0x0,	0x0,	0x0,	0x0,
43 	0x0,	0x0,	0x0,	0x0,
44 
45 	0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */
46 	0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */
47 	0x0,	0x0,	0x0,	0x28100b,
48 	0x0,	0x0,	0x0,	0x0,
49 	0x0,	0x0,	0x0,	0x0,
50 	0x0,	0x0,	0x0,	0x0,
51 	0x0,	0x0,	0x0,	0x0,
52 };
53 
54 static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
55 	0xfffffffd, 0x0, 0x0,	0x0,
56 	0x0,	0x0,	0x0,	0x0,
57 
58 	0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */
59 	0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */
60 	0x0,	0x0,	0x0,	0x28100b,
61 	0x0,	0x0,	0x0,	0x0,
62 	0x0,	0x0,	0x0,	0x0,
63 	0x0,	0x0,	0x0,	0x0,
64 	0x0,	0x0,	0x0,	0x0,
65 };
66 
67 static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
68 	0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
69 	0xffffc000,	0x0,	0x0,	0x0,
70 
71 	0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */
72 	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
73 	0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */
74 	0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */
75 	0x0,	0x0,	0x0,	0x0,
76 	0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */
77 	0x0,	0x0,	0x0,	0x0,
78 };
79 
80 static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
81 	0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
82 	0x0,	0x0,	0x0,	0x0,
83 
84 	0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */
85 	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */
86 	0x0,	0x0,	0x0,	0x30100b,
87 	0x0,	0x0,	0x0,	0x0,
88 	0x0,	0x0,	0x0,	0x0,
89 	0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */
90 	0x0,	0x0,	0x0,	0x0,
91 };
92 
93 static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */
94 	0xffffc000, 0x0, 0x0,	0x0,
95 	0x0,	0x0,	0x0,	0x0,
96 
97 	0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */
98 	0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */
99 	0x0,	0x0,	0x0,	0x20821022,
100 	0x0,	0x0,	0x0,	0x0,
101 	0x0,	0x0,	0x0,	0x0,
102 	0x0,	0x0,	0x0,	0x0,
103 	0x0,	0x0,	0x0,	0x0,
104 };
105 
106 
107 static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
108 	0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
109 	0xffffff81, 0xffffffc1, 0x0, 0x0,
110 
111 	0x20901022, 0x2a00049, 0x6010003, 0x802000,
112 	0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
113 	0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */
114 	0x0,	0x0,	0x0,	0x0,
115 	0x0,	0x0,	0x0,	0x0,
116 	0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */
117 	0x0,	0x0,	0x0,	0x0,
118 };
119 
120 static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
121 	0xffffff81, 0x0, 0x0,	0x0,
122 	0x0,	0x0,	0x0,	0x0,
123 
124 	0x20931022, 0x2a00041, 0x4010001, 0x0,
125 	0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */
126 	0x0,	0x0,	0x0,	0x20931022,
127 	0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */
128 	0x0,	0x0,	0x0,	0x0,
129 	0x0,	0x0,	0x0,	0x0,
130 	0x0,	0x0,	0x0,	0x0,
131 };
132 
133 static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
134 	0xfffff000, 0x0, 0x0,	0x0,
135 	0x0,	0x0,	0x0,	0x0,
136 
137 	0x20941022, 0x2300006, 0xc031002, 0x0,
138 	0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
139 	0x0,	0x0,	0x0,	0x20941022,
140 	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
141 	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O,
142 					   44 is mask 8103 (power control) */
143 	0x0,	0x0,	0x0,	0x0,
144 	0x0,	0x0,	0x0,	0x0,
145 };
146 
147 static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
148 	0xfffff000, 0x0, 0x0,	0x0,
149 	0x0,	0x0,	0x0,	0x0,
150 
151 	0x20951022, 0x2300006, 0xc032002, 0x0,
152 	0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
153 	0x0,	0x0,	0x0,	0x20951022,
154 	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
155 	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is
156 					   mask 8103 (power control) */
157 #if 0
158 	0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */
159 #endif
160 	0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */
161 	0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O),
162 					   61 FLADJ (R/W), PORTWAKECAP  */
163 };
164 
165 static uint32_t ff_loc = ~0;
166 static uint32_t zero_loc;
167 static int bar_probing;		/* Set after a write of ~0 to a BAR */
168 static int is_lx;
169 
170 #define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */
171 #define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */
172 
173 static int is_simulated(unsigned int bus, unsigned int devfn)
174 {
175 	return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
176 			(PCI_SLOT(devfn) == SB_SLOT)));
177 }
178 
179 static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
180 {
181 	uint32_t addr;
182 
183 	/*
184 	 * This is a little bit tricky.  The header maps consist of
185 	 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
186 	 * In the normal case, when not probing a BAR's size, we want
187 	 * to access the header data, so we add 0x20 to the reg offset,
188 	 * thus skipping the size mask area.
189 	 * In the BAR probing case, we want to access the size mask for
190 	 * the BAR, so we subtract 0x10 (the config header offset for
191 	 * BAR0), and don't skip the size mask area.
192 	 */
193 
194 	addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
195 
196 	bar_probing = 0;
197 	return (uint32_t *)addr;
198 }
199 
200 static int pci_olpc_read(unsigned int seg, unsigned int bus,
201 		unsigned int devfn, int reg, int len, uint32_t *value)
202 {
203 	uint32_t *addr;
204 
205 	WARN_ON(seg);
206 
207 	/* Use the hardware mechanism for non-simulated devices */
208 	if (!is_simulated(bus, devfn))
209 		return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
210 
211 	/*
212 	 * No device has config registers past 0x70, so we save table space
213 	 * by not storing entries for the nonexistent registers
214 	 */
215 	if (reg >= 0x70)
216 		addr = &zero_loc;
217 	else {
218 		switch (devfn) {
219 		case  0x8:
220 			addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
221 			break;
222 		case  0x9:
223 			addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
224 			break;
225 		case  0xa:
226 			addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
227 			break;
228 		case 0x78:
229 			addr = hdr_addr(isa_hdr, reg);
230 			break;
231 		case 0x7b:
232 			addr = hdr_addr(ac97_hdr, reg);
233 			break;
234 		case 0x7c:
235 			addr = hdr_addr(ohci_hdr, reg);
236 			break;
237 		case 0x7d:
238 			addr = hdr_addr(ehci_hdr, reg);
239 			break;
240 		default:
241 			addr = &ff_loc;
242 			break;
243 		}
244 	}
245 	switch (len) {
246 	case 1:
247 		*value = *(uint8_t *)addr;
248 		break;
249 	case 2:
250 		*value = *(uint16_t *)addr;
251 		break;
252 	case 4:
253 		*value = *addr;
254 		break;
255 	default:
256 		BUG();
257 	}
258 
259 	return 0;
260 }
261 
262 static int pci_olpc_write(unsigned int seg, unsigned int bus,
263 		unsigned int devfn, int reg, int len, uint32_t value)
264 {
265 	WARN_ON(seg);
266 
267 	/* Use the hardware mechanism for non-simulated devices */
268 	if (!is_simulated(bus, devfn))
269 		return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
270 
271 	/* XXX we may want to extend this to simulate EHCI power management */
272 
273 	/*
274 	 * Mostly we just discard writes, but if the write is a size probe
275 	 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
276 	 * the appropriate size mask on the next read.  This is cheating
277 	 * to some extent, because it depends on the fact that the next
278 	 * access after such a write will always be a read to the same BAR.
279 	 */
280 
281 	if ((reg >= 0x10) && (reg < 0x2c)) {
282 		/* write is to a BAR */
283 		if (value == ~0)
284 			bar_probing = 1;
285 	} else {
286 		/*
287 		 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
288 		 * CACHE_LINE_SIZE, or PM registers.
289 		 */
290 		if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
291 				(reg != PCI_LATENCY_TIMER) &&
292 				(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
293 			printk(KERN_WARNING "OLPC PCI: Config write to devfn"
294 				" %x reg %x value %x\n", devfn, reg, value);
295 	}
296 
297 	return 0;
298 }
299 
300 static const struct pci_raw_ops pci_olpc_conf = {
301 	.read =	pci_olpc_read,
302 	.write = pci_olpc_write,
303 };
304 
305 int __init pci_olpc_init(void)
306 {
307 	printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
308 	raw_pci_ops = &pci_olpc_conf;
309 	is_lx = is_geode_lx();
310 	return 0;
311 }
312