xref: /linux/arch/x86/net/bpf_jit_comp32.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
4  *
5  * Author: Wang YanQing (udknight@gmail.com)
6  * The code based on code and ideas from:
7  * Eric Dumazet (eric.dumazet@gmail.com)
8  * and from:
9  * Shubham Bansal <illusionist.neo@gmail.com>
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
19 
20 /*
21  * eBPF prog stack layout:
22  *
23  *                         high
24  * original ESP =>        +-----+
25  *                        |     | callee saved registers
26  *                        +-----+
27  *                        | ... | eBPF JIT scratch space
28  * BPF_FP,IA32_EBP  =>    +-----+
29  *                        | ... | eBPF prog stack
30  *                        +-----+
31  *                        |RSVD | JIT scratchpad
32  * current ESP =>         +-----+
33  *                        |     |
34  *                        | ... | Function call stack
35  *                        |     |
36  *                        +-----+
37  *                          low
38  *
39  * The callee saved registers:
40  *
41  *                                high
42  * original ESP =>        +------------------+ \
43  *                        |        ebp       | |
44  * current EBP =>         +------------------+ } callee saved registers
45  *                        |    ebx,esi,edi   | |
46  *                        +------------------+ /
47  *                                low
48  */
49 
50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
51 {
52 	if (len == 1)
53 		*ptr = bytes;
54 	else if (len == 2)
55 		*(u16 *)ptr = bytes;
56 	else {
57 		*(u32 *)ptr = bytes;
58 		barrier();
59 	}
60 	return ptr + len;
61 }
62 
63 #define EMIT(bytes, len) \
64 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
65 
66 #define EMIT1(b1)		EMIT(b1, 1)
67 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4)   \
70 	EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
71 
72 #define EMIT1_off32(b1, off) \
73 	do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
80 
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
82 
83 static bool is_imm8(int value)
84 {
85 	return value <= 127 && value >= -128;
86 }
87 
88 static bool is_simm32(s64 value)
89 {
90 	return value == (s64) (s32) value;
91 }
92 
93 #define STACK_OFFSET(k)	(k)
94 #define TCALL_CNT	(MAX_BPF_JIT_REG + 0)	/* Tail Call Count */
95 
96 #define IA32_EAX	(0x0)
97 #define IA32_EBX	(0x3)
98 #define IA32_ECX	(0x1)
99 #define IA32_EDX	(0x2)
100 #define IA32_ESI	(0x6)
101 #define IA32_EDI	(0x7)
102 #define IA32_EBP	(0x5)
103 #define IA32_ESP	(0x4)
104 
105 /*
106  * List of x86 cond jumps opcodes (. + s8)
107  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
108  */
109 #define IA32_JB  0x72
110 #define IA32_JAE 0x73
111 #define IA32_JE  0x74
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
114 #define IA32_JA  0x77
115 #define IA32_JL  0x7C
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
118 #define IA32_JG  0x7F
119 
120 #define COND_JMP_OPCODE_INVALID	(0xFF)
121 
122 /*
123  * Map eBPF registers to IA32 32bit registers or stack scratch space.
124  *
125  * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126  * 2. We need two 64 bit temp registers to do complex operations on eBPF
127  *    registers.
128  * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129  *    mapped to real hardware register pair, IA32_ESI and IA32_EDI.
130  *
131  * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132  * registers, we have to map each eBPF registers with two IA32 32 bit regs
133  * or scratch memory space and we have to build eBPF 64 bit register from those.
134  *
135  * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
136  */
137 static const u8 bpf2ia32[][2] = {
138 	/* Return value from in-kernel function, and exit value from eBPF */
139 	[BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
140 
141 	/* The arguments from eBPF program to in-kernel function */
142 	/* Stored on stack scratch space */
143 	[BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 	[BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 	[BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 	[BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 	[BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
148 
149 	/* Callee saved registers that in-kernel function will preserve */
150 	/* Stored on stack scratch space */
151 	[BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 	[BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 	[BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 	[BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
155 
156 	/* Read only Frame Pointer to access Stack */
157 	[BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
158 
159 	/* Temporary register for blinding constants. */
160 	[BPF_REG_AX] = {IA32_ESI, IA32_EDI},
161 
162 	/* Tail call count. Stored on stack scratch space. */
163 	[TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
164 };
165 
166 #define dst_lo	dst[0]
167 #define dst_hi	dst[1]
168 #define src_lo	src[0]
169 #define src_hi	src[1]
170 
171 #define STACK_ALIGNMENT	8
172 /*
173  * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174  * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175  * BPF_REG_FP, BPF_REG_AX and Tail call counts.
176  */
177 #define SCRATCH_SIZE 96
178 
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE	(stack_depth + SCRATCH_SIZE)
181 
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
183 
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
186 
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
188 static u8 add_1reg(u8 byte, u32 dst_reg)
189 {
190 	return byte + dst_reg;
191 }
192 
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
195 {
196 	return byte + dst_reg + (src_reg << 3);
197 }
198 
199 static void jit_fill_hole(void *area, unsigned int size)
200 {
201 	/* Fill whole space with int3 instructions */
202 	memset(area, 0xcc, size);
203 }
204 
205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
206 				   u8 **pprog)
207 {
208 	u8 *prog = *pprog;
209 	int cnt = 0;
210 
211 	if (dstk) {
212 		if (val == 0) {
213 			/* xor eax,eax */
214 			EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
215 			/* mov dword ptr [ebp+off],eax */
216 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
217 			      STACK_VAR(dst));
218 		} else {
219 			EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
220 				    STACK_VAR(dst), val);
221 		}
222 	} else {
223 		if (val == 0)
224 			EMIT2(0x33, add_2reg(0xC0, dst, dst));
225 		else
226 			EMIT2_off32(0xC7, add_1reg(0xC0, dst),
227 				    val);
228 	}
229 	*pprog = prog;
230 }
231 
232 /* dst = imm (4 bytes)*/
233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
234 				   bool sstk, u8 **pprog)
235 {
236 	u8 *prog = *pprog;
237 	int cnt = 0;
238 	u8 sreg = sstk ? IA32_EAX : src;
239 
240 	if (sstk)
241 		/* mov eax,dword ptr [ebp+off] */
242 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
243 	if (dstk)
244 		/* mov dword ptr [ebp+off],eax */
245 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
246 	else
247 		/* mov dst,sreg */
248 		EMIT2(0x89, add_2reg(0xC0, dst, sreg));
249 
250 	*pprog = prog;
251 }
252 
253 /* dst = src */
254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
255 				     const u8 src[], bool dstk,
256 				     bool sstk, u8 **pprog,
257 				     const struct bpf_prog_aux *aux)
258 {
259 	emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
260 	if (is64)
261 		/* complete 8 byte move */
262 		emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
263 	else if (!aux->verifier_zext)
264 		/* zero out high 4 bytes */
265 		emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
266 }
267 
268 /* Sign extended move */
269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
270 				     const u32 val, bool dstk, u8 **pprog)
271 {
272 	u32 hi = 0;
273 
274 	if (is64 && (val & (1<<31)))
275 		hi = (u32)~0;
276 	emit_ia32_mov_i(dst_lo, val, dstk, pprog);
277 	emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
278 }
279 
280 /*
281  * ALU operation (32 bit)
282  * dst = dst * src
283  */
284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
285 				   bool sstk, u8 **pprog)
286 {
287 	u8 *prog = *pprog;
288 	int cnt = 0;
289 	u8 sreg = sstk ? IA32_ECX : src;
290 
291 	if (sstk)
292 		/* mov ecx,dword ptr [ebp+off] */
293 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
294 
295 	if (dstk)
296 		/* mov eax,dword ptr [ebp+off] */
297 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
298 	else
299 		/* mov eax,dst */
300 		EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
301 
302 
303 	EMIT2(0xF7, add_1reg(0xE0, sreg));
304 
305 	if (dstk)
306 		/* mov dword ptr [ebp+off],eax */
307 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
308 		      STACK_VAR(dst));
309 	else
310 		/* mov dst,eax */
311 		EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
312 
313 	*pprog = prog;
314 }
315 
316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
317 					 bool dstk, u8 **pprog,
318 					 const struct bpf_prog_aux *aux)
319 {
320 	u8 *prog = *pprog;
321 	int cnt = 0;
322 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
323 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
324 
325 	if (dstk && val != 64) {
326 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
327 		      STACK_VAR(dst_lo));
328 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
329 		      STACK_VAR(dst_hi));
330 	}
331 	switch (val) {
332 	case 16:
333 		/*
334 		 * Emit 'movzwl eax,ax' to zero extend 16-bit
335 		 * into 64 bit
336 		 */
337 		EMIT2(0x0F, 0xB7);
338 		EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
339 		if (!aux->verifier_zext)
340 			/* xor dreg_hi,dreg_hi */
341 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
342 		break;
343 	case 32:
344 		if (!aux->verifier_zext)
345 			/* xor dreg_hi,dreg_hi */
346 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
347 		break;
348 	case 64:
349 		/* nop */
350 		break;
351 	}
352 
353 	if (dstk && val != 64) {
354 		/* mov dword ptr [ebp+off],dreg_lo */
355 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
356 		      STACK_VAR(dst_lo));
357 		/* mov dword ptr [ebp+off],dreg_hi */
358 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
359 		      STACK_VAR(dst_hi));
360 	}
361 	*pprog = prog;
362 }
363 
364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
365 				       bool dstk, u8 **pprog,
366 				       const struct bpf_prog_aux *aux)
367 {
368 	u8 *prog = *pprog;
369 	int cnt = 0;
370 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
371 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
372 
373 	if (dstk) {
374 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
375 		      STACK_VAR(dst_lo));
376 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
377 		      STACK_VAR(dst_hi));
378 	}
379 	switch (val) {
380 	case 16:
381 		/* Emit 'ror %ax, 8' to swap lower 2 bytes */
382 		EMIT1(0x66);
383 		EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
384 
385 		EMIT2(0x0F, 0xB7);
386 		EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
387 
388 		if (!aux->verifier_zext)
389 			/* xor dreg_hi,dreg_hi */
390 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
391 		break;
392 	case 32:
393 		/* Emit 'bswap eax' to swap lower 4 bytes */
394 		EMIT1(0x0F);
395 		EMIT1(add_1reg(0xC8, dreg_lo));
396 
397 		if (!aux->verifier_zext)
398 			/* xor dreg_hi,dreg_hi */
399 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
400 		break;
401 	case 64:
402 		/* Emit 'bswap eax' to swap lower 4 bytes */
403 		EMIT1(0x0F);
404 		EMIT1(add_1reg(0xC8, dreg_lo));
405 
406 		/* Emit 'bswap edx' to swap lower 4 bytes */
407 		EMIT1(0x0F);
408 		EMIT1(add_1reg(0xC8, dreg_hi));
409 
410 		/* mov ecx,dreg_hi */
411 		EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
412 		/* mov dreg_hi,dreg_lo */
413 		EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
414 		/* mov dreg_lo,ecx */
415 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
416 
417 		break;
418 	}
419 	if (dstk) {
420 		/* mov dword ptr [ebp+off],dreg_lo */
421 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
422 		      STACK_VAR(dst_lo));
423 		/* mov dword ptr [ebp+off],dreg_hi */
424 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
425 		      STACK_VAR(dst_hi));
426 	}
427 	*pprog = prog;
428 }
429 
430 /*
431  * ALU operation (32 bit)
432  * dst = dst (div|mod) src
433  */
434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
435 				       bool dstk, bool sstk, u8 **pprog)
436 {
437 	u8 *prog = *pprog;
438 	int cnt = 0;
439 
440 	if (sstk)
441 		/* mov ecx,dword ptr [ebp+off] */
442 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
443 		      STACK_VAR(src));
444 	else if (src != IA32_ECX)
445 		/* mov ecx,src */
446 		EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
447 
448 	if (dstk)
449 		/* mov eax,dword ptr [ebp+off] */
450 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
451 		      STACK_VAR(dst));
452 	else
453 		/* mov eax,dst */
454 		EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
455 
456 	/* xor edx,edx */
457 	EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
458 	/* div ecx */
459 	EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
460 
461 	if (op == BPF_MOD) {
462 		if (dstk)
463 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
464 			      STACK_VAR(dst));
465 		else
466 			EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
467 	} else {
468 		if (dstk)
469 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
470 			      STACK_VAR(dst));
471 		else
472 			EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
473 	}
474 	*pprog = prog;
475 }
476 
477 /*
478  * ALU operation (32 bit)
479  * dst = dst (shift) src
480  */
481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
482 				     bool dstk, bool sstk, u8 **pprog)
483 {
484 	u8 *prog = *pprog;
485 	int cnt = 0;
486 	u8 dreg = dstk ? IA32_EAX : dst;
487 	u8 b2;
488 
489 	if (dstk)
490 		/* mov eax,dword ptr [ebp+off] */
491 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
492 
493 	if (sstk)
494 		/* mov ecx,dword ptr [ebp+off] */
495 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
496 	else if (src != IA32_ECX)
497 		/* mov ecx,src */
498 		EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
499 
500 	switch (op) {
501 	case BPF_LSH:
502 		b2 = 0xE0; break;
503 	case BPF_RSH:
504 		b2 = 0xE8; break;
505 	case BPF_ARSH:
506 		b2 = 0xF8; break;
507 	default:
508 		return;
509 	}
510 	EMIT2(0xD3, add_1reg(b2, dreg));
511 
512 	if (dstk)
513 		/* mov dword ptr [ebp+off],dreg */
514 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
515 	*pprog = prog;
516 }
517 
518 /*
519  * ALU operation (32 bit)
520  * dst = dst (op) src
521  */
522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
523 				   const u8 dst, const u8 src, bool dstk,
524 				   bool sstk, u8 **pprog)
525 {
526 	u8 *prog = *pprog;
527 	int cnt = 0;
528 	u8 sreg = sstk ? IA32_EAX : src;
529 	u8 dreg = dstk ? IA32_EDX : dst;
530 
531 	if (sstk)
532 		/* mov eax,dword ptr [ebp+off] */
533 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
534 
535 	if (dstk)
536 		/* mov eax,dword ptr [ebp+off] */
537 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
538 
539 	switch (BPF_OP(op)) {
540 	/* dst = dst + src */
541 	case BPF_ADD:
542 		if (hi && is64)
543 			EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
544 		else
545 			EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
546 		break;
547 	/* dst = dst - src */
548 	case BPF_SUB:
549 		if (hi && is64)
550 			EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
551 		else
552 			EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
553 		break;
554 	/* dst = dst | src */
555 	case BPF_OR:
556 		EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
557 		break;
558 	/* dst = dst & src */
559 	case BPF_AND:
560 		EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
561 		break;
562 	/* dst = dst ^ src */
563 	case BPF_XOR:
564 		EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
565 		break;
566 	}
567 
568 	if (dstk)
569 		/* mov dword ptr [ebp+off],dreg */
570 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
571 		      STACK_VAR(dst));
572 	*pprog = prog;
573 }
574 
575 /* ALU operation (64 bit) */
576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
577 				     const u8 dst[], const u8 src[],
578 				     bool dstk,  bool sstk,
579 				     u8 **pprog, const struct bpf_prog_aux *aux)
580 {
581 	u8 *prog = *pprog;
582 
583 	emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
584 	if (is64)
585 		emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
586 				&prog);
587 	else if (!aux->verifier_zext)
588 		emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
589 	*pprog = prog;
590 }
591 
592 /*
593  * ALU operation (32 bit)
594  * dst = dst (op) val
595  */
596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
597 				   const u8 dst, const s32 val, bool dstk,
598 				   u8 **pprog)
599 {
600 	u8 *prog = *pprog;
601 	int cnt = 0;
602 	u8 dreg = dstk ? IA32_EAX : dst;
603 	u8 sreg = IA32_EDX;
604 
605 	if (dstk)
606 		/* mov eax,dword ptr [ebp+off] */
607 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
608 
609 	if (!is_imm8(val))
610 		/* mov edx,imm32*/
611 		EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
612 
613 	switch (op) {
614 	/* dst = dst + val */
615 	case BPF_ADD:
616 		if (hi && is64) {
617 			if (is_imm8(val))
618 				EMIT3(0x83, add_1reg(0xD0, dreg), val);
619 			else
620 				EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
621 		} else {
622 			if (is_imm8(val))
623 				EMIT3(0x83, add_1reg(0xC0, dreg), val);
624 			else
625 				EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
626 		}
627 		break;
628 	/* dst = dst - val */
629 	case BPF_SUB:
630 		if (hi && is64) {
631 			if (is_imm8(val))
632 				EMIT3(0x83, add_1reg(0xD8, dreg), val);
633 			else
634 				EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
635 		} else {
636 			if (is_imm8(val))
637 				EMIT3(0x83, add_1reg(0xE8, dreg), val);
638 			else
639 				EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
640 		}
641 		break;
642 	/* dst = dst | val */
643 	case BPF_OR:
644 		if (is_imm8(val))
645 			EMIT3(0x83, add_1reg(0xC8, dreg), val);
646 		else
647 			EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
648 		break;
649 	/* dst = dst & val */
650 	case BPF_AND:
651 		if (is_imm8(val))
652 			EMIT3(0x83, add_1reg(0xE0, dreg), val);
653 		else
654 			EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
655 		break;
656 	/* dst = dst ^ val */
657 	case BPF_XOR:
658 		if (is_imm8(val))
659 			EMIT3(0x83, add_1reg(0xF0, dreg), val);
660 		else
661 			EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
662 		break;
663 	case BPF_NEG:
664 		EMIT2(0xF7, add_1reg(0xD8, dreg));
665 		break;
666 	}
667 
668 	if (dstk)
669 		/* mov dword ptr [ebp+off],dreg */
670 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
671 		      STACK_VAR(dst));
672 	*pprog = prog;
673 }
674 
675 /* ALU operation (64 bit) */
676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
677 				     const u8 dst[], const u32 val,
678 				     bool dstk, u8 **pprog,
679 				     const struct bpf_prog_aux *aux)
680 {
681 	u8 *prog = *pprog;
682 	u32 hi = 0;
683 
684 	if (is64 && (val & (1<<31)))
685 		hi = (u32)~0;
686 
687 	emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
688 	if (is64)
689 		emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
690 	else if (!aux->verifier_zext)
691 		emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
692 
693 	*pprog = prog;
694 }
695 
696 /* dst = ~dst (64 bit) */
697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
698 {
699 	u8 *prog = *pprog;
700 	int cnt = 0;
701 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
702 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
703 
704 	if (dstk) {
705 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
706 		      STACK_VAR(dst_lo));
707 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
708 		      STACK_VAR(dst_hi));
709 	}
710 
711 	/* neg dreg_lo */
712 	EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
713 	/* adc dreg_hi,0x0 */
714 	EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
715 	/* neg dreg_hi */
716 	EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
717 
718 	if (dstk) {
719 		/* mov dword ptr [ebp+off],dreg_lo */
720 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
721 		      STACK_VAR(dst_lo));
722 		/* mov dword ptr [ebp+off],dreg_hi */
723 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
724 		      STACK_VAR(dst_hi));
725 	}
726 	*pprog = prog;
727 }
728 
729 /* dst = dst << src */
730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
731 				     bool dstk, bool sstk, u8 **pprog)
732 {
733 	u8 *prog = *pprog;
734 	int cnt = 0;
735 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
736 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
737 
738 	if (dstk) {
739 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
740 		      STACK_VAR(dst_lo));
741 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
742 		      STACK_VAR(dst_hi));
743 	}
744 
745 	if (sstk)
746 		/* mov ecx,dword ptr [ebp+off] */
747 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
748 		      STACK_VAR(src_lo));
749 	else
750 		/* mov ecx,src_lo */
751 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
752 
753 	/* shld dreg_hi,dreg_lo,cl */
754 	EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
755 	/* shl dreg_lo,cl */
756 	EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
757 
758 	/* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
759 
760 	/* cmp ecx,32 */
761 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
762 	/* skip the next two instructions (4 bytes) when < 32 */
763 	EMIT2(IA32_JB, 4);
764 
765 	/* mov dreg_hi,dreg_lo */
766 	EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
767 	/* xor dreg_lo,dreg_lo */
768 	EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
769 
770 	if (dstk) {
771 		/* mov dword ptr [ebp+off],dreg_lo */
772 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
773 		      STACK_VAR(dst_lo));
774 		/* mov dword ptr [ebp+off],dreg_hi */
775 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
776 		      STACK_VAR(dst_hi));
777 	}
778 	/* out: */
779 	*pprog = prog;
780 }
781 
782 /* dst = dst >> src (signed)*/
783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
784 				      bool dstk, bool sstk, u8 **pprog)
785 {
786 	u8 *prog = *pprog;
787 	int cnt = 0;
788 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
789 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
790 
791 	if (dstk) {
792 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
793 		      STACK_VAR(dst_lo));
794 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
795 		      STACK_VAR(dst_hi));
796 	}
797 
798 	if (sstk)
799 		/* mov ecx,dword ptr [ebp+off] */
800 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
801 		      STACK_VAR(src_lo));
802 	else
803 		/* mov ecx,src_lo */
804 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
805 
806 	/* shrd dreg_lo,dreg_hi,cl */
807 	EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
808 	/* sar dreg_hi,cl */
809 	EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
810 
811 	/* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
812 
813 	/* cmp ecx,32 */
814 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
815 	/* skip the next two instructions (5 bytes) when < 32 */
816 	EMIT2(IA32_JB, 5);
817 
818 	/* mov dreg_lo,dreg_hi */
819 	EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
820 	/* sar dreg_hi,31 */
821 	EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
822 
823 	if (dstk) {
824 		/* mov dword ptr [ebp+off],dreg_lo */
825 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
826 		      STACK_VAR(dst_lo));
827 		/* mov dword ptr [ebp+off],dreg_hi */
828 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
829 		      STACK_VAR(dst_hi));
830 	}
831 	/* out: */
832 	*pprog = prog;
833 }
834 
835 /* dst = dst >> src */
836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
837 				     bool sstk, u8 **pprog)
838 {
839 	u8 *prog = *pprog;
840 	int cnt = 0;
841 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
842 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
843 
844 	if (dstk) {
845 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
846 		      STACK_VAR(dst_lo));
847 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
848 		      STACK_VAR(dst_hi));
849 	}
850 
851 	if (sstk)
852 		/* mov ecx,dword ptr [ebp+off] */
853 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
854 		      STACK_VAR(src_lo));
855 	else
856 		/* mov ecx,src_lo */
857 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
858 
859 	/* shrd dreg_lo,dreg_hi,cl */
860 	EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
861 	/* shr dreg_hi,cl */
862 	EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
863 
864 	/* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
865 
866 	/* cmp ecx,32 */
867 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
868 	/* skip the next two instructions (4 bytes) when < 32 */
869 	EMIT2(IA32_JB, 4);
870 
871 	/* mov dreg_lo,dreg_hi */
872 	EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
873 	/* xor dreg_hi,dreg_hi */
874 	EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
875 
876 	if (dstk) {
877 		/* mov dword ptr [ebp+off],dreg_lo */
878 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
879 		      STACK_VAR(dst_lo));
880 		/* mov dword ptr [ebp+off],dreg_hi */
881 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
882 		      STACK_VAR(dst_hi));
883 	}
884 	/* out: */
885 	*pprog = prog;
886 }
887 
888 /* dst = dst << val */
889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
890 				     bool dstk, u8 **pprog)
891 {
892 	u8 *prog = *pprog;
893 	int cnt = 0;
894 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
895 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
896 
897 	if (dstk) {
898 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
899 		      STACK_VAR(dst_lo));
900 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
901 		      STACK_VAR(dst_hi));
902 	}
903 	/* Do LSH operation */
904 	if (val < 32) {
905 		/* shld dreg_hi,dreg_lo,imm8 */
906 		EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
907 		/* shl dreg_lo,imm8 */
908 		EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
909 	} else if (val >= 32 && val < 64) {
910 		u32 value = val - 32;
911 
912 		/* shl dreg_lo,imm8 */
913 		EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
914 		/* mov dreg_hi,dreg_lo */
915 		EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
916 		/* xor dreg_lo,dreg_lo */
917 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
918 	} else {
919 		/* xor dreg_lo,dreg_lo */
920 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
921 		/* xor dreg_hi,dreg_hi */
922 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
923 	}
924 
925 	if (dstk) {
926 		/* mov dword ptr [ebp+off],dreg_lo */
927 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
928 		      STACK_VAR(dst_lo));
929 		/* mov dword ptr [ebp+off],dreg_hi */
930 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
931 		      STACK_VAR(dst_hi));
932 	}
933 	*pprog = prog;
934 }
935 
936 /* dst = dst >> val */
937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
938 				     bool dstk, u8 **pprog)
939 {
940 	u8 *prog = *pprog;
941 	int cnt = 0;
942 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
943 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
944 
945 	if (dstk) {
946 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
947 		      STACK_VAR(dst_lo));
948 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
949 		      STACK_VAR(dst_hi));
950 	}
951 
952 	/* Do RSH operation */
953 	if (val < 32) {
954 		/* shrd dreg_lo,dreg_hi,imm8 */
955 		EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
956 		/* shr dreg_hi,imm8 */
957 		EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
958 	} else if (val >= 32 && val < 64) {
959 		u32 value = val - 32;
960 
961 		/* shr dreg_hi,imm8 */
962 		EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
963 		/* mov dreg_lo,dreg_hi */
964 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
965 		/* xor dreg_hi,dreg_hi */
966 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
967 	} else {
968 		/* xor dreg_lo,dreg_lo */
969 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
970 		/* xor dreg_hi,dreg_hi */
971 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
972 	}
973 
974 	if (dstk) {
975 		/* mov dword ptr [ebp+off],dreg_lo */
976 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
977 		      STACK_VAR(dst_lo));
978 		/* mov dword ptr [ebp+off],dreg_hi */
979 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
980 		      STACK_VAR(dst_hi));
981 	}
982 	*pprog = prog;
983 }
984 
985 /* dst = dst >> val (signed) */
986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
987 				      bool dstk, u8 **pprog)
988 {
989 	u8 *prog = *pprog;
990 	int cnt = 0;
991 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
992 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
993 
994 	if (dstk) {
995 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
996 		      STACK_VAR(dst_lo));
997 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
998 		      STACK_VAR(dst_hi));
999 	}
1000 	/* Do RSH operation */
1001 	if (val < 32) {
1002 		/* shrd dreg_lo,dreg_hi,imm8 */
1003 		EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
1004 		/* ashr dreg_hi,imm8 */
1005 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
1006 	} else if (val >= 32 && val < 64) {
1007 		u32 value = val - 32;
1008 
1009 		/* ashr dreg_hi,imm8 */
1010 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
1011 		/* mov dreg_lo,dreg_hi */
1012 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1013 
1014 		/* ashr dreg_hi,imm8 */
1015 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1016 	} else {
1017 		/* ashr dreg_hi,imm8 */
1018 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1019 		/* mov dreg_lo,dreg_hi */
1020 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1021 	}
1022 
1023 	if (dstk) {
1024 		/* mov dword ptr [ebp+off],dreg_lo */
1025 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
1026 		      STACK_VAR(dst_lo));
1027 		/* mov dword ptr [ebp+off],dreg_hi */
1028 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
1029 		      STACK_VAR(dst_hi));
1030 	}
1031 	*pprog = prog;
1032 }
1033 
1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
1035 				     bool sstk, u8 **pprog)
1036 {
1037 	u8 *prog = *pprog;
1038 	int cnt = 0;
1039 
1040 	if (dstk)
1041 		/* mov eax,dword ptr [ebp+off] */
1042 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1043 		      STACK_VAR(dst_hi));
1044 	else
1045 		/* mov eax,dst_hi */
1046 		EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
1047 
1048 	if (sstk)
1049 		/* mul dword ptr [ebp+off] */
1050 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1051 	else
1052 		/* mul src_lo */
1053 		EMIT2(0xF7, add_1reg(0xE0, src_lo));
1054 
1055 	/* mov ecx,eax */
1056 	EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1057 
1058 	if (dstk)
1059 		/* mov eax,dword ptr [ebp+off] */
1060 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1061 		      STACK_VAR(dst_lo));
1062 	else
1063 		/* mov eax,dst_lo */
1064 		EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1065 
1066 	if (sstk)
1067 		/* mul dword ptr [ebp+off] */
1068 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
1069 	else
1070 		/* mul src_hi */
1071 		EMIT2(0xF7, add_1reg(0xE0, src_hi));
1072 
1073 	/* add eax,eax */
1074 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1075 
1076 	if (dstk)
1077 		/* mov eax,dword ptr [ebp+off] */
1078 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1079 		      STACK_VAR(dst_lo));
1080 	else
1081 		/* mov eax,dst_lo */
1082 		EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1083 
1084 	if (sstk)
1085 		/* mul dword ptr [ebp+off] */
1086 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1087 	else
1088 		/* mul src_lo */
1089 		EMIT2(0xF7, add_1reg(0xE0, src_lo));
1090 
1091 	/* add ecx,edx */
1092 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1093 
1094 	if (dstk) {
1095 		/* mov dword ptr [ebp+off],eax */
1096 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1097 		      STACK_VAR(dst_lo));
1098 		/* mov dword ptr [ebp+off],ecx */
1099 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1100 		      STACK_VAR(dst_hi));
1101 	} else {
1102 		/* mov dst_lo,eax */
1103 		EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1104 		/* mov dst_hi,ecx */
1105 		EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1106 	}
1107 
1108 	*pprog = prog;
1109 }
1110 
1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
1112 				     bool dstk, u8 **pprog)
1113 {
1114 	u8 *prog = *pprog;
1115 	int cnt = 0;
1116 	u32 hi;
1117 
1118 	hi = val & (1<<31) ? (u32)~0 : 0;
1119 	/* movl eax,imm32 */
1120 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1121 	if (dstk)
1122 		/* mul dword ptr [ebp+off] */
1123 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
1124 	else
1125 		/* mul dst_hi */
1126 		EMIT2(0xF7, add_1reg(0xE0, dst_hi));
1127 
1128 	/* mov ecx,eax */
1129 	EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1130 
1131 	/* movl eax,imm32 */
1132 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
1133 	if (dstk)
1134 		/* mul dword ptr [ebp+off] */
1135 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1136 	else
1137 		/* mul dst_lo */
1138 		EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1139 	/* add ecx,eax */
1140 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1141 
1142 	/* movl eax,imm32 */
1143 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1144 	if (dstk)
1145 		/* mul dword ptr [ebp+off] */
1146 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1147 	else
1148 		/* mul dst_lo */
1149 		EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1150 
1151 	/* add ecx,edx */
1152 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1153 
1154 	if (dstk) {
1155 		/* mov dword ptr [ebp+off],eax */
1156 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1157 		      STACK_VAR(dst_lo));
1158 		/* mov dword ptr [ebp+off],ecx */
1159 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1160 		      STACK_VAR(dst_hi));
1161 	} else {
1162 		/* mov dword ptr [ebp+off],eax */
1163 		EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1164 		/* mov dword ptr [ebp+off],ecx */
1165 		EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1166 	}
1167 
1168 	*pprog = prog;
1169 }
1170 
1171 static int bpf_size_to_x86_bytes(int bpf_size)
1172 {
1173 	if (bpf_size == BPF_W)
1174 		return 4;
1175 	else if (bpf_size == BPF_H)
1176 		return 2;
1177 	else if (bpf_size == BPF_B)
1178 		return 1;
1179 	else if (bpf_size == BPF_DW)
1180 		return 4; /* imm32 */
1181 	else
1182 		return 0;
1183 }
1184 
1185 struct jit_context {
1186 	int cleanup_addr; /* Epilogue code offset */
1187 };
1188 
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE	128
1191 #define BPF_INSN_SAFETY		64
1192 
1193 #define PROLOGUE_SIZE 35
1194 
1195 /*
1196  * Emit prologue code for BPF program and check it's size.
1197  * bpf_tail_call helper will skip it while jumping into another program.
1198  */
1199 static void emit_prologue(u8 **pprog, u32 stack_depth)
1200 {
1201 	u8 *prog = *pprog;
1202 	int cnt = 0;
1203 	const u8 *r1 = bpf2ia32[BPF_REG_1];
1204 	const u8 fplo = bpf2ia32[BPF_REG_FP][0];
1205 	const u8 fphi = bpf2ia32[BPF_REG_FP][1];
1206 	const u8 *tcc = bpf2ia32[TCALL_CNT];
1207 
1208 	/* push ebp */
1209 	EMIT1(0x55);
1210 	/* mov ebp,esp */
1211 	EMIT2(0x89, 0xE5);
1212 	/* push edi */
1213 	EMIT1(0x57);
1214 	/* push esi */
1215 	EMIT1(0x56);
1216 	/* push ebx */
1217 	EMIT1(0x53);
1218 
1219 	/* sub esp,STACK_SIZE */
1220 	EMIT2_off32(0x81, 0xEC, STACK_SIZE);
1221 	/* sub ebp,SCRATCH_SIZE+12*/
1222 	EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
1223 	/* xor ebx,ebx */
1224 	EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
1225 
1226 	/* Set up BPF prog stack base register */
1227 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
1228 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
1229 
1230 	/* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 	/* mov dword ptr [ebp+off],eax */
1232 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1233 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
1234 
1235 	/* Initialize Tail Count */
1236 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
1237 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1238 
1239 	BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
1240 	*pprog = prog;
1241 }
1242 
1243 /* Emit epilogue code for BPF program */
1244 static void emit_epilogue(u8 **pprog, u32 stack_depth)
1245 {
1246 	u8 *prog = *pprog;
1247 	const u8 *r0 = bpf2ia32[BPF_REG_0];
1248 	int cnt = 0;
1249 
1250 	/* mov eax,dword ptr [ebp+off]*/
1251 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
1252 	/* mov edx,dword ptr [ebp+off]*/
1253 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
1254 
1255 	/* add ebp,SCRATCH_SIZE+12*/
1256 	EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
1257 
1258 	/* mov ebx,dword ptr [ebp-12]*/
1259 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
1260 	/* mov esi,dword ptr [ebp-8]*/
1261 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
1262 	/* mov edi,dword ptr [ebp-4]*/
1263 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
1264 
1265 	EMIT1(0xC9); /* leave */
1266 	EMIT1(0xC3); /* ret */
1267 	*pprog = prog;
1268 }
1269 
1270 /*
1271  * Generate the following code:
1272  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273  *   if (index >= array->map.max_entries)
1274  *     goto out;
1275  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1276  *     goto out;
1277  *   prog = array->ptrs[index];
1278  *   if (prog == NULL)
1279  *     goto out;
1280  *   goto *(prog->bpf_func + prologue_size);
1281  * out:
1282  */
1283 static void emit_bpf_tail_call(u8 **pprog)
1284 {
1285 	u8 *prog = *pprog;
1286 	int cnt = 0;
1287 	const u8 *r1 = bpf2ia32[BPF_REG_1];
1288 	const u8 *r2 = bpf2ia32[BPF_REG_2];
1289 	const u8 *r3 = bpf2ia32[BPF_REG_3];
1290 	const u8 *tcc = bpf2ia32[TCALL_CNT];
1291 	u32 lo, hi;
1292 	static int jmp_label1 = -1;
1293 
1294 	/*
1295 	 * if (index >= array->map.max_entries)
1296 	 *     goto out;
1297 	 */
1298 	/* mov eax,dword ptr [ebp+off] */
1299 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
1300 	/* mov edx,dword ptr [ebp+off] */
1301 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
1302 
1303 	/* cmp dword ptr [eax+off],edx */
1304 	EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
1305 	      offsetof(struct bpf_array, map.max_entries));
1306 	/* jbe out */
1307 	EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
1308 
1309 	/*
1310 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1311 	 *     goto out;
1312 	 */
1313 	lo = (u32)MAX_TAIL_CALL_CNT;
1314 	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1315 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1316 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1317 
1318 	/* cmp edx,hi */
1319 	EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
1320 	EMIT2(IA32_JNE, 3);
1321 	/* cmp ecx,lo */
1322 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
1323 
1324 	/* ja out */
1325 	EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
1326 
1327 	/* add eax,0x1 */
1328 	EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
1329 	/* adc ebx,0x0 */
1330 	EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
1331 
1332 	/* mov dword ptr [ebp+off],eax */
1333 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1334 	/* mov dword ptr [ebp+off],edx */
1335 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1336 
1337 	/* prog = array->ptrs[index]; */
1338 	/* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 	EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
1340 
1341 	/*
1342 	 * if (prog == NULL)
1343 	 *     goto out;
1344 	 */
1345 	/* test edx,edx */
1346 	EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
1347 	/* je out */
1348 	EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
1349 
1350 	/* goto *(prog->bpf_func + prologue_size); */
1351 	/* mov edx, dword ptr [edx + 32] */
1352 	EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
1353 	      offsetof(struct bpf_prog, bpf_func));
1354 	/* add edx,prologue_size */
1355 	EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
1356 
1357 	/* mov eax,dword ptr [ebp+off] */
1358 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1359 
1360 	/*
1361 	 * Now we're ready to jump into next BPF program:
1362 	 * eax == ctx (1st arg)
1363 	 * edx == prog->bpf_func + prologue_size
1364 	 */
1365 	RETPOLINE_EDX_BPF_JIT();
1366 
1367 	if (jmp_label1 == -1)
1368 		jmp_label1 = cnt;
1369 
1370 	/* out: */
1371 	*pprog = prog;
1372 }
1373 
1374 /* Push the scratch stack register on top of the stack. */
1375 static inline void emit_push_r64(const u8 src[], u8 **pprog)
1376 {
1377 	u8 *prog = *pprog;
1378 	int cnt = 0;
1379 
1380 	/* mov ecx,dword ptr [ebp+off] */
1381 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
1382 	/* push ecx */
1383 	EMIT1(0x51);
1384 
1385 	/* mov ecx,dword ptr [ebp+off] */
1386 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1387 	/* push ecx */
1388 	EMIT1(0x51);
1389 
1390 	*pprog = prog;
1391 }
1392 
1393 static void emit_push_r32(const u8 src[], u8 **pprog)
1394 {
1395 	u8 *prog = *pprog;
1396 	int cnt = 0;
1397 
1398 	/* mov ecx,dword ptr [ebp+off] */
1399 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1400 	/* push ecx */
1401 	EMIT1(0x51);
1402 
1403 	*pprog = prog;
1404 }
1405 
1406 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
1407 {
1408 	u8 jmp_cond;
1409 
1410 	/* Convert BPF opcode to x86 */
1411 	switch (op) {
1412 	case BPF_JEQ:
1413 		jmp_cond = IA32_JE;
1414 		break;
1415 	case BPF_JSET:
1416 	case BPF_JNE:
1417 		jmp_cond = IA32_JNE;
1418 		break;
1419 	case BPF_JGT:
1420 		/* GT is unsigned '>', JA in x86 */
1421 		jmp_cond = IA32_JA;
1422 		break;
1423 	case BPF_JLT:
1424 		/* LT is unsigned '<', JB in x86 */
1425 		jmp_cond = IA32_JB;
1426 		break;
1427 	case BPF_JGE:
1428 		/* GE is unsigned '>=', JAE in x86 */
1429 		jmp_cond = IA32_JAE;
1430 		break;
1431 	case BPF_JLE:
1432 		/* LE is unsigned '<=', JBE in x86 */
1433 		jmp_cond = IA32_JBE;
1434 		break;
1435 	case BPF_JSGT:
1436 		if (!is_cmp_lo)
1437 			/* Signed '>', GT in x86 */
1438 			jmp_cond = IA32_JG;
1439 		else
1440 			/* GT is unsigned '>', JA in x86 */
1441 			jmp_cond = IA32_JA;
1442 		break;
1443 	case BPF_JSLT:
1444 		if (!is_cmp_lo)
1445 			/* Signed '<', LT in x86 */
1446 			jmp_cond = IA32_JL;
1447 		else
1448 			/* LT is unsigned '<', JB in x86 */
1449 			jmp_cond = IA32_JB;
1450 		break;
1451 	case BPF_JSGE:
1452 		if (!is_cmp_lo)
1453 			/* Signed '>=', GE in x86 */
1454 			jmp_cond = IA32_JGE;
1455 		else
1456 			/* GE is unsigned '>=', JAE in x86 */
1457 			jmp_cond = IA32_JAE;
1458 		break;
1459 	case BPF_JSLE:
1460 		if (!is_cmp_lo)
1461 			/* Signed '<=', LE in x86 */
1462 			jmp_cond = IA32_JLE;
1463 		else
1464 			/* LE is unsigned '<=', JBE in x86 */
1465 			jmp_cond = IA32_JBE;
1466 		break;
1467 	default: /* to silence GCC warning */
1468 		jmp_cond = COND_JMP_OPCODE_INVALID;
1469 		break;
1470 	}
1471 
1472 	return jmp_cond;
1473 }
1474 
1475 /* i386 kernel compiles with "-mregparm=3".  From gcc document:
1476  *
1477  * ==== snippet ====
1478  * regparm (number)
1479  *	On x86-32 targets, the regparm attribute causes the compiler
1480  *	to pass arguments number one to (number) if they are of integral
1481  *	type in registers EAX, EDX, and ECX instead of on the stack.
1482  *	Functions that take a variable number of arguments continue
1483  *	to be passed all of their arguments on the stack.
1484  * ==== snippet ====
1485  *
1486  * The first three args of a function will be considered for
1487  * putting into the 32bit register EAX, EDX, and ECX.
1488  *
1489  * Two 32bit registers are used to pass a 64bit arg.
1490  *
1491  * For example,
1492  * void foo(u32 a, u32 b, u32 c, u32 d):
1493  *	u32 a: EAX
1494  *	u32 b: EDX
1495  *	u32 c: ECX
1496  *	u32 d: stack
1497  *
1498  * void foo(u64 a, u32 b, u32 c):
1499  *	u64 a: EAX (lo32) EDX (hi32)
1500  *	u32 b: ECX
1501  *	u32 c: stack
1502  *
1503  * void foo(u32 a, u64 b, u32 c):
1504  *	u32 a: EAX
1505  *	u64 b: EDX (lo32) ECX (hi32)
1506  *	u32 c: stack
1507  *
1508  * void foo(u32 a, u32 b, u64 c):
1509  *	u32 a: EAX
1510  *	u32 b: EDX
1511  *	u64 c: stack
1512  *
1513  * The return value will be stored in the EAX (and EDX for 64bit value).
1514  *
1515  * For example,
1516  * u32 foo(u32 a, u32 b, u32 c):
1517  *	return value: EAX
1518  *
1519  * u64 foo(u32 a, u32 b, u32 c):
1520  *	return value: EAX (lo32) EDX (hi32)
1521  *
1522  * Notes:
1523  *	The verifier only accepts function having integer and pointers
1524  *	as its args and return value, so it does not have
1525  *	struct-by-value.
1526  *
1527  * emit_kfunc_call() finds out the btf_func_model by calling
1528  * bpf_jit_find_kfunc_model().  A btf_func_model
1529  * has the details about the number of args, size of each arg,
1530  * and the size of the return value.
1531  *
1532  * It first decides how many args can be passed by EAX, EDX, and ECX.
1533  * That will decide what args should be pushed to the stack:
1534  * [first_stack_regno, last_stack_regno] are the bpf regnos
1535  * that should be pushed to the stack.
1536  *
1537  * It will first push all args to the stack because the push
1538  * will need to use ECX.  Then, it moves
1539  * [BPF_REG_1, first_stack_regno) to EAX, EDX, and ECX.
1540  *
1541  * When emitting a call (0xE8), it needs to figure out
1542  * the jmp_offset relative to the jit-insn address immediately
1543  * following the call (0xE8) instruction.  At this point, it knows
1544  * the end of the jit-insn address after completely translated the
1545  * current (BPF_JMP | BPF_CALL) bpf-insn.  It is passed as "end_addr"
1546  * to the emit_kfunc_call().  Thus, it can learn the "immediate-follow-call"
1547  * address by figuring out how many jit-insn is generated between
1548  * the call (0xE8) and the end_addr:
1549  *	- 0-1 jit-insn (3 bytes each) to restore the esp pointer if there
1550  *	  is arg pushed to the stack.
1551  *	- 0-2 jit-insns (3 bytes each) to handle the return value.
1552  */
1553 static int emit_kfunc_call(const struct bpf_prog *bpf_prog, u8 *end_addr,
1554 			   const struct bpf_insn *insn, u8 **pprog)
1555 {
1556 	const u8 arg_regs[] = { IA32_EAX, IA32_EDX, IA32_ECX };
1557 	int i, cnt = 0, first_stack_regno, last_stack_regno;
1558 	int free_arg_regs = ARRAY_SIZE(arg_regs);
1559 	const struct btf_func_model *fm;
1560 	int bytes_in_stack = 0;
1561 	const u8 *cur_arg_reg;
1562 	u8 *prog = *pprog;
1563 	s64 jmp_offset;
1564 
1565 	fm = bpf_jit_find_kfunc_model(bpf_prog, insn);
1566 	if (!fm)
1567 		return -EINVAL;
1568 
1569 	first_stack_regno = BPF_REG_1;
1570 	for (i = 0; i < fm->nr_args; i++) {
1571 		int regs_needed = fm->arg_size[i] > sizeof(u32) ? 2 : 1;
1572 
1573 		if (regs_needed > free_arg_regs)
1574 			break;
1575 
1576 		free_arg_regs -= regs_needed;
1577 		first_stack_regno++;
1578 	}
1579 
1580 	/* Push the args to the stack */
1581 	last_stack_regno = BPF_REG_0 + fm->nr_args;
1582 	for (i = last_stack_regno; i >= first_stack_regno; i--) {
1583 		if (fm->arg_size[i - 1] > sizeof(u32)) {
1584 			emit_push_r64(bpf2ia32[i], &prog);
1585 			bytes_in_stack += 8;
1586 		} else {
1587 			emit_push_r32(bpf2ia32[i], &prog);
1588 			bytes_in_stack += 4;
1589 		}
1590 	}
1591 
1592 	cur_arg_reg = &arg_regs[0];
1593 	for (i = BPF_REG_1; i < first_stack_regno; i++) {
1594 		/* mov e[adc]x,dword ptr [ebp+off] */
1595 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
1596 		      STACK_VAR(bpf2ia32[i][0]));
1597 		if (fm->arg_size[i - 1] > sizeof(u32))
1598 			/* mov e[adc]x,dword ptr [ebp+off] */
1599 			EMIT3(0x8B, add_2reg(0x40, IA32_EBP, *cur_arg_reg++),
1600 			      STACK_VAR(bpf2ia32[i][1]));
1601 	}
1602 
1603 	if (bytes_in_stack)
1604 		/* add esp,"bytes_in_stack" */
1605 		end_addr -= 3;
1606 
1607 	/* mov dword ptr [ebp+off],edx */
1608 	if (fm->ret_size > sizeof(u32))
1609 		end_addr -= 3;
1610 
1611 	/* mov dword ptr [ebp+off],eax */
1612 	if (fm->ret_size)
1613 		end_addr -= 3;
1614 
1615 	jmp_offset = (u8 *)__bpf_call_base + insn->imm - end_addr;
1616 	if (!is_simm32(jmp_offset)) {
1617 		pr_err("unsupported BPF kernel function jmp_offset:%lld\n",
1618 		       jmp_offset);
1619 		return -EINVAL;
1620 	}
1621 
1622 	EMIT1_off32(0xE8, jmp_offset);
1623 
1624 	if (fm->ret_size)
1625 		/* mov dword ptr [ebp+off],eax */
1626 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1627 		      STACK_VAR(bpf2ia32[BPF_REG_0][0]));
1628 
1629 	if (fm->ret_size > sizeof(u32))
1630 		/* mov dword ptr [ebp+off],edx */
1631 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1632 		      STACK_VAR(bpf2ia32[BPF_REG_0][1]));
1633 
1634 	if (bytes_in_stack)
1635 		/* add esp,"bytes_in_stack" */
1636 		EMIT3(0x83, add_1reg(0xC0, IA32_ESP), bytes_in_stack);
1637 
1638 	*pprog = prog;
1639 
1640 	return 0;
1641 }
1642 
1643 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
1644 		  int oldproglen, struct jit_context *ctx)
1645 {
1646 	struct bpf_insn *insn = bpf_prog->insnsi;
1647 	int insn_cnt = bpf_prog->len;
1648 	bool seen_exit = false;
1649 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1650 	int i, cnt = 0;
1651 	int proglen = 0;
1652 	u8 *prog = temp;
1653 
1654 	emit_prologue(&prog, bpf_prog->aux->stack_depth);
1655 
1656 	for (i = 0; i < insn_cnt; i++, insn++) {
1657 		const s32 imm32 = insn->imm;
1658 		const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1659 		const bool dstk = insn->dst_reg != BPF_REG_AX;
1660 		const bool sstk = insn->src_reg != BPF_REG_AX;
1661 		const u8 code = insn->code;
1662 		const u8 *dst = bpf2ia32[insn->dst_reg];
1663 		const u8 *src = bpf2ia32[insn->src_reg];
1664 		const u8 *r0 = bpf2ia32[BPF_REG_0];
1665 		s64 jmp_offset;
1666 		u8 jmp_cond;
1667 		int ilen;
1668 		u8 *func;
1669 
1670 		switch (code) {
1671 		/* ALU operations */
1672 		/* dst = src */
1673 		case BPF_ALU | BPF_MOV | BPF_K:
1674 		case BPF_ALU | BPF_MOV | BPF_X:
1675 		case BPF_ALU64 | BPF_MOV | BPF_K:
1676 		case BPF_ALU64 | BPF_MOV | BPF_X:
1677 			switch (BPF_SRC(code)) {
1678 			case BPF_X:
1679 				if (imm32 == 1) {
1680 					/* Special mov32 for zext. */
1681 					emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1682 					break;
1683 				}
1684 				emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
1685 						  &prog, bpf_prog->aux);
1686 				break;
1687 			case BPF_K:
1688 				/* Sign-extend immediate value to dst reg */
1689 				emit_ia32_mov_i64(is64, dst, imm32,
1690 						  dstk, &prog);
1691 				break;
1692 			}
1693 			break;
1694 		/* dst = dst + src/imm */
1695 		/* dst = dst - src/imm */
1696 		/* dst = dst | src/imm */
1697 		/* dst = dst & src/imm */
1698 		/* dst = dst ^ src/imm */
1699 		/* dst = dst * src/imm */
1700 		/* dst = dst << src */
1701 		/* dst = dst >> src */
1702 		case BPF_ALU | BPF_ADD | BPF_K:
1703 		case BPF_ALU | BPF_ADD | BPF_X:
1704 		case BPF_ALU | BPF_SUB | BPF_K:
1705 		case BPF_ALU | BPF_SUB | BPF_X:
1706 		case BPF_ALU | BPF_OR | BPF_K:
1707 		case BPF_ALU | BPF_OR | BPF_X:
1708 		case BPF_ALU | BPF_AND | BPF_K:
1709 		case BPF_ALU | BPF_AND | BPF_X:
1710 		case BPF_ALU | BPF_XOR | BPF_K:
1711 		case BPF_ALU | BPF_XOR | BPF_X:
1712 		case BPF_ALU64 | BPF_ADD | BPF_K:
1713 		case BPF_ALU64 | BPF_ADD | BPF_X:
1714 		case BPF_ALU64 | BPF_SUB | BPF_K:
1715 		case BPF_ALU64 | BPF_SUB | BPF_X:
1716 		case BPF_ALU64 | BPF_OR | BPF_K:
1717 		case BPF_ALU64 | BPF_OR | BPF_X:
1718 		case BPF_ALU64 | BPF_AND | BPF_K:
1719 		case BPF_ALU64 | BPF_AND | BPF_X:
1720 		case BPF_ALU64 | BPF_XOR | BPF_K:
1721 		case BPF_ALU64 | BPF_XOR | BPF_X:
1722 			switch (BPF_SRC(code)) {
1723 			case BPF_X:
1724 				emit_ia32_alu_r64(is64, BPF_OP(code), dst,
1725 						  src, dstk, sstk, &prog,
1726 						  bpf_prog->aux);
1727 				break;
1728 			case BPF_K:
1729 				emit_ia32_alu_i64(is64, BPF_OP(code), dst,
1730 						  imm32, dstk, &prog,
1731 						  bpf_prog->aux);
1732 				break;
1733 			}
1734 			break;
1735 		case BPF_ALU | BPF_MUL | BPF_K:
1736 		case BPF_ALU | BPF_MUL | BPF_X:
1737 			switch (BPF_SRC(code)) {
1738 			case BPF_X:
1739 				emit_ia32_mul_r(dst_lo, src_lo, dstk,
1740 						sstk, &prog);
1741 				break;
1742 			case BPF_K:
1743 				/* mov ecx,imm32*/
1744 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1745 					    imm32);
1746 				emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
1747 						false, &prog);
1748 				break;
1749 			}
1750 			if (!bpf_prog->aux->verifier_zext)
1751 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1752 			break;
1753 		case BPF_ALU | BPF_LSH | BPF_X:
1754 		case BPF_ALU | BPF_RSH | BPF_X:
1755 		case BPF_ALU | BPF_ARSH | BPF_K:
1756 		case BPF_ALU | BPF_ARSH | BPF_X:
1757 			switch (BPF_SRC(code)) {
1758 			case BPF_X:
1759 				emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
1760 						  dstk, sstk, &prog);
1761 				break;
1762 			case BPF_K:
1763 				/* mov ecx,imm32*/
1764 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1765 					    imm32);
1766 				emit_ia32_shift_r(BPF_OP(code), dst_lo,
1767 						  IA32_ECX, dstk, false,
1768 						  &prog);
1769 				break;
1770 			}
1771 			if (!bpf_prog->aux->verifier_zext)
1772 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1773 			break;
1774 		/* dst = dst / src(imm) */
1775 		/* dst = dst % src(imm) */
1776 		case BPF_ALU | BPF_DIV | BPF_K:
1777 		case BPF_ALU | BPF_DIV | BPF_X:
1778 		case BPF_ALU | BPF_MOD | BPF_K:
1779 		case BPF_ALU | BPF_MOD | BPF_X:
1780 			switch (BPF_SRC(code)) {
1781 			case BPF_X:
1782 				emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1783 						    src_lo, dstk, sstk, &prog);
1784 				break;
1785 			case BPF_K:
1786 				/* mov ecx,imm32*/
1787 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1788 					    imm32);
1789 				emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1790 						    IA32_ECX, dstk, false,
1791 						    &prog);
1792 				break;
1793 			}
1794 			if (!bpf_prog->aux->verifier_zext)
1795 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1796 			break;
1797 		case BPF_ALU64 | BPF_DIV | BPF_K:
1798 		case BPF_ALU64 | BPF_DIV | BPF_X:
1799 		case BPF_ALU64 | BPF_MOD | BPF_K:
1800 		case BPF_ALU64 | BPF_MOD | BPF_X:
1801 			goto notyet;
1802 		/* dst = dst >> imm */
1803 		/* dst = dst << imm */
1804 		case BPF_ALU | BPF_RSH | BPF_K:
1805 		case BPF_ALU | BPF_LSH | BPF_K:
1806 			if (unlikely(imm32 > 31))
1807 				return -EINVAL;
1808 			/* mov ecx,imm32*/
1809 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
1810 			emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
1811 					  false, &prog);
1812 			if (!bpf_prog->aux->verifier_zext)
1813 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1814 			break;
1815 		/* dst = dst << imm */
1816 		case BPF_ALU64 | BPF_LSH | BPF_K:
1817 			if (unlikely(imm32 > 63))
1818 				return -EINVAL;
1819 			emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
1820 			break;
1821 		/* dst = dst >> imm */
1822 		case BPF_ALU64 | BPF_RSH | BPF_K:
1823 			if (unlikely(imm32 > 63))
1824 				return -EINVAL;
1825 			emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
1826 			break;
1827 		/* dst = dst << src */
1828 		case BPF_ALU64 | BPF_LSH | BPF_X:
1829 			emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
1830 			break;
1831 		/* dst = dst >> src */
1832 		case BPF_ALU64 | BPF_RSH | BPF_X:
1833 			emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
1834 			break;
1835 		/* dst = dst >> src (signed) */
1836 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1837 			emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
1838 			break;
1839 		/* dst = dst >> imm (signed) */
1840 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1841 			if (unlikely(imm32 > 63))
1842 				return -EINVAL;
1843 			emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
1844 			break;
1845 		/* dst = ~dst */
1846 		case BPF_ALU | BPF_NEG:
1847 			emit_ia32_alu_i(is64, false, BPF_OP(code),
1848 					dst_lo, 0, dstk, &prog);
1849 			if (!bpf_prog->aux->verifier_zext)
1850 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1851 			break;
1852 		/* dst = ~dst (64 bit) */
1853 		case BPF_ALU64 | BPF_NEG:
1854 			emit_ia32_neg64(dst, dstk, &prog);
1855 			break;
1856 		/* dst = dst * src/imm */
1857 		case BPF_ALU64 | BPF_MUL | BPF_X:
1858 		case BPF_ALU64 | BPF_MUL | BPF_K:
1859 			switch (BPF_SRC(code)) {
1860 			case BPF_X:
1861 				emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
1862 				break;
1863 			case BPF_K:
1864 				emit_ia32_mul_i64(dst, imm32, dstk, &prog);
1865 				break;
1866 			}
1867 			break;
1868 		/* dst = htole(dst) */
1869 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1870 			emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
1871 					    bpf_prog->aux);
1872 			break;
1873 		/* dst = htobe(dst) */
1874 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1875 			emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
1876 					    bpf_prog->aux);
1877 			break;
1878 		/* dst = imm64 */
1879 		case BPF_LD | BPF_IMM | BPF_DW: {
1880 			s32 hi, lo = imm32;
1881 
1882 			hi = insn[1].imm;
1883 			emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
1884 			emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
1885 			insn++;
1886 			i++;
1887 			break;
1888 		}
1889 		/* speculation barrier */
1890 		case BPF_ST | BPF_NOSPEC:
1891 			if (boot_cpu_has(X86_FEATURE_XMM2))
1892 				/* Emit 'lfence' */
1893 				EMIT3(0x0F, 0xAE, 0xE8);
1894 			break;
1895 		/* ST: *(u8*)(dst_reg + off) = imm */
1896 		case BPF_ST | BPF_MEM | BPF_H:
1897 		case BPF_ST | BPF_MEM | BPF_B:
1898 		case BPF_ST | BPF_MEM | BPF_W:
1899 		case BPF_ST | BPF_MEM | BPF_DW:
1900 			if (dstk)
1901 				/* mov eax,dword ptr [ebp+off] */
1902 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1903 				      STACK_VAR(dst_lo));
1904 			else
1905 				/* mov eax,dst_lo */
1906 				EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1907 
1908 			switch (BPF_SIZE(code)) {
1909 			case BPF_B:
1910 				EMIT(0xC6, 1); break;
1911 			case BPF_H:
1912 				EMIT2(0x66, 0xC7); break;
1913 			case BPF_W:
1914 			case BPF_DW:
1915 				EMIT(0xC7, 1); break;
1916 			}
1917 
1918 			if (is_imm8(insn->off))
1919 				EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
1920 			else
1921 				EMIT1_off32(add_1reg(0x80, IA32_EAX),
1922 					    insn->off);
1923 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
1924 
1925 			if (BPF_SIZE(code) == BPF_DW) {
1926 				u32 hi;
1927 
1928 				hi = imm32 & (1<<31) ? (u32)~0 : 0;
1929 				EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
1930 					    insn->off + 4);
1931 				EMIT(hi, 4);
1932 			}
1933 			break;
1934 
1935 		/* STX: *(u8*)(dst_reg + off) = src_reg */
1936 		case BPF_STX | BPF_MEM | BPF_B:
1937 		case BPF_STX | BPF_MEM | BPF_H:
1938 		case BPF_STX | BPF_MEM | BPF_W:
1939 		case BPF_STX | BPF_MEM | BPF_DW:
1940 			if (dstk)
1941 				/* mov eax,dword ptr [ebp+off] */
1942 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1943 				      STACK_VAR(dst_lo));
1944 			else
1945 				/* mov eax,dst_lo */
1946 				EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1947 
1948 			if (sstk)
1949 				/* mov edx,dword ptr [ebp+off] */
1950 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1951 				      STACK_VAR(src_lo));
1952 			else
1953 				/* mov edx,src_lo */
1954 				EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
1955 
1956 			switch (BPF_SIZE(code)) {
1957 			case BPF_B:
1958 				EMIT(0x88, 1); break;
1959 			case BPF_H:
1960 				EMIT2(0x66, 0x89); break;
1961 			case BPF_W:
1962 			case BPF_DW:
1963 				EMIT(0x89, 1); break;
1964 			}
1965 
1966 			if (is_imm8(insn->off))
1967 				EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1968 				      insn->off);
1969 			else
1970 				EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1971 					    insn->off);
1972 
1973 			if (BPF_SIZE(code) == BPF_DW) {
1974 				if (sstk)
1975 					/* mov edi,dword ptr [ebp+off] */
1976 					EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
1977 							     IA32_EDX),
1978 					      STACK_VAR(src_hi));
1979 				else
1980 					/* mov edi,src_hi */
1981 					EMIT2(0x8B, add_2reg(0xC0, src_hi,
1982 							     IA32_EDX));
1983 				EMIT1(0x89);
1984 				if (is_imm8(insn->off + 4)) {
1985 					EMIT2(add_2reg(0x40, IA32_EAX,
1986 						       IA32_EDX),
1987 					      insn->off + 4);
1988 				} else {
1989 					EMIT1(add_2reg(0x80, IA32_EAX,
1990 						       IA32_EDX));
1991 					EMIT(insn->off + 4, 4);
1992 				}
1993 			}
1994 			break;
1995 
1996 		/* LDX: dst_reg = *(u8*)(src_reg + off) */
1997 		case BPF_LDX | BPF_MEM | BPF_B:
1998 		case BPF_LDX | BPF_MEM | BPF_H:
1999 		case BPF_LDX | BPF_MEM | BPF_W:
2000 		case BPF_LDX | BPF_MEM | BPF_DW:
2001 			if (sstk)
2002 				/* mov eax,dword ptr [ebp+off] */
2003 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2004 				      STACK_VAR(src_lo));
2005 			else
2006 				/* mov eax,dword ptr [ebp+off] */
2007 				EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
2008 
2009 			switch (BPF_SIZE(code)) {
2010 			case BPF_B:
2011 				EMIT2(0x0F, 0xB6); break;
2012 			case BPF_H:
2013 				EMIT2(0x0F, 0xB7); break;
2014 			case BPF_W:
2015 			case BPF_DW:
2016 				EMIT(0x8B, 1); break;
2017 			}
2018 
2019 			if (is_imm8(insn->off))
2020 				EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
2021 				      insn->off);
2022 			else
2023 				EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
2024 					    insn->off);
2025 
2026 			if (dstk)
2027 				/* mov dword ptr [ebp+off],edx */
2028 				EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
2029 				      STACK_VAR(dst_lo));
2030 			else
2031 				/* mov dst_lo,edx */
2032 				EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
2033 			switch (BPF_SIZE(code)) {
2034 			case BPF_B:
2035 			case BPF_H:
2036 			case BPF_W:
2037 				if (bpf_prog->aux->verifier_zext)
2038 					break;
2039 				if (dstk) {
2040 					EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
2041 					      STACK_VAR(dst_hi));
2042 					EMIT(0x0, 4);
2043 				} else {
2044 					/* xor dst_hi,dst_hi */
2045 					EMIT2(0x33,
2046 					      add_2reg(0xC0, dst_hi, dst_hi));
2047 				}
2048 				break;
2049 			case BPF_DW:
2050 				EMIT2_off32(0x8B,
2051 					    add_2reg(0x80, IA32_EAX, IA32_EDX),
2052 					    insn->off + 4);
2053 				if (dstk)
2054 					EMIT3(0x89,
2055 					      add_2reg(0x40, IA32_EBP,
2056 						       IA32_EDX),
2057 					      STACK_VAR(dst_hi));
2058 				else
2059 					EMIT2(0x89,
2060 					      add_2reg(0xC0, dst_hi, IA32_EDX));
2061 				break;
2062 			default:
2063 				break;
2064 			}
2065 			break;
2066 		/* call */
2067 		case BPF_JMP | BPF_CALL:
2068 		{
2069 			const u8 *r1 = bpf2ia32[BPF_REG_1];
2070 			const u8 *r2 = bpf2ia32[BPF_REG_2];
2071 			const u8 *r3 = bpf2ia32[BPF_REG_3];
2072 			const u8 *r4 = bpf2ia32[BPF_REG_4];
2073 			const u8 *r5 = bpf2ia32[BPF_REG_5];
2074 
2075 			if (insn->src_reg == BPF_PSEUDO_CALL)
2076 				goto notyet;
2077 
2078 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
2079 				int err;
2080 
2081 				err = emit_kfunc_call(bpf_prog,
2082 						      image + addrs[i],
2083 						      insn, &prog);
2084 
2085 				if (err)
2086 					return err;
2087 				break;
2088 			}
2089 
2090 			func = (u8 *) __bpf_call_base + imm32;
2091 			jmp_offset = func - (image + addrs[i]);
2092 
2093 			if (!imm32 || !is_simm32(jmp_offset)) {
2094 				pr_err("unsupported BPF func %d addr %p image %p\n",
2095 				       imm32, func, image);
2096 				return -EINVAL;
2097 			}
2098 
2099 			/* mov eax,dword ptr [ebp+off] */
2100 			EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2101 			      STACK_VAR(r1[0]));
2102 			/* mov edx,dword ptr [ebp+off] */
2103 			EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
2104 			      STACK_VAR(r1[1]));
2105 
2106 			emit_push_r64(r5, &prog);
2107 			emit_push_r64(r4, &prog);
2108 			emit_push_r64(r3, &prog);
2109 			emit_push_r64(r2, &prog);
2110 
2111 			EMIT1_off32(0xE8, jmp_offset + 9);
2112 
2113 			/* mov dword ptr [ebp+off],eax */
2114 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
2115 			      STACK_VAR(r0[0]));
2116 			/* mov dword ptr [ebp+off],edx */
2117 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
2118 			      STACK_VAR(r0[1]));
2119 
2120 			/* add esp,32 */
2121 			EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
2122 			break;
2123 		}
2124 		case BPF_JMP | BPF_TAIL_CALL:
2125 			emit_bpf_tail_call(&prog);
2126 			break;
2127 
2128 		/* cond jump */
2129 		case BPF_JMP | BPF_JEQ | BPF_X:
2130 		case BPF_JMP | BPF_JNE | BPF_X:
2131 		case BPF_JMP | BPF_JGT | BPF_X:
2132 		case BPF_JMP | BPF_JLT | BPF_X:
2133 		case BPF_JMP | BPF_JGE | BPF_X:
2134 		case BPF_JMP | BPF_JLE | BPF_X:
2135 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2136 		case BPF_JMP32 | BPF_JNE | BPF_X:
2137 		case BPF_JMP32 | BPF_JGT | BPF_X:
2138 		case BPF_JMP32 | BPF_JLT | BPF_X:
2139 		case BPF_JMP32 | BPF_JGE | BPF_X:
2140 		case BPF_JMP32 | BPF_JLE | BPF_X:
2141 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2142 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2143 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2144 		case BPF_JMP32 | BPF_JSGE | BPF_X: {
2145 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2146 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2147 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2148 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2149 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2150 
2151 			if (dstk) {
2152 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2153 				      STACK_VAR(dst_lo));
2154 				if (is_jmp64)
2155 					EMIT3(0x8B,
2156 					      add_2reg(0x40, IA32_EBP,
2157 						       IA32_EDX),
2158 					      STACK_VAR(dst_hi));
2159 			}
2160 
2161 			if (sstk) {
2162 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2163 				      STACK_VAR(src_lo));
2164 				if (is_jmp64)
2165 					EMIT3(0x8B,
2166 					      add_2reg(0x40, IA32_EBP,
2167 						       IA32_EBX),
2168 					      STACK_VAR(src_hi));
2169 			}
2170 
2171 			if (is_jmp64) {
2172 				/* cmp dreg_hi,sreg_hi */
2173 				EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2174 				EMIT2(IA32_JNE, 2);
2175 			}
2176 			/* cmp dreg_lo,sreg_lo */
2177 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2178 			goto emit_cond_jmp;
2179 		}
2180 		case BPF_JMP | BPF_JSGT | BPF_X:
2181 		case BPF_JMP | BPF_JSLE | BPF_X:
2182 		case BPF_JMP | BPF_JSLT | BPF_X:
2183 		case BPF_JMP | BPF_JSGE | BPF_X: {
2184 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2185 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2186 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2187 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2188 
2189 			if (dstk) {
2190 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2191 				      STACK_VAR(dst_lo));
2192 				EMIT3(0x8B,
2193 				      add_2reg(0x40, IA32_EBP,
2194 					       IA32_EDX),
2195 				      STACK_VAR(dst_hi));
2196 			}
2197 
2198 			if (sstk) {
2199 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2200 				      STACK_VAR(src_lo));
2201 				EMIT3(0x8B,
2202 				      add_2reg(0x40, IA32_EBP,
2203 					       IA32_EBX),
2204 				      STACK_VAR(src_hi));
2205 			}
2206 
2207 			/* cmp dreg_hi,sreg_hi */
2208 			EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2209 			EMIT2(IA32_JNE, 10);
2210 			/* cmp dreg_lo,sreg_lo */
2211 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2212 			goto emit_cond_jmp_signed;
2213 		}
2214 		case BPF_JMP | BPF_JSET | BPF_X:
2215 		case BPF_JMP32 | BPF_JSET | BPF_X: {
2216 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2217 			u8 dreg_lo = IA32_EAX;
2218 			u8 dreg_hi = IA32_EDX;
2219 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2220 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2221 
2222 			if (dstk) {
2223 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2224 				      STACK_VAR(dst_lo));
2225 				if (is_jmp64)
2226 					EMIT3(0x8B,
2227 					      add_2reg(0x40, IA32_EBP,
2228 						       IA32_EDX),
2229 					      STACK_VAR(dst_hi));
2230 			} else {
2231 				/* mov dreg_lo,dst_lo */
2232 				EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2233 				if (is_jmp64)
2234 					/* mov dreg_hi,dst_hi */
2235 					EMIT2(0x89,
2236 					      add_2reg(0xC0, dreg_hi, dst_hi));
2237 			}
2238 
2239 			if (sstk) {
2240 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2241 				      STACK_VAR(src_lo));
2242 				if (is_jmp64)
2243 					EMIT3(0x8B,
2244 					      add_2reg(0x40, IA32_EBP,
2245 						       IA32_EBX),
2246 					      STACK_VAR(src_hi));
2247 			}
2248 			/* and dreg_lo,sreg_lo */
2249 			EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2250 			if (is_jmp64) {
2251 				/* and dreg_hi,sreg_hi */
2252 				EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2253 				/* or dreg_lo,dreg_hi */
2254 				EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2255 			}
2256 			goto emit_cond_jmp;
2257 		}
2258 		case BPF_JMP | BPF_JSET | BPF_K:
2259 		case BPF_JMP32 | BPF_JSET | BPF_K: {
2260 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2261 			u8 dreg_lo = IA32_EAX;
2262 			u8 dreg_hi = IA32_EDX;
2263 			u8 sreg_lo = IA32_ECX;
2264 			u8 sreg_hi = IA32_EBX;
2265 			u32 hi;
2266 
2267 			if (dstk) {
2268 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2269 				      STACK_VAR(dst_lo));
2270 				if (is_jmp64)
2271 					EMIT3(0x8B,
2272 					      add_2reg(0x40, IA32_EBP,
2273 						       IA32_EDX),
2274 					      STACK_VAR(dst_hi));
2275 			} else {
2276 				/* mov dreg_lo,dst_lo */
2277 				EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2278 				if (is_jmp64)
2279 					/* mov dreg_hi,dst_hi */
2280 					EMIT2(0x89,
2281 					      add_2reg(0xC0, dreg_hi, dst_hi));
2282 			}
2283 
2284 			/* mov ecx,imm32 */
2285 			EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
2286 
2287 			/* and dreg_lo,sreg_lo */
2288 			EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2289 			if (is_jmp64) {
2290 				hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2291 				/* mov ebx,imm32 */
2292 				EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
2293 				/* and dreg_hi,sreg_hi */
2294 				EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2295 				/* or dreg_lo,dreg_hi */
2296 				EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2297 			}
2298 			goto emit_cond_jmp;
2299 		}
2300 		case BPF_JMP | BPF_JEQ | BPF_K:
2301 		case BPF_JMP | BPF_JNE | BPF_K:
2302 		case BPF_JMP | BPF_JGT | BPF_K:
2303 		case BPF_JMP | BPF_JLT | BPF_K:
2304 		case BPF_JMP | BPF_JGE | BPF_K:
2305 		case BPF_JMP | BPF_JLE | BPF_K:
2306 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2307 		case BPF_JMP32 | BPF_JNE | BPF_K:
2308 		case BPF_JMP32 | BPF_JGT | BPF_K:
2309 		case BPF_JMP32 | BPF_JLT | BPF_K:
2310 		case BPF_JMP32 | BPF_JGE | BPF_K:
2311 		case BPF_JMP32 | BPF_JLE | BPF_K:
2312 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2313 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2314 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2315 		case BPF_JMP32 | BPF_JSGE | BPF_K: {
2316 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2317 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2318 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2319 			u8 sreg_lo = IA32_ECX;
2320 			u8 sreg_hi = IA32_EBX;
2321 			u32 hi;
2322 
2323 			if (dstk) {
2324 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2325 				      STACK_VAR(dst_lo));
2326 				if (is_jmp64)
2327 					EMIT3(0x8B,
2328 					      add_2reg(0x40, IA32_EBP,
2329 						       IA32_EDX),
2330 					      STACK_VAR(dst_hi));
2331 			}
2332 
2333 			/* mov ecx,imm32 */
2334 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2335 			if (is_jmp64) {
2336 				hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2337 				/* mov ebx,imm32 */
2338 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2339 				/* cmp dreg_hi,sreg_hi */
2340 				EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2341 				EMIT2(IA32_JNE, 2);
2342 			}
2343 			/* cmp dreg_lo,sreg_lo */
2344 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2345 
2346 emit_cond_jmp:		jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2347 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2348 				return -EFAULT;
2349 			jmp_offset = addrs[i + insn->off] - addrs[i];
2350 			if (is_imm8(jmp_offset)) {
2351 				EMIT2(jmp_cond, jmp_offset);
2352 			} else if (is_simm32(jmp_offset)) {
2353 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2354 			} else {
2355 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2356 				return -EFAULT;
2357 			}
2358 			break;
2359 		}
2360 		case BPF_JMP | BPF_JSGT | BPF_K:
2361 		case BPF_JMP | BPF_JSLE | BPF_K:
2362 		case BPF_JMP | BPF_JSLT | BPF_K:
2363 		case BPF_JMP | BPF_JSGE | BPF_K: {
2364 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2365 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2366 			u8 sreg_lo = IA32_ECX;
2367 			u8 sreg_hi = IA32_EBX;
2368 			u32 hi;
2369 
2370 			if (dstk) {
2371 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2372 				      STACK_VAR(dst_lo));
2373 				EMIT3(0x8B,
2374 				      add_2reg(0x40, IA32_EBP,
2375 					       IA32_EDX),
2376 				      STACK_VAR(dst_hi));
2377 			}
2378 
2379 			/* mov ecx,imm32 */
2380 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2381 			hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2382 			/* mov ebx,imm32 */
2383 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2384 			/* cmp dreg_hi,sreg_hi */
2385 			EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2386 			EMIT2(IA32_JNE, 10);
2387 			/* cmp dreg_lo,sreg_lo */
2388 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2389 
2390 			/*
2391 			 * For simplicity of branch offset computation,
2392 			 * let's use fixed jump coding here.
2393 			 */
2394 emit_cond_jmp_signed:	/* Check the condition for low 32-bit comparison */
2395 			jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
2396 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2397 				return -EFAULT;
2398 			jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
2399 			if (is_simm32(jmp_offset)) {
2400 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2401 			} else {
2402 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2403 				return -EFAULT;
2404 			}
2405 			EMIT2(0xEB, 6);
2406 
2407 			/* Check the condition for high 32-bit comparison */
2408 			jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2409 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2410 				return -EFAULT;
2411 			jmp_offset = addrs[i + insn->off] - addrs[i];
2412 			if (is_simm32(jmp_offset)) {
2413 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2414 			} else {
2415 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2416 				return -EFAULT;
2417 			}
2418 			break;
2419 		}
2420 		case BPF_JMP | BPF_JA:
2421 			if (insn->off == -1)
2422 				/* -1 jmp instructions will always jump
2423 				 * backwards two bytes. Explicitly handling
2424 				 * this case avoids wasting too many passes
2425 				 * when there are long sequences of replaced
2426 				 * dead code.
2427 				 */
2428 				jmp_offset = -2;
2429 			else
2430 				jmp_offset = addrs[i + insn->off] - addrs[i];
2431 
2432 			if (!jmp_offset)
2433 				/* Optimize out nop jumps */
2434 				break;
2435 emit_jmp:
2436 			if (is_imm8(jmp_offset)) {
2437 				EMIT2(0xEB, jmp_offset);
2438 			} else if (is_simm32(jmp_offset)) {
2439 				EMIT1_off32(0xE9, jmp_offset);
2440 			} else {
2441 				pr_err("jmp gen bug %llx\n", jmp_offset);
2442 				return -EFAULT;
2443 			}
2444 			break;
2445 		case BPF_STX | BPF_ATOMIC | BPF_W:
2446 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2447 			goto notyet;
2448 		case BPF_JMP | BPF_EXIT:
2449 			if (seen_exit) {
2450 				jmp_offset = ctx->cleanup_addr - addrs[i];
2451 				goto emit_jmp;
2452 			}
2453 			seen_exit = true;
2454 			/* Update cleanup_addr */
2455 			ctx->cleanup_addr = proglen;
2456 			emit_epilogue(&prog, bpf_prog->aux->stack_depth);
2457 			break;
2458 notyet:
2459 			pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2460 			return -EFAULT;
2461 		default:
2462 			/*
2463 			 * This error will be seen if new instruction was added
2464 			 * to interpreter, but not to JIT or if there is junk in
2465 			 * bpf_prog
2466 			 */
2467 			pr_err("bpf_jit: unknown opcode %02x\n", code);
2468 			return -EINVAL;
2469 		}
2470 
2471 		ilen = prog - temp;
2472 		if (ilen > BPF_MAX_INSN_SIZE) {
2473 			pr_err("bpf_jit: fatal insn size error\n");
2474 			return -EFAULT;
2475 		}
2476 
2477 		if (image) {
2478 			/*
2479 			 * When populating the image, assert that:
2480 			 *
2481 			 *  i) We do not write beyond the allocated space, and
2482 			 * ii) addrs[i] did not change from the prior run, in order
2483 			 *     to validate assumptions made for computing branch
2484 			 *     displacements.
2485 			 */
2486 			if (unlikely(proglen + ilen > oldproglen ||
2487 				     proglen + ilen != addrs[i])) {
2488 				pr_err("bpf_jit: fatal error\n");
2489 				return -EFAULT;
2490 			}
2491 			memcpy(image + proglen, temp, ilen);
2492 		}
2493 		proglen += ilen;
2494 		addrs[i] = proglen;
2495 		prog = temp;
2496 	}
2497 	return proglen;
2498 }
2499 
2500 bool bpf_jit_needs_zext(void)
2501 {
2502 	return true;
2503 }
2504 
2505 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2506 {
2507 	struct bpf_binary_header *header = NULL;
2508 	struct bpf_prog *tmp, *orig_prog = prog;
2509 	int proglen, oldproglen = 0;
2510 	struct jit_context ctx = {};
2511 	bool tmp_blinded = false;
2512 	u8 *image = NULL;
2513 	int *addrs;
2514 	int pass;
2515 	int i;
2516 
2517 	if (!prog->jit_requested)
2518 		return orig_prog;
2519 
2520 	tmp = bpf_jit_blind_constants(prog);
2521 	/*
2522 	 * If blinding was requested and we failed during blinding,
2523 	 * we must fall back to the interpreter.
2524 	 */
2525 	if (IS_ERR(tmp))
2526 		return orig_prog;
2527 	if (tmp != prog) {
2528 		tmp_blinded = true;
2529 		prog = tmp;
2530 	}
2531 
2532 	addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
2533 	if (!addrs) {
2534 		prog = orig_prog;
2535 		goto out;
2536 	}
2537 
2538 	/*
2539 	 * Before first pass, make a rough estimation of addrs[]
2540 	 * each BPF instruction is translated to less than 64 bytes
2541 	 */
2542 	for (proglen = 0, i = 0; i < prog->len; i++) {
2543 		proglen += 64;
2544 		addrs[i] = proglen;
2545 	}
2546 	ctx.cleanup_addr = proglen;
2547 
2548 	/*
2549 	 * JITed image shrinks with every pass and the loop iterates
2550 	 * until the image stops shrinking. Very large BPF programs
2551 	 * may converge on the last pass. In such case do one more
2552 	 * pass to emit the final image.
2553 	 */
2554 	for (pass = 0; pass < 20 || image; pass++) {
2555 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2556 		if (proglen <= 0) {
2557 out_image:
2558 			image = NULL;
2559 			if (header)
2560 				bpf_jit_binary_free(header);
2561 			prog = orig_prog;
2562 			goto out_addrs;
2563 		}
2564 		if (image) {
2565 			if (proglen != oldproglen) {
2566 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2567 				       proglen, oldproglen);
2568 				goto out_image;
2569 			}
2570 			break;
2571 		}
2572 		if (proglen == oldproglen) {
2573 			header = bpf_jit_binary_alloc(proglen, &image,
2574 						      1, jit_fill_hole);
2575 			if (!header) {
2576 				prog = orig_prog;
2577 				goto out_addrs;
2578 			}
2579 		}
2580 		oldproglen = proglen;
2581 		cond_resched();
2582 	}
2583 
2584 	if (bpf_jit_enable > 1)
2585 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2586 
2587 	if (image) {
2588 		bpf_jit_binary_lock_ro(header);
2589 		prog->bpf_func = (void *)image;
2590 		prog->jited = 1;
2591 		prog->jited_len = proglen;
2592 	} else {
2593 		prog = orig_prog;
2594 	}
2595 
2596 out_addrs:
2597 	kfree(addrs);
2598 out:
2599 	if (tmp_blinded)
2600 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2601 					   tmp : orig_prog);
2602 	return prog;
2603 }
2604 
2605 bool bpf_jit_supports_kfunc_call(void)
2606 {
2607 	return true;
2608 }
2609