xref: /linux/arch/x86/net/bpf_jit_comp.c (revision d91517839e5d95adc0cf4b28caa7af62a71de526)
1 /* bpf_jit_comp.c : BPF JIT compiler
2  *
3  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; version 2
8  * of the License.
9  */
10 #include <linux/moduleloader.h>
11 #include <asm/cacheflush.h>
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <linux/random.h>
16 
17 /*
18  * Conventions :
19  *  EAX : BPF A accumulator
20  *  EBX : BPF X accumulator
21  *  RDI : pointer to skb   (first argument given to JIT function)
22  *  RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
23  *  ECX,EDX,ESI : scratch registers
24  *  r9d : skb->len - skb->data_len (headlen)
25  *  r8  : skb->data
26  * -8(RBP) : saved RBX value
27  * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
28  */
29 int bpf_jit_enable __read_mostly;
30 
31 /*
32  * assembly code in arch/x86/net/bpf_jit.S
33  */
34 extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
35 extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
36 extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
37 extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
38 extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
39 
40 static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
41 {
42 	if (len == 1)
43 		*ptr = bytes;
44 	else if (len == 2)
45 		*(u16 *)ptr = bytes;
46 	else {
47 		*(u32 *)ptr = bytes;
48 		barrier();
49 	}
50 	return ptr + len;
51 }
52 
53 #define EMIT(bytes, len)	do { prog = emit_code(prog, bytes, len); } while (0)
54 
55 #define EMIT1(b1)		EMIT(b1, 1)
56 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
57 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
58 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
59 #define EMIT1_off32(b1, off)	do { EMIT1(b1); EMIT(off, 4);} while (0)
60 
61 #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
62 #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
63 
64 static inline bool is_imm8(int value)
65 {
66 	return value <= 127 && value >= -128;
67 }
68 
69 static inline bool is_near(int offset)
70 {
71 	return offset <= 127 && offset >= -128;
72 }
73 
74 #define EMIT_JMP(offset)						\
75 do {									\
76 	if (offset) {							\
77 		if (is_near(offset))					\
78 			EMIT2(0xeb, offset); /* jmp .+off8 */		\
79 		else							\
80 			EMIT1_off32(0xe9, offset); /* jmp .+off32 */	\
81 	}								\
82 } while (0)
83 
84 /* list of x86 cond jumps opcodes (. + s8)
85  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
86  */
87 #define X86_JB  0x72
88 #define X86_JAE 0x73
89 #define X86_JE  0x74
90 #define X86_JNE 0x75
91 #define X86_JBE 0x76
92 #define X86_JA  0x77
93 
94 #define EMIT_COND_JMP(op, offset)				\
95 do {								\
96 	if (is_near(offset))					\
97 		EMIT2(op, offset); /* jxx .+off8 */		\
98 	else {							\
99 		EMIT2(0x0f, op + 0x10);				\
100 		EMIT(offset, 4); /* jxx .+off32 */		\
101 	}							\
102 } while (0)
103 
104 #define COND_SEL(CODE, TOP, FOP)	\
105 	case CODE:			\
106 		t_op = TOP;		\
107 		f_op = FOP;		\
108 		goto cond_branch
109 
110 
111 #define SEEN_DATAREF 1 /* might call external helpers */
112 #define SEEN_XREG    2 /* ebx is used */
113 #define SEEN_MEM     4 /* use mem[] for temporary storage */
114 
115 static inline void bpf_flush_icache(void *start, void *end)
116 {
117 	mm_segment_t old_fs = get_fs();
118 
119 	set_fs(KERNEL_DS);
120 	smp_wmb();
121 	flush_icache_range((unsigned long)start, (unsigned long)end);
122 	set_fs(old_fs);
123 }
124 
125 #define CHOOSE_LOAD_FUNC(K, func) \
126 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
127 
128 /* Helper to find the offset of pkt_type in sk_buff
129  * We want to make sure its still a 3bit field starting at a byte boundary.
130  */
131 #define PKT_TYPE_MAX 7
132 static int pkt_type_offset(void)
133 {
134 	struct sk_buff skb_probe = {
135 		.pkt_type = ~0,
136 	};
137 	char *ct = (char *)&skb_probe;
138 	unsigned int off;
139 
140 	for (off = 0; off < sizeof(struct sk_buff); off++) {
141 		if (ct[off] == PKT_TYPE_MAX)
142 			return off;
143 	}
144 	pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
145 	return -1;
146 }
147 
148 struct bpf_binary_header {
149 	unsigned int	pages;
150 	/* Note : for security reasons, bpf code will follow a randomly
151 	 * sized amount of int3 instructions
152 	 */
153 	u8		image[];
154 };
155 
156 static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
157 						  u8 **image_ptr)
158 {
159 	unsigned int sz, hole;
160 	struct bpf_binary_header *header;
161 
162 	/* Most of BPF filters are really small,
163 	 * but if some of them fill a page, allow at least
164 	 * 128 extra bytes to insert a random section of int3
165 	 */
166 	sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
167 	header = module_alloc(sz);
168 	if (!header)
169 		return NULL;
170 
171 	memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
172 
173 	header->pages = sz / PAGE_SIZE;
174 	hole = sz - (proglen + sizeof(*header));
175 
176 	/* insert a random number of int3 instructions before BPF code */
177 	*image_ptr = &header->image[prandom_u32() % hole];
178 	return header;
179 }
180 
181 void bpf_jit_compile(struct sk_filter *fp)
182 {
183 	u8 temp[64];
184 	u8 *prog;
185 	unsigned int proglen, oldproglen = 0;
186 	int ilen, i;
187 	int t_offset, f_offset;
188 	u8 t_op, f_op, seen = 0, pass;
189 	u8 *image = NULL;
190 	struct bpf_binary_header *header = NULL;
191 	u8 *func;
192 	int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
193 	unsigned int cleanup_addr; /* epilogue code offset */
194 	unsigned int *addrs;
195 	const struct sock_filter *filter = fp->insns;
196 	int flen = fp->len;
197 
198 	if (!bpf_jit_enable)
199 		return;
200 
201 	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
202 	if (addrs == NULL)
203 		return;
204 
205 	/* Before first pass, make a rough estimation of addrs[]
206 	 * each bpf instruction is translated to less than 64 bytes
207 	 */
208 	for (proglen = 0, i = 0; i < flen; i++) {
209 		proglen += 64;
210 		addrs[i] = proglen;
211 	}
212 	cleanup_addr = proglen; /* epilogue address */
213 
214 	for (pass = 0; pass < 10; pass++) {
215 		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
216 		/* no prologue/epilogue for trivial filters (RET something) */
217 		proglen = 0;
218 		prog = temp;
219 
220 		if (seen_or_pass0) {
221 			EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
222 			EMIT4(0x48, 0x83, 0xec, 96);	/* subq  $96,%rsp	*/
223 			/* note : must save %rbx in case bpf_error is hit */
224 			if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
225 				EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
226 			if (seen_or_pass0 & SEEN_XREG)
227 				CLEAR_X(); /* make sure we dont leek kernel memory */
228 
229 			/*
230 			 * If this filter needs to access skb data,
231 			 * loads r9 and r8 with :
232 			 *  r9 = skb->len - skb->data_len
233 			 *  r8 = skb->data
234 			 */
235 			if (seen_or_pass0 & SEEN_DATAREF) {
236 				if (offsetof(struct sk_buff, len) <= 127)
237 					/* mov    off8(%rdi),%r9d */
238 					EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
239 				else {
240 					/* mov    off32(%rdi),%r9d */
241 					EMIT3(0x44, 0x8b, 0x8f);
242 					EMIT(offsetof(struct sk_buff, len), 4);
243 				}
244 				if (is_imm8(offsetof(struct sk_buff, data_len)))
245 					/* sub    off8(%rdi),%r9d */
246 					EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
247 				else {
248 					EMIT3(0x44, 0x2b, 0x8f);
249 					EMIT(offsetof(struct sk_buff, data_len), 4);
250 				}
251 
252 				if (is_imm8(offsetof(struct sk_buff, data)))
253 					/* mov off8(%rdi),%r8 */
254 					EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
255 				else {
256 					/* mov off32(%rdi),%r8 */
257 					EMIT3(0x4c, 0x8b, 0x87);
258 					EMIT(offsetof(struct sk_buff, data), 4);
259 				}
260 			}
261 		}
262 
263 		switch (filter[0].code) {
264 		case BPF_S_RET_K:
265 		case BPF_S_LD_W_LEN:
266 		case BPF_S_ANC_PROTOCOL:
267 		case BPF_S_ANC_IFINDEX:
268 		case BPF_S_ANC_MARK:
269 		case BPF_S_ANC_RXHASH:
270 		case BPF_S_ANC_CPU:
271 		case BPF_S_ANC_VLAN_TAG:
272 		case BPF_S_ANC_VLAN_TAG_PRESENT:
273 		case BPF_S_ANC_QUEUE:
274 		case BPF_S_ANC_PKTTYPE:
275 		case BPF_S_LD_W_ABS:
276 		case BPF_S_LD_H_ABS:
277 		case BPF_S_LD_B_ABS:
278 			/* first instruction sets A register (or is RET 'constant') */
279 			break;
280 		default:
281 			/* make sure we dont leak kernel information to user */
282 			CLEAR_A(); /* A = 0 */
283 		}
284 
285 		for (i = 0; i < flen; i++) {
286 			unsigned int K = filter[i].k;
287 
288 			switch (filter[i].code) {
289 			case BPF_S_ALU_ADD_X: /* A += X; */
290 				seen |= SEEN_XREG;
291 				EMIT2(0x01, 0xd8);		/* add %ebx,%eax */
292 				break;
293 			case BPF_S_ALU_ADD_K: /* A += K; */
294 				if (!K)
295 					break;
296 				if (is_imm8(K))
297 					EMIT3(0x83, 0xc0, K);	/* add imm8,%eax */
298 				else
299 					EMIT1_off32(0x05, K);	/* add imm32,%eax */
300 				break;
301 			case BPF_S_ALU_SUB_X: /* A -= X; */
302 				seen |= SEEN_XREG;
303 				EMIT2(0x29, 0xd8);		/* sub    %ebx,%eax */
304 				break;
305 			case BPF_S_ALU_SUB_K: /* A -= K */
306 				if (!K)
307 					break;
308 				if (is_imm8(K))
309 					EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
310 				else
311 					EMIT1_off32(0x2d, K); /* sub imm32,%eax */
312 				break;
313 			case BPF_S_ALU_MUL_X: /* A *= X; */
314 				seen |= SEEN_XREG;
315 				EMIT3(0x0f, 0xaf, 0xc3);	/* imul %ebx,%eax */
316 				break;
317 			case BPF_S_ALU_MUL_K: /* A *= K */
318 				if (is_imm8(K))
319 					EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
320 				else {
321 					EMIT2(0x69, 0xc0);		/* imul imm32,%eax */
322 					EMIT(K, 4);
323 				}
324 				break;
325 			case BPF_S_ALU_DIV_X: /* A /= X; */
326 				seen |= SEEN_XREG;
327 				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
328 				if (pc_ret0 > 0) {
329 					/* addrs[pc_ret0 - 1] is start address of target
330 					 * (addrs[i] - 4) is the address following this jmp
331 					 * ("xor %edx,%edx; div %ebx" being 4 bytes long)
332 					 */
333 					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
334 								(addrs[i] - 4));
335 				} else {
336 					EMIT_COND_JMP(X86_JNE, 2 + 5);
337 					CLEAR_A();
338 					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
339 				}
340 				EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
341 				break;
342 			case BPF_S_ALU_MOD_X: /* A %= X; */
343 				seen |= SEEN_XREG;
344 				EMIT2(0x85, 0xdb);	/* test %ebx,%ebx */
345 				if (pc_ret0 > 0) {
346 					/* addrs[pc_ret0 - 1] is start address of target
347 					 * (addrs[i] - 6) is the address following this jmp
348 					 * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
349 					 */
350 					EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
351 								(addrs[i] - 6));
352 				} else {
353 					EMIT_COND_JMP(X86_JNE, 2 + 5);
354 					CLEAR_A();
355 					EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
356 				}
357 				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
358 				EMIT2(0xf7, 0xf3);	/* div %ebx */
359 				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
360 				break;
361 			case BPF_S_ALU_MOD_K: /* A %= K; */
362 				if (K == 1) {
363 					CLEAR_A();
364 					break;
365 				}
366 				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
367 				EMIT1(0xb9);EMIT(K, 4);	/* mov imm32,%ecx */
368 				EMIT2(0xf7, 0xf1);	/* div %ecx */
369 				EMIT2(0x89, 0xd0);	/* mov %edx,%eax */
370 				break;
371 			case BPF_S_ALU_DIV_K: /* A /= K */
372 				if (K == 1)
373 					break;
374 				EMIT2(0x31, 0xd2);	/* xor %edx,%edx */
375 				EMIT1(0xb9);EMIT(K, 4);	/* mov imm32,%ecx */
376 				EMIT2(0xf7, 0xf1);	/* div %ecx */
377 				break;
378 			case BPF_S_ALU_AND_X:
379 				seen |= SEEN_XREG;
380 				EMIT2(0x21, 0xd8);		/* and %ebx,%eax */
381 				break;
382 			case BPF_S_ALU_AND_K:
383 				if (K >= 0xFFFFFF00) {
384 					EMIT2(0x24, K & 0xFF); /* and imm8,%al */
385 				} else if (K >= 0xFFFF0000) {
386 					EMIT2(0x66, 0x25);	/* and imm16,%ax */
387 					EMIT(K, 2);
388 				} else {
389 					EMIT1_off32(0x25, K);	/* and imm32,%eax */
390 				}
391 				break;
392 			case BPF_S_ALU_OR_X:
393 				seen |= SEEN_XREG;
394 				EMIT2(0x09, 0xd8);		/* or %ebx,%eax */
395 				break;
396 			case BPF_S_ALU_OR_K:
397 				if (is_imm8(K))
398 					EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
399 				else
400 					EMIT1_off32(0x0d, K);	/* or imm32,%eax */
401 				break;
402 			case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
403 			case BPF_S_ALU_XOR_X:
404 				seen |= SEEN_XREG;
405 				EMIT2(0x31, 0xd8);		/* xor %ebx,%eax */
406 				break;
407 			case BPF_S_ALU_XOR_K: /* A ^= K; */
408 				if (K == 0)
409 					break;
410 				if (is_imm8(K))
411 					EMIT3(0x83, 0xf0, K);	/* xor imm8,%eax */
412 				else
413 					EMIT1_off32(0x35, K);	/* xor imm32,%eax */
414 				break;
415 			case BPF_S_ALU_LSH_X: /* A <<= X; */
416 				seen |= SEEN_XREG;
417 				EMIT4(0x89, 0xd9, 0xd3, 0xe0);	/* mov %ebx,%ecx; shl %cl,%eax */
418 				break;
419 			case BPF_S_ALU_LSH_K:
420 				if (K == 0)
421 					break;
422 				else if (K == 1)
423 					EMIT2(0xd1, 0xe0); /* shl %eax */
424 				else
425 					EMIT3(0xc1, 0xe0, K);
426 				break;
427 			case BPF_S_ALU_RSH_X: /* A >>= X; */
428 				seen |= SEEN_XREG;
429 				EMIT4(0x89, 0xd9, 0xd3, 0xe8);	/* mov %ebx,%ecx; shr %cl,%eax */
430 				break;
431 			case BPF_S_ALU_RSH_K: /* A >>= K; */
432 				if (K == 0)
433 					break;
434 				else if (K == 1)
435 					EMIT2(0xd1, 0xe8); /* shr %eax */
436 				else
437 					EMIT3(0xc1, 0xe8, K);
438 				break;
439 			case BPF_S_ALU_NEG:
440 				EMIT2(0xf7, 0xd8);		/* neg %eax */
441 				break;
442 			case BPF_S_RET_K:
443 				if (!K) {
444 					if (pc_ret0 == -1)
445 						pc_ret0 = i;
446 					CLEAR_A();
447 				} else {
448 					EMIT1_off32(0xb8, K);	/* mov $imm32,%eax */
449 				}
450 				/* fallinto */
451 			case BPF_S_RET_A:
452 				if (seen_or_pass0) {
453 					if (i != flen - 1) {
454 						EMIT_JMP(cleanup_addr - addrs[i]);
455 						break;
456 					}
457 					if (seen_or_pass0 & SEEN_XREG)
458 						EMIT4(0x48, 0x8b, 0x5d, 0xf8);  /* mov  -8(%rbp),%rbx */
459 					EMIT1(0xc9);		/* leaveq */
460 				}
461 				EMIT1(0xc3);		/* ret */
462 				break;
463 			case BPF_S_MISC_TAX: /* X = A */
464 				seen |= SEEN_XREG;
465 				EMIT2(0x89, 0xc3);	/* mov    %eax,%ebx */
466 				break;
467 			case BPF_S_MISC_TXA: /* A = X */
468 				seen |= SEEN_XREG;
469 				EMIT2(0x89, 0xd8);	/* mov    %ebx,%eax */
470 				break;
471 			case BPF_S_LD_IMM: /* A = K */
472 				if (!K)
473 					CLEAR_A();
474 				else
475 					EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
476 				break;
477 			case BPF_S_LDX_IMM: /* X = K */
478 				seen |= SEEN_XREG;
479 				if (!K)
480 					CLEAR_X();
481 				else
482 					EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
483 				break;
484 			case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
485 				seen |= SEEN_MEM;
486 				EMIT3(0x8b, 0x45, 0xf0 - K*4);
487 				break;
488 			case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
489 				seen |= SEEN_XREG | SEEN_MEM;
490 				EMIT3(0x8b, 0x5d, 0xf0 - K*4);
491 				break;
492 			case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
493 				seen |= SEEN_MEM;
494 				EMIT3(0x89, 0x45, 0xf0 - K*4);
495 				break;
496 			case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
497 				seen |= SEEN_XREG | SEEN_MEM;
498 				EMIT3(0x89, 0x5d, 0xf0 - K*4);
499 				break;
500 			case BPF_S_LD_W_LEN: /*	A = skb->len; */
501 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
502 				if (is_imm8(offsetof(struct sk_buff, len)))
503 					/* mov    off8(%rdi),%eax */
504 					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
505 				else {
506 					EMIT2(0x8b, 0x87);
507 					EMIT(offsetof(struct sk_buff, len), 4);
508 				}
509 				break;
510 			case BPF_S_LDX_W_LEN: /* X = skb->len; */
511 				seen |= SEEN_XREG;
512 				if (is_imm8(offsetof(struct sk_buff, len)))
513 					/* mov off8(%rdi),%ebx */
514 					EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
515 				else {
516 					EMIT2(0x8b, 0x9f);
517 					EMIT(offsetof(struct sk_buff, len), 4);
518 				}
519 				break;
520 			case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
521 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
522 				if (is_imm8(offsetof(struct sk_buff, protocol))) {
523 					/* movzwl off8(%rdi),%eax */
524 					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
525 				} else {
526 					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
527 					EMIT(offsetof(struct sk_buff, protocol), 4);
528 				}
529 				EMIT2(0x86, 0xc4); /* ntohs() : xchg   %al,%ah */
530 				break;
531 			case BPF_S_ANC_IFINDEX:
532 				if (is_imm8(offsetof(struct sk_buff, dev))) {
533 					/* movq off8(%rdi),%rax */
534 					EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
535 				} else {
536 					EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
537 					EMIT(offsetof(struct sk_buff, dev), 4);
538 				}
539 				EMIT3(0x48, 0x85, 0xc0);	/* test %rax,%rax */
540 				EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
541 				BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
542 				EMIT2(0x8b, 0x80);	/* mov off32(%rax),%eax */
543 				EMIT(offsetof(struct net_device, ifindex), 4);
544 				break;
545 			case BPF_S_ANC_MARK:
546 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
547 				if (is_imm8(offsetof(struct sk_buff, mark))) {
548 					/* mov off8(%rdi),%eax */
549 					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
550 				} else {
551 					EMIT2(0x8b, 0x87);
552 					EMIT(offsetof(struct sk_buff, mark), 4);
553 				}
554 				break;
555 			case BPF_S_ANC_RXHASH:
556 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
557 				if (is_imm8(offsetof(struct sk_buff, rxhash))) {
558 					/* mov off8(%rdi),%eax */
559 					EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
560 				} else {
561 					EMIT2(0x8b, 0x87);
562 					EMIT(offsetof(struct sk_buff, rxhash), 4);
563 				}
564 				break;
565 			case BPF_S_ANC_QUEUE:
566 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
567 				if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
568 					/* movzwl off8(%rdi),%eax */
569 					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
570 				} else {
571 					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
572 					EMIT(offsetof(struct sk_buff, queue_mapping), 4);
573 				}
574 				break;
575 			case BPF_S_ANC_CPU:
576 #ifdef CONFIG_SMP
577 				EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
578 				EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
579 #else
580 				CLEAR_A();
581 #endif
582 				break;
583 			case BPF_S_ANC_VLAN_TAG:
584 			case BPF_S_ANC_VLAN_TAG_PRESENT:
585 				BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
586 				if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
587 					/* movzwl off8(%rdi),%eax */
588 					EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
589 				} else {
590 					EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
591 					EMIT(offsetof(struct sk_buff, vlan_tci), 4);
592 				}
593 				BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
594 				if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
595 					EMIT3(0x80, 0xe4, 0xef); /* and    $0xef,%ah */
596 				} else {
597 					EMIT3(0xc1, 0xe8, 0x0c); /* shr    $0xc,%eax */
598 					EMIT3(0x83, 0xe0, 0x01); /* and    $0x1,%eax */
599 				}
600 				break;
601 			case BPF_S_ANC_PKTTYPE:
602 			{
603 				int off = pkt_type_offset();
604 
605 				if (off < 0)
606 					goto out;
607 				if (is_imm8(off)) {
608 					/* movzbl off8(%rdi),%eax */
609 					EMIT4(0x0f, 0xb6, 0x47, off);
610 				} else {
611 					/* movbl off32(%rdi),%eax */
612 					EMIT3(0x0f, 0xb6, 0x87);
613 					EMIT(off, 4);
614 				}
615 				EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and    $0x7,%eax */
616 				break;
617 			}
618 			case BPF_S_LD_W_ABS:
619 				func = CHOOSE_LOAD_FUNC(K, sk_load_word);
620 common_load:			seen |= SEEN_DATAREF;
621 				t_offset = func - (image + addrs[i]);
622 				EMIT1_off32(0xbe, K); /* mov imm32,%esi */
623 				EMIT1_off32(0xe8, t_offset); /* call */
624 				break;
625 			case BPF_S_LD_H_ABS:
626 				func = CHOOSE_LOAD_FUNC(K, sk_load_half);
627 				goto common_load;
628 			case BPF_S_LD_B_ABS:
629 				func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
630 				goto common_load;
631 			case BPF_S_LDX_B_MSH:
632 				func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
633 				seen |= SEEN_DATAREF | SEEN_XREG;
634 				t_offset = func - (image + addrs[i]);
635 				EMIT1_off32(0xbe, K);	/* mov imm32,%esi */
636 				EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
637 				break;
638 			case BPF_S_LD_W_IND:
639 				func = sk_load_word;
640 common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
641 				t_offset = func - (image + addrs[i]);
642 				if (K) {
643 					if (is_imm8(K)) {
644 						EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
645 					} else {
646 						EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
647 						EMIT(K, 4);
648 					}
649 				} else {
650 					EMIT2(0x89,0xde); /* mov %ebx,%esi */
651 				}
652 				EMIT1_off32(0xe8, t_offset);	/* call sk_load_xxx_ind */
653 				break;
654 			case BPF_S_LD_H_IND:
655 				func = sk_load_half;
656 				goto common_load_ind;
657 			case BPF_S_LD_B_IND:
658 				func = sk_load_byte;
659 				goto common_load_ind;
660 			case BPF_S_JMP_JA:
661 				t_offset = addrs[i + K] - addrs[i];
662 				EMIT_JMP(t_offset);
663 				break;
664 			COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
665 			COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
666 			COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
667 			COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
668 			COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
669 			COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
670 			COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
671 			COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
672 
673 cond_branch:			f_offset = addrs[i + filter[i].jf] - addrs[i];
674 				t_offset = addrs[i + filter[i].jt] - addrs[i];
675 
676 				/* same targets, can avoid doing the test :) */
677 				if (filter[i].jt == filter[i].jf) {
678 					EMIT_JMP(t_offset);
679 					break;
680 				}
681 
682 				switch (filter[i].code) {
683 				case BPF_S_JMP_JGT_X:
684 				case BPF_S_JMP_JGE_X:
685 				case BPF_S_JMP_JEQ_X:
686 					seen |= SEEN_XREG;
687 					EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
688 					break;
689 				case BPF_S_JMP_JSET_X:
690 					seen |= SEEN_XREG;
691 					EMIT2(0x85, 0xd8); /* test %ebx,%eax */
692 					break;
693 				case BPF_S_JMP_JEQ_K:
694 					if (K == 0) {
695 						EMIT2(0x85, 0xc0); /* test   %eax,%eax */
696 						break;
697 					}
698 				case BPF_S_JMP_JGT_K:
699 				case BPF_S_JMP_JGE_K:
700 					if (K <= 127)
701 						EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
702 					else
703 						EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
704 					break;
705 				case BPF_S_JMP_JSET_K:
706 					if (K <= 0xFF)
707 						EMIT2(0xa8, K); /* test imm8,%al */
708 					else if (!(K & 0xFFFF00FF))
709 						EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
710 					else if (K <= 0xFFFF) {
711 						EMIT2(0x66, 0xa9); /* test imm16,%ax */
712 						EMIT(K, 2);
713 					} else {
714 						EMIT1_off32(0xa9, K); /* test imm32,%eax */
715 					}
716 					break;
717 				}
718 				if (filter[i].jt != 0) {
719 					if (filter[i].jf && f_offset)
720 						t_offset += is_near(f_offset) ? 2 : 5;
721 					EMIT_COND_JMP(t_op, t_offset);
722 					if (filter[i].jf)
723 						EMIT_JMP(f_offset);
724 					break;
725 				}
726 				EMIT_COND_JMP(f_op, f_offset);
727 				break;
728 			default:
729 				/* hmm, too complex filter, give up with jit compiler */
730 				goto out;
731 			}
732 			ilen = prog - temp;
733 			if (image) {
734 				if (unlikely(proglen + ilen > oldproglen)) {
735 					pr_err("bpb_jit_compile fatal error\n");
736 					kfree(addrs);
737 					module_free(NULL, header);
738 					return;
739 				}
740 				memcpy(image + proglen, temp, ilen);
741 			}
742 			proglen += ilen;
743 			addrs[i] = proglen;
744 			prog = temp;
745 		}
746 		/* last bpf instruction is always a RET :
747 		 * use it to give the cleanup instruction(s) addr
748 		 */
749 		cleanup_addr = proglen - 1; /* ret */
750 		if (seen_or_pass0)
751 			cleanup_addr -= 1; /* leaveq */
752 		if (seen_or_pass0 & SEEN_XREG)
753 			cleanup_addr -= 4; /* mov  -8(%rbp),%rbx */
754 
755 		if (image) {
756 			if (proglen != oldproglen)
757 				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
758 			break;
759 		}
760 		if (proglen == oldproglen) {
761 			header = bpf_alloc_binary(proglen, &image);
762 			if (!header)
763 				goto out;
764 		}
765 		oldproglen = proglen;
766 	}
767 
768 	if (bpf_jit_enable > 1)
769 		bpf_jit_dump(flen, proglen, pass, image);
770 
771 	if (image) {
772 		bpf_flush_icache(header, image + proglen);
773 		set_memory_ro((unsigned long)header, header->pages);
774 		fp->bpf_func = (void *)image;
775 	}
776 out:
777 	kfree(addrs);
778 	return;
779 }
780 
781 static void bpf_jit_free_deferred(struct work_struct *work)
782 {
783 	struct sk_filter *fp = container_of(work, struct sk_filter, work);
784 	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
785 	struct bpf_binary_header *header = (void *)addr;
786 
787 	set_memory_rw(addr, header->pages);
788 	module_free(NULL, header);
789 	kfree(fp);
790 }
791 
792 void bpf_jit_free(struct sk_filter *fp)
793 {
794 	if (fp->bpf_func != sk_run_filter) {
795 		INIT_WORK(&fp->work, bpf_jit_free_deferred);
796 		schedule_work(&fp->work);
797 	} else {
798 		kfree(fp);
799 	}
800 }
801