xref: /linux/arch/x86/net/bpf_jit_comp.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21 
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23 
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 	if (len == 1)
27 		*ptr = bytes;
28 	else if (len == 2)
29 		*(u16 *)ptr = bytes;
30 	else {
31 		*(u32 *)ptr = bytes;
32 		barrier();
33 	}
34 	return ptr + len;
35 }
36 
37 #define EMIT(bytes, len) \
38 	do { prog = emit_code(prog, bytes, len); } while (0)
39 
40 #define EMIT1(b1)		EMIT(b1, 1)
41 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 
45 #define EMIT1_off32(b1, off) \
46 	do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53 
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61 
62 static bool is_imm8(int value)
63 {
64 	return value <= 127 && value >= -128;
65 }
66 
67 /*
68  * Let us limit the positive offset to be <= 123.
69  * This is to ensure eventual jit convergence For the following patterns:
70  * ...
71  * pass4, final_proglen=4391:
72  *   ...
73  *   20e:    48 85 ff                test   rdi,rdi
74  *   211:    74 7d                   je     0x290
75  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
76  *   ...
77  *   289:    48 85 ff                test   rdi,rdi
78  *   28c:    74 17                   je     0x2a5
79  *   28e:    e9 7f ff ff ff          jmp    0x212
80  *   293:    bf 03 00 00 00          mov    edi,0x3
81  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
82  * and insn at 0x28e is 5-byte jmp insn with offset -129.
83  *
84  * pass5, final_proglen=4392:
85  *   ...
86  *   20e:    48 85 ff                test   rdi,rdi
87  *   211:    0f 84 80 00 00 00       je     0x297
88  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
89  *   ...
90  *   28d:    48 85 ff                test   rdi,rdi
91  *   290:    74 1a                   je     0x2ac
92  *   292:    eb 84                   jmp    0x218
93  *   294:    bf 03 00 00 00          mov    edi,0x3
94  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
95  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
96  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
97  * -124.
98  *
99  * pass6 will repeat the same code as in pass4 and this will prevent
100  * eventual convergence.
101  *
102  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
103  * cycle in the above. In the above example je offset <= 0x7c should work.
104  *
105  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
106  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
107  * avoid no convergence issue.
108  *
109  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
110  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
111  */
112 static bool is_imm8_jmp_offset(int value)
113 {
114 	return value <= 123 && value >= -128;
115 }
116 
117 static bool is_simm32(s64 value)
118 {
119 	return value == (s64)(s32)value;
120 }
121 
122 static bool is_uimm32(u64 value)
123 {
124 	return value == (u64)(u32)value;
125 }
126 
127 /* mov dst, src */
128 #define EMIT_mov(DST, SRC)								 \
129 	do {										 \
130 		if (DST != SRC)								 \
131 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
132 	} while (0)
133 
134 static int bpf_size_to_x86_bytes(int bpf_size)
135 {
136 	if (bpf_size == BPF_W)
137 		return 4;
138 	else if (bpf_size == BPF_H)
139 		return 2;
140 	else if (bpf_size == BPF_B)
141 		return 1;
142 	else if (bpf_size == BPF_DW)
143 		return 4; /* imm32 */
144 	else
145 		return 0;
146 }
147 
148 /*
149  * List of x86 cond jumps opcodes (. + s8)
150  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
151  */
152 #define X86_JB  0x72
153 #define X86_JAE 0x73
154 #define X86_JE  0x74
155 #define X86_JNE 0x75
156 #define X86_JBE 0x76
157 #define X86_JA  0x77
158 #define X86_JL  0x7C
159 #define X86_JGE 0x7D
160 #define X86_JLE 0x7E
161 #define X86_JG  0x7F
162 
163 /* Pick a register outside of BPF range for JIT internal work */
164 #define AUX_REG (MAX_BPF_JIT_REG + 1)
165 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
166 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
167 
168 /*
169  * The following table maps BPF registers to x86-64 registers.
170  *
171  * x86-64 register R12 is unused, since if used as base address
172  * register in load/store instructions, it always needs an
173  * extra byte of encoding and is callee saved.
174  *
175  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
176  * trampoline. x86-64 register R10 is used for blinding (if enabled).
177  */
178 static const int reg2hex[] = {
179 	[BPF_REG_0] = 0,  /* RAX */
180 	[BPF_REG_1] = 7,  /* RDI */
181 	[BPF_REG_2] = 6,  /* RSI */
182 	[BPF_REG_3] = 2,  /* RDX */
183 	[BPF_REG_4] = 1,  /* RCX */
184 	[BPF_REG_5] = 0,  /* R8  */
185 	[BPF_REG_6] = 3,  /* RBX callee saved */
186 	[BPF_REG_7] = 5,  /* R13 callee saved */
187 	[BPF_REG_8] = 6,  /* R14 callee saved */
188 	[BPF_REG_9] = 7,  /* R15 callee saved */
189 	[BPF_REG_FP] = 5, /* RBP readonly */
190 	[BPF_REG_AX] = 2, /* R10 temp register */
191 	[AUX_REG] = 3,    /* R11 temp register */
192 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
193 	[X86_REG_R12] = 4, /* R12 callee saved */
194 };
195 
196 static const int reg2pt_regs[] = {
197 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
198 	[BPF_REG_1] = offsetof(struct pt_regs, di),
199 	[BPF_REG_2] = offsetof(struct pt_regs, si),
200 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
201 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
202 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
203 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
204 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
205 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
206 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
207 };
208 
209 /*
210  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
211  * which need extra byte of encoding.
212  * rax,rcx,...,rbp have simpler encoding
213  */
214 static bool is_ereg(u32 reg)
215 {
216 	return (1 << reg) & (BIT(BPF_REG_5) |
217 			     BIT(AUX_REG) |
218 			     BIT(BPF_REG_7) |
219 			     BIT(BPF_REG_8) |
220 			     BIT(BPF_REG_9) |
221 			     BIT(X86_REG_R9) |
222 			     BIT(X86_REG_R12) |
223 			     BIT(BPF_REG_AX));
224 }
225 
226 /*
227  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
228  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
229  * of encoding. al,cl,dl,bl have simpler encoding.
230  */
231 static bool is_ereg_8l(u32 reg)
232 {
233 	return is_ereg(reg) ||
234 	    (1 << reg) & (BIT(BPF_REG_1) |
235 			  BIT(BPF_REG_2) |
236 			  BIT(BPF_REG_FP));
237 }
238 
239 static bool is_axreg(u32 reg)
240 {
241 	return reg == BPF_REG_0;
242 }
243 
244 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
245 static u8 add_1mod(u8 byte, u32 reg)
246 {
247 	if (is_ereg(reg))
248 		byte |= 1;
249 	return byte;
250 }
251 
252 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
253 {
254 	if (is_ereg(r1))
255 		byte |= 1;
256 	if (is_ereg(r2))
257 		byte |= 4;
258 	return byte;
259 }
260 
261 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
262 {
263 	if (is_ereg(r1))
264 		byte |= 1;
265 	if (is_ereg(index))
266 		byte |= 2;
267 	if (is_ereg(r2))
268 		byte |= 4;
269 	return byte;
270 }
271 
272 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
273 static u8 add_1reg(u8 byte, u32 dst_reg)
274 {
275 	return byte + reg2hex[dst_reg];
276 }
277 
278 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
279 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
280 {
281 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
282 }
283 
284 /* Some 1-byte opcodes for binary ALU operations */
285 static u8 simple_alu_opcodes[] = {
286 	[BPF_ADD] = 0x01,
287 	[BPF_SUB] = 0x29,
288 	[BPF_AND] = 0x21,
289 	[BPF_OR] = 0x09,
290 	[BPF_XOR] = 0x31,
291 	[BPF_LSH] = 0xE0,
292 	[BPF_RSH] = 0xE8,
293 	[BPF_ARSH] = 0xF8,
294 };
295 
296 static void jit_fill_hole(void *area, unsigned int size)
297 {
298 	/* Fill whole space with INT3 instructions */
299 	memset(area, 0xcc, size);
300 }
301 
302 int bpf_arch_text_invalidate(void *dst, size_t len)
303 {
304 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
305 }
306 
307 struct jit_context {
308 	int cleanup_addr; /* Epilogue code offset */
309 
310 	/*
311 	 * Program specific offsets of labels in the code; these rely on the
312 	 * JIT doing at least 2 passes, recording the position on the first
313 	 * pass, only to generate the correct offset on the second pass.
314 	 */
315 	int tail_call_direct_label;
316 	int tail_call_indirect_label;
317 };
318 
319 /* Maximum number of bytes emitted while JITing one eBPF insn */
320 #define BPF_MAX_INSN_SIZE	128
321 #define BPF_INSN_SAFETY		64
322 
323 /* Number of bytes emit_patch() needs to generate instructions */
324 #define X86_PATCH_SIZE		5
325 /* Number of bytes that will be skipped on tailcall */
326 #define X86_TAIL_CALL_OFFSET	(12 + ENDBR_INSN_SIZE)
327 
328 static void push_r9(u8 **pprog)
329 {
330 	u8 *prog = *pprog;
331 
332 	EMIT2(0x41, 0x51);   /* push r9 */
333 	*pprog = prog;
334 }
335 
336 static void pop_r9(u8 **pprog)
337 {
338 	u8 *prog = *pprog;
339 
340 	EMIT2(0x41, 0x59);   /* pop r9 */
341 	*pprog = prog;
342 }
343 
344 static void push_r12(u8 **pprog)
345 {
346 	u8 *prog = *pprog;
347 
348 	EMIT2(0x41, 0x54);   /* push r12 */
349 	*pprog = prog;
350 }
351 
352 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
353 {
354 	u8 *prog = *pprog;
355 
356 	if (callee_regs_used[0])
357 		EMIT1(0x53);         /* push rbx */
358 	if (callee_regs_used[1])
359 		EMIT2(0x41, 0x55);   /* push r13 */
360 	if (callee_regs_used[2])
361 		EMIT2(0x41, 0x56);   /* push r14 */
362 	if (callee_regs_used[3])
363 		EMIT2(0x41, 0x57);   /* push r15 */
364 	*pprog = prog;
365 }
366 
367 static void pop_r12(u8 **pprog)
368 {
369 	u8 *prog = *pprog;
370 
371 	EMIT2(0x41, 0x5C);   /* pop r12 */
372 	*pprog = prog;
373 }
374 
375 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
376 {
377 	u8 *prog = *pprog;
378 
379 	if (callee_regs_used[3])
380 		EMIT2(0x41, 0x5F);   /* pop r15 */
381 	if (callee_regs_used[2])
382 		EMIT2(0x41, 0x5E);   /* pop r14 */
383 	if (callee_regs_used[1])
384 		EMIT2(0x41, 0x5D);   /* pop r13 */
385 	if (callee_regs_used[0])
386 		EMIT1(0x5B);         /* pop rbx */
387 	*pprog = prog;
388 }
389 
390 static void emit_nops(u8 **pprog, int len)
391 {
392 	u8 *prog = *pprog;
393 	int i, noplen;
394 
395 	while (len > 0) {
396 		noplen = len;
397 
398 		if (noplen > ASM_NOP_MAX)
399 			noplen = ASM_NOP_MAX;
400 
401 		for (i = 0; i < noplen; i++)
402 			EMIT1(x86_nops[noplen][i]);
403 		len -= noplen;
404 	}
405 
406 	*pprog = prog;
407 }
408 
409 /*
410  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
411  * in arch/x86/kernel/alternative.c
412  */
413 
414 static void emit_fineibt(u8 **pprog, u32 hash)
415 {
416 	u8 *prog = *pprog;
417 
418 	EMIT_ENDBR();
419 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
420 	EMIT2(0x74, 0x07);				/* jz.d8 +7		*/
421 	EMIT2(0x0f, 0x0b);				/* ud2			*/
422 	EMIT1(0x90);					/* nop			*/
423 	EMIT_ENDBR_POISON();
424 
425 	*pprog = prog;
426 }
427 
428 static void emit_kcfi(u8 **pprog, u32 hash)
429 {
430 	u8 *prog = *pprog;
431 
432 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
433 #ifdef CONFIG_CALL_PADDING
434 	EMIT1(0x90);
435 	EMIT1(0x90);
436 	EMIT1(0x90);
437 	EMIT1(0x90);
438 	EMIT1(0x90);
439 	EMIT1(0x90);
440 	EMIT1(0x90);
441 	EMIT1(0x90);
442 	EMIT1(0x90);
443 	EMIT1(0x90);
444 	EMIT1(0x90);
445 #endif
446 	EMIT_ENDBR();
447 
448 	*pprog = prog;
449 }
450 
451 static void emit_cfi(u8 **pprog, u32 hash)
452 {
453 	u8 *prog = *pprog;
454 
455 	switch (cfi_mode) {
456 	case CFI_FINEIBT:
457 		emit_fineibt(&prog, hash);
458 		break;
459 
460 	case CFI_KCFI:
461 		emit_kcfi(&prog, hash);
462 		break;
463 
464 	default:
465 		EMIT_ENDBR();
466 		break;
467 	}
468 
469 	*pprog = prog;
470 }
471 
472 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
473 {
474 	u8 *prog = *pprog;
475 
476 	if (!is_subprog) {
477 		/* cmp rax, MAX_TAIL_CALL_CNT */
478 		EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
479 		EMIT2(X86_JA, 6);        /* ja 6 */
480 		/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
481 		 * case1: entry of main prog.
482 		 * case2: tail callee of main prog.
483 		 */
484 		EMIT1(0x50);             /* push rax */
485 		/* Make rax as tail_call_cnt_ptr. */
486 		EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
487 		EMIT2(0xEB, 1);          /* jmp 1 */
488 		/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
489 		 * case: tail callee of subprog.
490 		 */
491 		EMIT1(0x50);             /* push rax */
492 		/* push tail_call_cnt_ptr */
493 		EMIT1(0x50);             /* push rax */
494 	} else { /* is_subprog */
495 		/* rax is tail_call_cnt_ptr. */
496 		EMIT1(0x50);             /* push rax */
497 		EMIT1(0x50);             /* push rax */
498 	}
499 
500 	*pprog = prog;
501 }
502 
503 /*
504  * Emit x86-64 prologue code for BPF program.
505  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
506  * while jumping to another program
507  */
508 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
509 			  bool tail_call_reachable, bool is_subprog,
510 			  bool is_exception_cb)
511 {
512 	u8 *prog = *pprog;
513 
514 	emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
515 	/* BPF trampoline can be made to work without these nops,
516 	 * but let's waste 5 bytes for now and optimize later
517 	 */
518 	emit_nops(&prog, X86_PATCH_SIZE);
519 	if (!ebpf_from_cbpf) {
520 		if (tail_call_reachable && !is_subprog)
521 			/* When it's the entry of the whole tailcall context,
522 			 * zeroing rax means initialising tail_call_cnt.
523 			 */
524 			EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
525 		else
526 			/* Keep the same instruction layout. */
527 			emit_nops(&prog, 3);     /* nop3 */
528 	}
529 	/* Exception callback receives FP as third parameter */
530 	if (is_exception_cb) {
531 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
532 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
533 		/* The main frame must have exception_boundary as true, so we
534 		 * first restore those callee-saved regs from stack, before
535 		 * reusing the stack frame.
536 		 */
537 		pop_callee_regs(&prog, all_callee_regs_used);
538 		pop_r12(&prog);
539 		/* Reset the stack frame. */
540 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
541 	} else {
542 		EMIT1(0x55);             /* push rbp */
543 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
544 	}
545 
546 	/* X86_TAIL_CALL_OFFSET is here */
547 	EMIT_ENDBR();
548 
549 	/* sub rsp, rounded_stack_depth */
550 	if (stack_depth)
551 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
552 	if (tail_call_reachable)
553 		emit_prologue_tail_call(&prog, is_subprog);
554 	*pprog = prog;
555 }
556 
557 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
558 {
559 	u8 *prog = *pprog;
560 	s64 offset;
561 
562 	offset = func - (ip + X86_PATCH_SIZE);
563 	if (!is_simm32(offset)) {
564 		pr_err("Target call %p is out of range\n", func);
565 		return -ERANGE;
566 	}
567 	EMIT1_off32(opcode, offset);
568 	*pprog = prog;
569 	return 0;
570 }
571 
572 static int emit_call(u8 **pprog, void *func, void *ip)
573 {
574 	return emit_patch(pprog, func, ip, 0xE8);
575 }
576 
577 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
578 {
579 	OPTIMIZER_HIDE_VAR(func);
580 	ip += x86_call_depth_emit_accounting(pprog, func, ip);
581 	return emit_patch(pprog, func, ip, 0xE8);
582 }
583 
584 static int emit_jump(u8 **pprog, void *func, void *ip)
585 {
586 	return emit_patch(pprog, func, ip, 0xE9);
587 }
588 
589 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
590 				void *old_addr, void *new_addr)
591 {
592 	const u8 *nop_insn = x86_nops[5];
593 	u8 old_insn[X86_PATCH_SIZE];
594 	u8 new_insn[X86_PATCH_SIZE];
595 	u8 *prog;
596 	int ret;
597 
598 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
599 	if (old_addr) {
600 		prog = old_insn;
601 		ret = t == BPF_MOD_CALL ?
602 		      emit_call(&prog, old_addr, ip) :
603 		      emit_jump(&prog, old_addr, ip);
604 		if (ret)
605 			return ret;
606 	}
607 
608 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
609 	if (new_addr) {
610 		prog = new_insn;
611 		ret = t == BPF_MOD_CALL ?
612 		      emit_call(&prog, new_addr, ip) :
613 		      emit_jump(&prog, new_addr, ip);
614 		if (ret)
615 			return ret;
616 	}
617 
618 	ret = -EBUSY;
619 	mutex_lock(&text_mutex);
620 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
621 		goto out;
622 	ret = 1;
623 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
624 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
625 		ret = 0;
626 	}
627 out:
628 	mutex_unlock(&text_mutex);
629 	return ret;
630 }
631 
632 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
633 		       void *old_addr, void *new_addr)
634 {
635 	if (!is_kernel_text((long)ip) &&
636 	    !is_bpf_text_address((long)ip))
637 		/* BPF poking in modules is not supported */
638 		return -EINVAL;
639 
640 	/*
641 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
642 	 * with an ENDBR instruction.
643 	 */
644 	if (is_endbr(*(u32 *)ip))
645 		ip += ENDBR_INSN_SIZE;
646 
647 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
648 }
649 
650 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
651 
652 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
653 {
654 	u8 *prog = *pprog;
655 
656 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
657 		EMIT_LFENCE();
658 		EMIT2(0xFF, 0xE0 + reg);
659 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
660 		OPTIMIZER_HIDE_VAR(reg);
661 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
662 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
663 		else
664 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
665 	} else {
666 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
667 		if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
668 			EMIT1(0xCC);		/* int3 */
669 	}
670 
671 	*pprog = prog;
672 }
673 
674 static void emit_return(u8 **pprog, u8 *ip)
675 {
676 	u8 *prog = *pprog;
677 
678 	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
679 		emit_jump(&prog, x86_return_thunk, ip);
680 	} else {
681 		EMIT1(0xC3);		/* ret */
682 		if (IS_ENABLED(CONFIG_MITIGATION_SLS))
683 			EMIT1(0xCC);	/* int3 */
684 	}
685 
686 	*pprog = prog;
687 }
688 
689 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)	(-16 - round_up(stack, 8))
690 
691 /*
692  * Generate the following code:
693  *
694  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
695  *   if (index >= array->map.max_entries)
696  *     goto out;
697  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
698  *     goto out;
699  *   prog = array->ptrs[index];
700  *   if (prog == NULL)
701  *     goto out;
702  *   goto *(prog->bpf_func + prologue_size);
703  * out:
704  */
705 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
706 					u8 **pprog, bool *callee_regs_used,
707 					u32 stack_depth, u8 *ip,
708 					struct jit_context *ctx)
709 {
710 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
711 	u8 *prog = *pprog, *start = *pprog;
712 	int offset;
713 
714 	/*
715 	 * rdi - pointer to ctx
716 	 * rsi - pointer to bpf_array
717 	 * rdx - index in bpf_array
718 	 */
719 
720 	/*
721 	 * if (index >= array->map.max_entries)
722 	 *	goto out;
723 	 */
724 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
725 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
726 	      offsetof(struct bpf_array, map.max_entries));
727 
728 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
729 	EMIT2(X86_JBE, offset);                   /* jbe out */
730 
731 	/*
732 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
733 	 *	goto out;
734 	 */
735 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
736 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
737 
738 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
739 	EMIT2(X86_JAE, offset);                   /* jae out */
740 
741 	/* prog = array->ptrs[index]; */
742 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
743 		    offsetof(struct bpf_array, ptrs));
744 
745 	/*
746 	 * if (prog == NULL)
747 	 *	goto out;
748 	 */
749 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
750 
751 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
752 	EMIT2(X86_JE, offset);                    /* je out */
753 
754 	/* Inc tail_call_cnt if the slot is populated. */
755 	EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
756 
757 	if (bpf_prog->aux->exception_boundary) {
758 		pop_callee_regs(&prog, all_callee_regs_used);
759 		pop_r12(&prog);
760 	} else {
761 		pop_callee_regs(&prog, callee_regs_used);
762 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
763 			pop_r12(&prog);
764 	}
765 
766 	/* Pop tail_call_cnt_ptr. */
767 	EMIT1(0x58);                              /* pop rax */
768 	/* Pop tail_call_cnt, if it's main prog.
769 	 * Pop tail_call_cnt_ptr, if it's subprog.
770 	 */
771 	EMIT1(0x58);                              /* pop rax */
772 	if (stack_depth)
773 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
774 			    round_up(stack_depth, 8));
775 
776 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
777 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
778 	      offsetof(struct bpf_prog, bpf_func));
779 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
780 	      X86_TAIL_CALL_OFFSET);
781 	/*
782 	 * Now we're ready to jump into next BPF program
783 	 * rdi == ctx (1st arg)
784 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
785 	 */
786 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
787 
788 	/* out: */
789 	ctx->tail_call_indirect_label = prog - start;
790 	*pprog = prog;
791 }
792 
793 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
794 				      struct bpf_jit_poke_descriptor *poke,
795 				      u8 **pprog, u8 *ip,
796 				      bool *callee_regs_used, u32 stack_depth,
797 				      struct jit_context *ctx)
798 {
799 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
800 	u8 *prog = *pprog, *start = *pprog;
801 	int offset;
802 
803 	/*
804 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
805 	 *	goto out;
806 	 */
807 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
808 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
809 
810 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
811 	EMIT2(X86_JAE, offset);                       /* jae out */
812 
813 	poke->tailcall_bypass = ip + (prog - start);
814 	poke->adj_off = X86_TAIL_CALL_OFFSET;
815 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
816 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
817 
818 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
819 		  poke->tailcall_bypass);
820 
821 	/* Inc tail_call_cnt if the slot is populated. */
822 	EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
823 
824 	if (bpf_prog->aux->exception_boundary) {
825 		pop_callee_regs(&prog, all_callee_regs_used);
826 		pop_r12(&prog);
827 	} else {
828 		pop_callee_regs(&prog, callee_regs_used);
829 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
830 			pop_r12(&prog);
831 	}
832 
833 	/* Pop tail_call_cnt_ptr. */
834 	EMIT1(0x58);                                  /* pop rax */
835 	/* Pop tail_call_cnt, if it's main prog.
836 	 * Pop tail_call_cnt_ptr, if it's subprog.
837 	 */
838 	EMIT1(0x58);                                  /* pop rax */
839 	if (stack_depth)
840 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
841 
842 	emit_nops(&prog, X86_PATCH_SIZE);
843 
844 	/* out: */
845 	ctx->tail_call_direct_label = prog - start;
846 
847 	*pprog = prog;
848 }
849 
850 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
851 {
852 	struct bpf_jit_poke_descriptor *poke;
853 	struct bpf_array *array;
854 	struct bpf_prog *target;
855 	int i, ret;
856 
857 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
858 		poke = &prog->aux->poke_tab[i];
859 		if (poke->aux && poke->aux != prog->aux)
860 			continue;
861 
862 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
863 
864 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
865 			continue;
866 
867 		array = container_of(poke->tail_call.map, struct bpf_array, map);
868 		mutex_lock(&array->aux->poke_mutex);
869 		target = array->ptrs[poke->tail_call.key];
870 		if (target) {
871 			ret = __bpf_arch_text_poke(poke->tailcall_target,
872 						   BPF_MOD_JUMP, NULL,
873 						   (u8 *)target->bpf_func +
874 						   poke->adj_off);
875 			BUG_ON(ret < 0);
876 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
877 						   BPF_MOD_JUMP,
878 						   (u8 *)poke->tailcall_target +
879 						   X86_PATCH_SIZE, NULL);
880 			BUG_ON(ret < 0);
881 		}
882 		WRITE_ONCE(poke->tailcall_target_stable, true);
883 		mutex_unlock(&array->aux->poke_mutex);
884 	}
885 }
886 
887 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
888 			   u32 dst_reg, const u32 imm32)
889 {
890 	u8 *prog = *pprog;
891 	u8 b1, b2, b3;
892 
893 	/*
894 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
895 	 * (which zero-extends imm32) to save 2 bytes.
896 	 */
897 	if (sign_propagate && (s32)imm32 < 0) {
898 		/* 'mov %rax, imm32' sign extends imm32 */
899 		b1 = add_1mod(0x48, dst_reg);
900 		b2 = 0xC7;
901 		b3 = 0xC0;
902 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
903 		goto done;
904 	}
905 
906 	/*
907 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
908 	 * to save 3 bytes.
909 	 */
910 	if (imm32 == 0) {
911 		if (is_ereg(dst_reg))
912 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
913 		b2 = 0x31; /* xor */
914 		b3 = 0xC0;
915 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
916 		goto done;
917 	}
918 
919 	/* mov %eax, imm32 */
920 	if (is_ereg(dst_reg))
921 		EMIT1(add_1mod(0x40, dst_reg));
922 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
923 done:
924 	*pprog = prog;
925 }
926 
927 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
928 			   const u32 imm32_hi, const u32 imm32_lo)
929 {
930 	u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
931 	u8 *prog = *pprog;
932 
933 	if (is_uimm32(imm64)) {
934 		/*
935 		 * For emitting plain u32, where sign bit must not be
936 		 * propagated LLVM tends to load imm64 over mov32
937 		 * directly, so save couple of bytes by just doing
938 		 * 'mov %eax, imm32' instead.
939 		 */
940 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
941 	} else if (is_simm32(imm64)) {
942 		emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
943 	} else {
944 		/* movabsq rax, imm64 */
945 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
946 		EMIT(imm32_lo, 4);
947 		EMIT(imm32_hi, 4);
948 	}
949 
950 	*pprog = prog;
951 }
952 
953 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
954 {
955 	u8 *prog = *pprog;
956 
957 	if (is64) {
958 		/* mov dst, src */
959 		EMIT_mov(dst_reg, src_reg);
960 	} else {
961 		/* mov32 dst, src */
962 		if (is_ereg(dst_reg) || is_ereg(src_reg))
963 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
964 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
965 	}
966 
967 	*pprog = prog;
968 }
969 
970 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
971 			   u32 src_reg)
972 {
973 	u8 *prog = *pprog;
974 
975 	if (is64) {
976 		/* movs[b,w,l]q dst, src */
977 		if (num_bits == 8)
978 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
979 			      add_2reg(0xC0, src_reg, dst_reg));
980 		else if (num_bits == 16)
981 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
982 			      add_2reg(0xC0, src_reg, dst_reg));
983 		else if (num_bits == 32)
984 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
985 			      add_2reg(0xC0, src_reg, dst_reg));
986 	} else {
987 		/* movs[b,w]l dst, src */
988 		if (num_bits == 8) {
989 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
990 			      add_2reg(0xC0, src_reg, dst_reg));
991 		} else if (num_bits == 16) {
992 			if (is_ereg(dst_reg) || is_ereg(src_reg))
993 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
994 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
995 			      add_2reg(0xC0, src_reg, dst_reg));
996 		}
997 	}
998 
999 	*pprog = prog;
1000 }
1001 
1002 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1003 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1004 {
1005 	u8 *prog = *pprog;
1006 
1007 	if (is_imm8(off)) {
1008 		/* 1-byte signed displacement.
1009 		 *
1010 		 * If off == 0 we could skip this and save one extra byte, but
1011 		 * special case of x86 R13 which always needs an offset is not
1012 		 * worth the hassle
1013 		 */
1014 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1015 	} else {
1016 		/* 4-byte signed displacement */
1017 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1018 	}
1019 	*pprog = prog;
1020 }
1021 
1022 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1023 {
1024 	u8 *prog = *pprog;
1025 
1026 	if (is_imm8(off)) {
1027 		EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1028 	} else {
1029 		EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1030 	}
1031 	*pprog = prog;
1032 }
1033 
1034 /*
1035  * Emit a REX byte if it will be necessary to address these registers
1036  */
1037 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1038 {
1039 	u8 *prog = *pprog;
1040 
1041 	if (is64)
1042 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
1043 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
1044 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
1045 	*pprog = prog;
1046 }
1047 
1048 /*
1049  * Similar version of maybe_emit_mod() for a single register
1050  */
1051 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1052 {
1053 	u8 *prog = *pprog;
1054 
1055 	if (is64)
1056 		EMIT1(add_1mod(0x48, reg));
1057 	else if (is_ereg(reg))
1058 		EMIT1(add_1mod(0x40, reg));
1059 	*pprog = prog;
1060 }
1061 
1062 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1063 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1064 {
1065 	u8 *prog = *pprog;
1066 
1067 	switch (size) {
1068 	case BPF_B:
1069 		/* Emit 'movzx rax, byte ptr [rax + off]' */
1070 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1071 		break;
1072 	case BPF_H:
1073 		/* Emit 'movzx rax, word ptr [rax + off]' */
1074 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1075 		break;
1076 	case BPF_W:
1077 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
1078 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1079 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1080 		else
1081 			EMIT1(0x8B);
1082 		break;
1083 	case BPF_DW:
1084 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
1085 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1086 		break;
1087 	}
1088 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1089 	*pprog = prog;
1090 }
1091 
1092 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1093 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1094 {
1095 	u8 *prog = *pprog;
1096 
1097 	switch (size) {
1098 	case BPF_B:
1099 		/* Emit 'movsx rax, byte ptr [rax + off]' */
1100 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1101 		break;
1102 	case BPF_H:
1103 		/* Emit 'movsx rax, word ptr [rax + off]' */
1104 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1105 		break;
1106 	case BPF_W:
1107 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1108 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1109 		break;
1110 	}
1111 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1112 	*pprog = prog;
1113 }
1114 
1115 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1116 {
1117 	u8 *prog = *pprog;
1118 
1119 	switch (size) {
1120 	case BPF_B:
1121 		/* movzx rax, byte ptr [rax + r12 + off] */
1122 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1123 		break;
1124 	case BPF_H:
1125 		/* movzx rax, word ptr [rax + r12 + off] */
1126 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1127 		break;
1128 	case BPF_W:
1129 		/* mov eax, dword ptr [rax + r12 + off] */
1130 		EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1131 		break;
1132 	case BPF_DW:
1133 		/* mov rax, qword ptr [rax + r12 + off] */
1134 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1135 		break;
1136 	}
1137 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1138 	*pprog = prog;
1139 }
1140 
1141 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1142 {
1143 	emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1144 }
1145 
1146 /* STX: *(u8*)(dst_reg + off) = src_reg */
1147 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1148 {
1149 	u8 *prog = *pprog;
1150 
1151 	switch (size) {
1152 	case BPF_B:
1153 		/* Emit 'mov byte ptr [rax + off], al' */
1154 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1155 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1156 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1157 		else
1158 			EMIT1(0x88);
1159 		break;
1160 	case BPF_H:
1161 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1162 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1163 		else
1164 			EMIT2(0x66, 0x89);
1165 		break;
1166 	case BPF_W:
1167 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1168 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1169 		else
1170 			EMIT1(0x89);
1171 		break;
1172 	case BPF_DW:
1173 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1174 		break;
1175 	}
1176 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1177 	*pprog = prog;
1178 }
1179 
1180 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1181 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1182 {
1183 	u8 *prog = *pprog;
1184 
1185 	switch (size) {
1186 	case BPF_B:
1187 		/* mov byte ptr [rax + r12 + off], al */
1188 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1189 		break;
1190 	case BPF_H:
1191 		/* mov word ptr [rax + r12 + off], ax */
1192 		EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1193 		break;
1194 	case BPF_W:
1195 		/* mov dword ptr [rax + r12 + 1], eax */
1196 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1197 		break;
1198 	case BPF_DW:
1199 		/* mov qword ptr [rax + r12 + 1], rax */
1200 		EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1201 		break;
1202 	}
1203 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1204 	*pprog = prog;
1205 }
1206 
1207 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1208 {
1209 	emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1210 }
1211 
1212 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1213 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1214 {
1215 	u8 *prog = *pprog;
1216 
1217 	switch (size) {
1218 	case BPF_B:
1219 		/* mov byte ptr [rax + r12 + off], imm8 */
1220 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1221 		break;
1222 	case BPF_H:
1223 		/* mov word ptr [rax + r12 + off], imm16 */
1224 		EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1225 		break;
1226 	case BPF_W:
1227 		/* mov dword ptr [rax + r12 + 1], imm32 */
1228 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1229 		break;
1230 	case BPF_DW:
1231 		/* mov qword ptr [rax + r12 + 1], imm32 */
1232 		EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1233 		break;
1234 	}
1235 	emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1236 	EMIT(imm, bpf_size_to_x86_bytes(size));
1237 	*pprog = prog;
1238 }
1239 
1240 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1241 {
1242 	emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1243 }
1244 
1245 static int emit_atomic(u8 **pprog, u8 atomic_op,
1246 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1247 {
1248 	u8 *prog = *pprog;
1249 
1250 	EMIT1(0xF0); /* lock prefix */
1251 
1252 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1253 
1254 	/* emit opcode */
1255 	switch (atomic_op) {
1256 	case BPF_ADD:
1257 	case BPF_AND:
1258 	case BPF_OR:
1259 	case BPF_XOR:
1260 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1261 		EMIT1(simple_alu_opcodes[atomic_op]);
1262 		break;
1263 	case BPF_ADD | BPF_FETCH:
1264 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1265 		EMIT2(0x0F, 0xC1);
1266 		break;
1267 	case BPF_XCHG:
1268 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1269 		EMIT1(0x87);
1270 		break;
1271 	case BPF_CMPXCHG:
1272 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1273 		EMIT2(0x0F, 0xB1);
1274 		break;
1275 	default:
1276 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1277 		return -EFAULT;
1278 	}
1279 
1280 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1281 
1282 	*pprog = prog;
1283 	return 0;
1284 }
1285 
1286 static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size,
1287 			     u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1288 {
1289 	u8 *prog = *pprog;
1290 
1291 	EMIT1(0xF0); /* lock prefix */
1292 	switch (size) {
1293 	case BPF_W:
1294 		EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1295 		break;
1296 	case BPF_DW:
1297 		EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1298 		break;
1299 	default:
1300 		pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n");
1301 		return -EFAULT;
1302 	}
1303 
1304 	/* emit opcode */
1305 	switch (atomic_op) {
1306 	case BPF_ADD:
1307 	case BPF_AND:
1308 	case BPF_OR:
1309 	case BPF_XOR:
1310 		/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1311 		EMIT1(simple_alu_opcodes[atomic_op]);
1312 		break;
1313 	case BPF_ADD | BPF_FETCH:
1314 		/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1315 		EMIT2(0x0F, 0xC1);
1316 		break;
1317 	case BPF_XCHG:
1318 		/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1319 		EMIT1(0x87);
1320 		break;
1321 	case BPF_CMPXCHG:
1322 		/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1323 		EMIT2(0x0F, 0xB1);
1324 		break;
1325 	default:
1326 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1327 		return -EFAULT;
1328 	}
1329 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1330 	*pprog = prog;
1331 	return 0;
1332 }
1333 
1334 #define DONT_CLEAR 1
1335 
1336 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1337 {
1338 	u32 reg = x->fixup >> 8;
1339 
1340 	/* jump over faulting load and clear dest register */
1341 	if (reg != DONT_CLEAR)
1342 		*(unsigned long *)((void *)regs + reg) = 0;
1343 	regs->ip += x->fixup & 0xff;
1344 	return true;
1345 }
1346 
1347 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1348 			     bool *regs_used)
1349 {
1350 	int i;
1351 
1352 	for (i = 1; i <= insn_cnt; i++, insn++) {
1353 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1354 			regs_used[0] = true;
1355 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1356 			regs_used[1] = true;
1357 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1358 			regs_used[2] = true;
1359 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1360 			regs_used[3] = true;
1361 	}
1362 }
1363 
1364 /* emit the 3-byte VEX prefix
1365  *
1366  * r: same as rex.r, extra bit for ModRM reg field
1367  * x: same as rex.x, extra bit for SIB index field
1368  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1369  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1370  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1371  * src_reg2: additional source reg (encoded as BPF reg)
1372  * l: vector length (128 bit or 256 bit) or reserved
1373  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1374  */
1375 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1376 		      bool w, u8 src_reg2, bool l, u8 pp)
1377 {
1378 	u8 *prog = *pprog;
1379 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1380 	u8 b1, b2;
1381 	u8 vvvv = reg2hex[src_reg2];
1382 
1383 	/* reg2hex gives only the lower 3 bit of vvvv */
1384 	if (is_ereg(src_reg2))
1385 		vvvv |= 1 << 3;
1386 
1387 	/*
1388 	 * 2nd byte of 3-byte VEX prefix
1389 	 * ~ means bit inverted encoding
1390 	 *
1391 	 *    7                           0
1392 	 *  +---+---+---+---+---+---+---+---+
1393 	 *  |~R |~X |~B |         m         |
1394 	 *  +---+---+---+---+---+---+---+---+
1395 	 */
1396 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1397 	/*
1398 	 * 3rd byte of 3-byte VEX prefix
1399 	 *
1400 	 *    7                           0
1401 	 *  +---+---+---+---+---+---+---+---+
1402 	 *  | W |     ~vvvv     | L |   pp  |
1403 	 *  +---+---+---+---+---+---+---+---+
1404 	 */
1405 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1406 
1407 	EMIT3(b0, b1, b2);
1408 	*pprog = prog;
1409 }
1410 
1411 /* emit BMI2 shift instruction */
1412 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1413 {
1414 	u8 *prog = *pprog;
1415 	bool r = is_ereg(dst_reg);
1416 	u8 m = 2; /* escape code 0f38 */
1417 
1418 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1419 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1420 	*pprog = prog;
1421 }
1422 
1423 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1424 {
1425 	u8 *prog = *pprog;
1426 
1427 	/* movabs r9, priv_frame_ptr */
1428 	emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1429 		       (u32) (__force long) priv_frame_ptr);
1430 
1431 #ifdef CONFIG_SMP
1432 	/* add <r9>, gs:[<off>] */
1433 	EMIT2(0x65, 0x4c);
1434 	EMIT3(0x03, 0x0c, 0x25);
1435 	EMIT((u32)(unsigned long)&this_cpu_off, 4);
1436 #endif
1437 
1438 	*pprog = prog;
1439 }
1440 
1441 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1442 
1443 #define __LOAD_TCC_PTR(off)			\
1444 	EMIT3_off32(0x48, 0x8B, 0x85, off)
1445 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1446 #define LOAD_TAIL_CALL_CNT_PTR(stack)				\
1447 	__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1448 
1449 /* Memory size/value to protect private stack overflow/underflow */
1450 #define PRIV_STACK_GUARD_SZ    8
1451 #define PRIV_STACK_GUARD_VAL   0xEB9F12345678eb9fULL
1452 
1453 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1454 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1455 {
1456 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1457 	struct bpf_insn *insn = bpf_prog->insnsi;
1458 	bool callee_regs_used[4] = {};
1459 	int insn_cnt = bpf_prog->len;
1460 	bool seen_exit = false;
1461 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1462 	void __percpu *priv_frame_ptr = NULL;
1463 	u64 arena_vm_start, user_vm_start;
1464 	void __percpu *priv_stack_ptr;
1465 	int i, excnt = 0;
1466 	int ilen, proglen = 0;
1467 	u8 *prog = temp;
1468 	u32 stack_depth;
1469 	int err;
1470 
1471 	stack_depth = bpf_prog->aux->stack_depth;
1472 	priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1473 	if (priv_stack_ptr) {
1474 		priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1475 		stack_depth = 0;
1476 	}
1477 
1478 	arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1479 	user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1480 
1481 	detect_reg_usage(insn, insn_cnt, callee_regs_used);
1482 
1483 	emit_prologue(&prog, stack_depth,
1484 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1485 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1486 	/* Exception callback will clobber callee regs for its own use, and
1487 	 * restore the original callee regs from main prog's stack frame.
1488 	 */
1489 	if (bpf_prog->aux->exception_boundary) {
1490 		/* We also need to save r12, which is not mapped to any BPF
1491 		 * register, as we throw after entry into the kernel, which may
1492 		 * overwrite r12.
1493 		 */
1494 		push_r12(&prog);
1495 		push_callee_regs(&prog, all_callee_regs_used);
1496 	} else {
1497 		if (arena_vm_start)
1498 			push_r12(&prog);
1499 		push_callee_regs(&prog, callee_regs_used);
1500 	}
1501 	if (arena_vm_start)
1502 		emit_mov_imm64(&prog, X86_REG_R12,
1503 			       arena_vm_start >> 32, (u32) arena_vm_start);
1504 
1505 	if (priv_frame_ptr)
1506 		emit_priv_frame_ptr(&prog, priv_frame_ptr);
1507 
1508 	ilen = prog - temp;
1509 	if (rw_image)
1510 		memcpy(rw_image + proglen, temp, ilen);
1511 	proglen += ilen;
1512 	addrs[0] = proglen;
1513 	prog = temp;
1514 
1515 	for (i = 1; i <= insn_cnt; i++, insn++) {
1516 		const s32 imm32 = insn->imm;
1517 		u32 dst_reg = insn->dst_reg;
1518 		u32 src_reg = insn->src_reg;
1519 		u8 b2 = 0, b3 = 0;
1520 		u8 *start_of_ldx;
1521 		s64 jmp_offset;
1522 		s16 insn_off;
1523 		u8 jmp_cond;
1524 		u8 *func;
1525 		int nops;
1526 
1527 		if (priv_frame_ptr) {
1528 			if (src_reg == BPF_REG_FP)
1529 				src_reg = X86_REG_R9;
1530 
1531 			if (dst_reg == BPF_REG_FP)
1532 				dst_reg = X86_REG_R9;
1533 		}
1534 
1535 		switch (insn->code) {
1536 			/* ALU */
1537 		case BPF_ALU | BPF_ADD | BPF_X:
1538 		case BPF_ALU | BPF_SUB | BPF_X:
1539 		case BPF_ALU | BPF_AND | BPF_X:
1540 		case BPF_ALU | BPF_OR | BPF_X:
1541 		case BPF_ALU | BPF_XOR | BPF_X:
1542 		case BPF_ALU64 | BPF_ADD | BPF_X:
1543 		case BPF_ALU64 | BPF_SUB | BPF_X:
1544 		case BPF_ALU64 | BPF_AND | BPF_X:
1545 		case BPF_ALU64 | BPF_OR | BPF_X:
1546 		case BPF_ALU64 | BPF_XOR | BPF_X:
1547 			maybe_emit_mod(&prog, dst_reg, src_reg,
1548 				       BPF_CLASS(insn->code) == BPF_ALU64);
1549 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1550 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1551 			break;
1552 
1553 		case BPF_ALU64 | BPF_MOV | BPF_X:
1554 			if (insn_is_cast_user(insn)) {
1555 				if (dst_reg != src_reg)
1556 					/* 32-bit mov */
1557 					emit_mov_reg(&prog, false, dst_reg, src_reg);
1558 				/* shl dst_reg, 32 */
1559 				maybe_emit_1mod(&prog, dst_reg, true);
1560 				EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1561 
1562 				/* or dst_reg, user_vm_start */
1563 				maybe_emit_1mod(&prog, dst_reg, true);
1564 				if (is_axreg(dst_reg))
1565 					EMIT1_off32(0x0D,  user_vm_start >> 32);
1566 				else
1567 					EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1568 
1569 				/* rol dst_reg, 32 */
1570 				maybe_emit_1mod(&prog, dst_reg, true);
1571 				EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1572 
1573 				/* xor r11, r11 */
1574 				EMIT3(0x4D, 0x31, 0xDB);
1575 
1576 				/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1577 				maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1578 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1579 
1580 				/* cmove r11, dst_reg; if so, set dst_reg to zero */
1581 				/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1582 				maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1583 				EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1584 				break;
1585 			} else if (insn_is_mov_percpu_addr(insn)) {
1586 				/* mov <dst>, <src> (if necessary) */
1587 				EMIT_mov(dst_reg, src_reg);
1588 #ifdef CONFIG_SMP
1589 				/* add <dst>, gs:[<off>] */
1590 				EMIT2(0x65, add_1mod(0x48, dst_reg));
1591 				EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1592 				EMIT((u32)(unsigned long)&this_cpu_off, 4);
1593 #endif
1594 				break;
1595 			}
1596 			fallthrough;
1597 		case BPF_ALU | BPF_MOV | BPF_X:
1598 			if (insn->off == 0)
1599 				emit_mov_reg(&prog,
1600 					     BPF_CLASS(insn->code) == BPF_ALU64,
1601 					     dst_reg, src_reg);
1602 			else
1603 				emit_movsx_reg(&prog, insn->off,
1604 					       BPF_CLASS(insn->code) == BPF_ALU64,
1605 					       dst_reg, src_reg);
1606 			break;
1607 
1608 			/* neg dst */
1609 		case BPF_ALU | BPF_NEG:
1610 		case BPF_ALU64 | BPF_NEG:
1611 			maybe_emit_1mod(&prog, dst_reg,
1612 					BPF_CLASS(insn->code) == BPF_ALU64);
1613 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1614 			break;
1615 
1616 		case BPF_ALU | BPF_ADD | BPF_K:
1617 		case BPF_ALU | BPF_SUB | BPF_K:
1618 		case BPF_ALU | BPF_AND | BPF_K:
1619 		case BPF_ALU | BPF_OR | BPF_K:
1620 		case BPF_ALU | BPF_XOR | BPF_K:
1621 		case BPF_ALU64 | BPF_ADD | BPF_K:
1622 		case BPF_ALU64 | BPF_SUB | BPF_K:
1623 		case BPF_ALU64 | BPF_AND | BPF_K:
1624 		case BPF_ALU64 | BPF_OR | BPF_K:
1625 		case BPF_ALU64 | BPF_XOR | BPF_K:
1626 			maybe_emit_1mod(&prog, dst_reg,
1627 					BPF_CLASS(insn->code) == BPF_ALU64);
1628 
1629 			/*
1630 			 * b3 holds 'normal' opcode, b2 short form only valid
1631 			 * in case dst is eax/rax.
1632 			 */
1633 			switch (BPF_OP(insn->code)) {
1634 			case BPF_ADD:
1635 				b3 = 0xC0;
1636 				b2 = 0x05;
1637 				break;
1638 			case BPF_SUB:
1639 				b3 = 0xE8;
1640 				b2 = 0x2D;
1641 				break;
1642 			case BPF_AND:
1643 				b3 = 0xE0;
1644 				b2 = 0x25;
1645 				break;
1646 			case BPF_OR:
1647 				b3 = 0xC8;
1648 				b2 = 0x0D;
1649 				break;
1650 			case BPF_XOR:
1651 				b3 = 0xF0;
1652 				b2 = 0x35;
1653 				break;
1654 			}
1655 
1656 			if (is_imm8(imm32))
1657 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1658 			else if (is_axreg(dst_reg))
1659 				EMIT1_off32(b2, imm32);
1660 			else
1661 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1662 			break;
1663 
1664 		case BPF_ALU64 | BPF_MOV | BPF_K:
1665 		case BPF_ALU | BPF_MOV | BPF_K:
1666 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1667 				       dst_reg, imm32);
1668 			break;
1669 
1670 		case BPF_LD | BPF_IMM | BPF_DW:
1671 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1672 			insn++;
1673 			i++;
1674 			break;
1675 
1676 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1677 		case BPF_ALU | BPF_MOD | BPF_X:
1678 		case BPF_ALU | BPF_DIV | BPF_X:
1679 		case BPF_ALU | BPF_MOD | BPF_K:
1680 		case BPF_ALU | BPF_DIV | BPF_K:
1681 		case BPF_ALU64 | BPF_MOD | BPF_X:
1682 		case BPF_ALU64 | BPF_DIV | BPF_X:
1683 		case BPF_ALU64 | BPF_MOD | BPF_K:
1684 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1685 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1686 
1687 			if (dst_reg != BPF_REG_0)
1688 				EMIT1(0x50); /* push rax */
1689 			if (dst_reg != BPF_REG_3)
1690 				EMIT1(0x52); /* push rdx */
1691 
1692 			if (BPF_SRC(insn->code) == BPF_X) {
1693 				if (src_reg == BPF_REG_0 ||
1694 				    src_reg == BPF_REG_3) {
1695 					/* mov r11, src_reg */
1696 					EMIT_mov(AUX_REG, src_reg);
1697 					src_reg = AUX_REG;
1698 				}
1699 			} else {
1700 				/* mov r11, imm32 */
1701 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1702 				src_reg = AUX_REG;
1703 			}
1704 
1705 			if (dst_reg != BPF_REG_0)
1706 				/* mov rax, dst_reg */
1707 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1708 
1709 			if (insn->off == 0) {
1710 				/*
1711 				 * xor edx, edx
1712 				 * equivalent to 'xor rdx, rdx', but one byte less
1713 				 */
1714 				EMIT2(0x31, 0xd2);
1715 
1716 				/* div src_reg */
1717 				maybe_emit_1mod(&prog, src_reg, is64);
1718 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1719 			} else {
1720 				if (BPF_CLASS(insn->code) == BPF_ALU)
1721 					EMIT1(0x99); /* cdq */
1722 				else
1723 					EMIT2(0x48, 0x99); /* cqo */
1724 
1725 				/* idiv src_reg */
1726 				maybe_emit_1mod(&prog, src_reg, is64);
1727 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1728 			}
1729 
1730 			if (BPF_OP(insn->code) == BPF_MOD &&
1731 			    dst_reg != BPF_REG_3)
1732 				/* mov dst_reg, rdx */
1733 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1734 			else if (BPF_OP(insn->code) == BPF_DIV &&
1735 				 dst_reg != BPF_REG_0)
1736 				/* mov dst_reg, rax */
1737 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1738 
1739 			if (dst_reg != BPF_REG_3)
1740 				EMIT1(0x5A); /* pop rdx */
1741 			if (dst_reg != BPF_REG_0)
1742 				EMIT1(0x58); /* pop rax */
1743 			break;
1744 		}
1745 
1746 		case BPF_ALU | BPF_MUL | BPF_K:
1747 		case BPF_ALU64 | BPF_MUL | BPF_K:
1748 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1749 				       BPF_CLASS(insn->code) == BPF_ALU64);
1750 
1751 			if (is_imm8(imm32))
1752 				/* imul dst_reg, dst_reg, imm8 */
1753 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1754 				      imm32);
1755 			else
1756 				/* imul dst_reg, dst_reg, imm32 */
1757 				EMIT2_off32(0x69,
1758 					    add_2reg(0xC0, dst_reg, dst_reg),
1759 					    imm32);
1760 			break;
1761 
1762 		case BPF_ALU | BPF_MUL | BPF_X:
1763 		case BPF_ALU64 | BPF_MUL | BPF_X:
1764 			maybe_emit_mod(&prog, src_reg, dst_reg,
1765 				       BPF_CLASS(insn->code) == BPF_ALU64);
1766 
1767 			/* imul dst_reg, src_reg */
1768 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1769 			break;
1770 
1771 			/* Shifts */
1772 		case BPF_ALU | BPF_LSH | BPF_K:
1773 		case BPF_ALU | BPF_RSH | BPF_K:
1774 		case BPF_ALU | BPF_ARSH | BPF_K:
1775 		case BPF_ALU64 | BPF_LSH | BPF_K:
1776 		case BPF_ALU64 | BPF_RSH | BPF_K:
1777 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1778 			maybe_emit_1mod(&prog, dst_reg,
1779 					BPF_CLASS(insn->code) == BPF_ALU64);
1780 
1781 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1782 			if (imm32 == 1)
1783 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1784 			else
1785 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1786 			break;
1787 
1788 		case BPF_ALU | BPF_LSH | BPF_X:
1789 		case BPF_ALU | BPF_RSH | BPF_X:
1790 		case BPF_ALU | BPF_ARSH | BPF_X:
1791 		case BPF_ALU64 | BPF_LSH | BPF_X:
1792 		case BPF_ALU64 | BPF_RSH | BPF_X:
1793 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1794 			/* BMI2 shifts aren't better when shift count is already in rcx */
1795 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1796 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1797 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1798 				u8 op;
1799 
1800 				switch (BPF_OP(insn->code)) {
1801 				case BPF_LSH:
1802 					op = 1; /* prefix 0x66 */
1803 					break;
1804 				case BPF_RSH:
1805 					op = 3; /* prefix 0xf2 */
1806 					break;
1807 				case BPF_ARSH:
1808 					op = 2; /* prefix 0xf3 */
1809 					break;
1810 				}
1811 
1812 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1813 
1814 				break;
1815 			}
1816 
1817 			if (src_reg != BPF_REG_4) { /* common case */
1818 				/* Check for bad case when dst_reg == rcx */
1819 				if (dst_reg == BPF_REG_4) {
1820 					/* mov r11, dst_reg */
1821 					EMIT_mov(AUX_REG, dst_reg);
1822 					dst_reg = AUX_REG;
1823 				} else {
1824 					EMIT1(0x51); /* push rcx */
1825 				}
1826 				/* mov rcx, src_reg */
1827 				EMIT_mov(BPF_REG_4, src_reg);
1828 			}
1829 
1830 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1831 			maybe_emit_1mod(&prog, dst_reg,
1832 					BPF_CLASS(insn->code) == BPF_ALU64);
1833 
1834 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1835 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1836 
1837 			if (src_reg != BPF_REG_4) {
1838 				if (insn->dst_reg == BPF_REG_4)
1839 					/* mov dst_reg, r11 */
1840 					EMIT_mov(insn->dst_reg, AUX_REG);
1841 				else
1842 					EMIT1(0x59); /* pop rcx */
1843 			}
1844 
1845 			break;
1846 
1847 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1848 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1849 			switch (imm32) {
1850 			case 16:
1851 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1852 				EMIT1(0x66);
1853 				if (is_ereg(dst_reg))
1854 					EMIT1(0x41);
1855 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1856 
1857 				/* Emit 'movzwl eax, ax' */
1858 				if (is_ereg(dst_reg))
1859 					EMIT3(0x45, 0x0F, 0xB7);
1860 				else
1861 					EMIT2(0x0F, 0xB7);
1862 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1863 				break;
1864 			case 32:
1865 				/* Emit 'bswap eax' to swap lower 4 bytes */
1866 				if (is_ereg(dst_reg))
1867 					EMIT2(0x41, 0x0F);
1868 				else
1869 					EMIT1(0x0F);
1870 				EMIT1(add_1reg(0xC8, dst_reg));
1871 				break;
1872 			case 64:
1873 				/* Emit 'bswap rax' to swap 8 bytes */
1874 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1875 				      add_1reg(0xC8, dst_reg));
1876 				break;
1877 			}
1878 			break;
1879 
1880 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1881 			switch (imm32) {
1882 			case 16:
1883 				/*
1884 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1885 				 * into 64 bit
1886 				 */
1887 				if (is_ereg(dst_reg))
1888 					EMIT3(0x45, 0x0F, 0xB7);
1889 				else
1890 					EMIT2(0x0F, 0xB7);
1891 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1892 				break;
1893 			case 32:
1894 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1895 				if (is_ereg(dst_reg))
1896 					EMIT1(0x45);
1897 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1898 				break;
1899 			case 64:
1900 				/* nop */
1901 				break;
1902 			}
1903 			break;
1904 
1905 			/* speculation barrier */
1906 		case BPF_ST | BPF_NOSPEC:
1907 			EMIT_LFENCE();
1908 			break;
1909 
1910 			/* ST: *(u8*)(dst_reg + off) = imm */
1911 		case BPF_ST | BPF_MEM | BPF_B:
1912 			if (is_ereg(dst_reg))
1913 				EMIT2(0x41, 0xC6);
1914 			else
1915 				EMIT1(0xC6);
1916 			goto st;
1917 		case BPF_ST | BPF_MEM | BPF_H:
1918 			if (is_ereg(dst_reg))
1919 				EMIT3(0x66, 0x41, 0xC7);
1920 			else
1921 				EMIT2(0x66, 0xC7);
1922 			goto st;
1923 		case BPF_ST | BPF_MEM | BPF_W:
1924 			if (is_ereg(dst_reg))
1925 				EMIT2(0x41, 0xC7);
1926 			else
1927 				EMIT1(0xC7);
1928 			goto st;
1929 		case BPF_ST | BPF_MEM | BPF_DW:
1930 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1931 
1932 st:			if (is_imm8(insn->off))
1933 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1934 			else
1935 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1936 
1937 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1938 			break;
1939 
1940 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1941 		case BPF_STX | BPF_MEM | BPF_B:
1942 		case BPF_STX | BPF_MEM | BPF_H:
1943 		case BPF_STX | BPF_MEM | BPF_W:
1944 		case BPF_STX | BPF_MEM | BPF_DW:
1945 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1946 			break;
1947 
1948 		case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1949 		case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1950 		case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1951 		case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1952 			start_of_ldx = prog;
1953 			emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
1954 			goto populate_extable;
1955 
1956 			/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
1957 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1958 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1959 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1960 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1961 		case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1962 		case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1963 		case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1964 		case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1965 			start_of_ldx = prog;
1966 			if (BPF_CLASS(insn->code) == BPF_LDX)
1967 				emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1968 			else
1969 				emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1970 populate_extable:
1971 			{
1972 				struct exception_table_entry *ex;
1973 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1974 				s64 delta;
1975 
1976 				if (!bpf_prog->aux->extable)
1977 					break;
1978 
1979 				if (excnt >= bpf_prog->aux->num_exentries) {
1980 					pr_err("mem32 extable bug\n");
1981 					return -EFAULT;
1982 				}
1983 				ex = &bpf_prog->aux->extable[excnt++];
1984 
1985 				delta = _insn - (u8 *)&ex->insn;
1986 				/* switch ex to rw buffer for writes */
1987 				ex = (void *)rw_image + ((void *)ex - (void *)image);
1988 
1989 				ex->insn = delta;
1990 
1991 				ex->data = EX_TYPE_BPF;
1992 
1993 				ex->fixup = (prog - start_of_ldx) |
1994 					((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
1995 			}
1996 			break;
1997 
1998 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1999 		case BPF_LDX | BPF_MEM | BPF_B:
2000 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2001 		case BPF_LDX | BPF_MEM | BPF_H:
2002 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2003 		case BPF_LDX | BPF_MEM | BPF_W:
2004 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2005 		case BPF_LDX | BPF_MEM | BPF_DW:
2006 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2007 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2008 		case BPF_LDX | BPF_MEMSX | BPF_B:
2009 		case BPF_LDX | BPF_MEMSX | BPF_H:
2010 		case BPF_LDX | BPF_MEMSX | BPF_W:
2011 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2012 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2013 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2014 			insn_off = insn->off;
2015 
2016 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2017 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2018 				/* Conservatively check that src_reg + insn->off is a kernel address:
2019 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2020 				 *   and
2021 				 *   src_reg + insn->off < VSYSCALL_ADDR
2022 				 */
2023 
2024 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2025 				u8 *end_of_jmp;
2026 
2027 				/* movabsq r10, VSYSCALL_ADDR */
2028 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2029 					       (u32)(long)VSYSCALL_ADDR);
2030 
2031 				/* mov src_reg, r11 */
2032 				EMIT_mov(AUX_REG, src_reg);
2033 
2034 				if (insn->off) {
2035 					/* add r11, insn->off */
2036 					maybe_emit_1mod(&prog, AUX_REG, true);
2037 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2038 				}
2039 
2040 				/* sub r11, r10 */
2041 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2042 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2043 
2044 				/* movabsq r10, limit */
2045 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2046 					       (u32)(long)limit);
2047 
2048 				/* cmp r10, r11 */
2049 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2050 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2051 
2052 				/* if unsigned '>', goto load */
2053 				EMIT2(X86_JA, 0);
2054 				end_of_jmp = prog;
2055 
2056 				/* xor dst_reg, dst_reg */
2057 				emit_mov_imm32(&prog, false, dst_reg, 0);
2058 				/* jmp byte_after_ldx */
2059 				EMIT2(0xEB, 0);
2060 
2061 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
2062 				start_of_ldx = prog;
2063 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2064 			}
2065 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2066 			    BPF_MODE(insn->code) == BPF_MEMSX)
2067 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2068 			else
2069 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2070 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2071 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2072 				struct exception_table_entry *ex;
2073 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2074 				s64 delta;
2075 
2076 				/* populate jmp_offset for JMP above */
2077 				start_of_ldx[-1] = prog - start_of_ldx;
2078 
2079 				if (!bpf_prog->aux->extable)
2080 					break;
2081 
2082 				if (excnt >= bpf_prog->aux->num_exentries) {
2083 					pr_err("ex gen bug\n");
2084 					return -EFAULT;
2085 				}
2086 				ex = &bpf_prog->aux->extable[excnt++];
2087 
2088 				delta = _insn - (u8 *)&ex->insn;
2089 				if (!is_simm32(delta)) {
2090 					pr_err("extable->insn doesn't fit into 32-bit\n");
2091 					return -EFAULT;
2092 				}
2093 				/* switch ex to rw buffer for writes */
2094 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2095 
2096 				ex->insn = delta;
2097 
2098 				ex->data = EX_TYPE_BPF;
2099 
2100 				if (dst_reg > BPF_REG_9) {
2101 					pr_err("verifier error\n");
2102 					return -EFAULT;
2103 				}
2104 				/*
2105 				 * Compute size of x86 insn and its target dest x86 register.
2106 				 * ex_handler_bpf() will use lower 8 bits to adjust
2107 				 * pt_regs->ip to jump over this x86 instruction
2108 				 * and upper bits to figure out which pt_regs to zero out.
2109 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2110 				 * of 4 bytes will be ignored and rbx will be zero inited.
2111 				 */
2112 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2113 			}
2114 			break;
2115 
2116 		case BPF_STX | BPF_ATOMIC | BPF_W:
2117 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2118 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
2119 			    insn->imm == (BPF_OR | BPF_FETCH) ||
2120 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
2121 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2122 				u32 real_src_reg = src_reg;
2123 				u32 real_dst_reg = dst_reg;
2124 				u8 *branch_target;
2125 
2126 				/*
2127 				 * Can't be implemented with a single x86 insn.
2128 				 * Need to do a CMPXCHG loop.
2129 				 */
2130 
2131 				/* Will need RAX as a CMPXCHG operand so save R0 */
2132 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2133 				if (src_reg == BPF_REG_0)
2134 					real_src_reg = BPF_REG_AX;
2135 				if (dst_reg == BPF_REG_0)
2136 					real_dst_reg = BPF_REG_AX;
2137 
2138 				branch_target = prog;
2139 				/* Load old value */
2140 				emit_ldx(&prog, BPF_SIZE(insn->code),
2141 					 BPF_REG_0, real_dst_reg, insn->off);
2142 				/*
2143 				 * Perform the (commutative) operation locally,
2144 				 * put the result in the AUX_REG.
2145 				 */
2146 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2147 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2148 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2149 				      add_2reg(0xC0, AUX_REG, real_src_reg));
2150 				/* Attempt to swap in new value */
2151 				err = emit_atomic(&prog, BPF_CMPXCHG,
2152 						  real_dst_reg, AUX_REG,
2153 						  insn->off,
2154 						  BPF_SIZE(insn->code));
2155 				if (WARN_ON(err))
2156 					return err;
2157 				/*
2158 				 * ZF tells us whether we won the race. If it's
2159 				 * cleared we need to try again.
2160 				 */
2161 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
2162 				/* Return the pre-modification value */
2163 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2164 				/* Restore R0 after clobbering RAX */
2165 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2166 				break;
2167 			}
2168 
2169 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
2170 					  insn->off, BPF_SIZE(insn->code));
2171 			if (err)
2172 				return err;
2173 			break;
2174 
2175 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2176 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2177 			start_of_ldx = prog;
2178 			err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code),
2179 						dst_reg, src_reg, X86_REG_R12, insn->off);
2180 			if (err)
2181 				return err;
2182 			goto populate_extable;
2183 
2184 			/* call */
2185 		case BPF_JMP | BPF_CALL: {
2186 			u8 *ip = image + addrs[i - 1];
2187 
2188 			func = (u8 *) __bpf_call_base + imm32;
2189 			if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2190 				LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2191 				ip += 7;
2192 			}
2193 			if (!imm32)
2194 				return -EINVAL;
2195 			if (priv_frame_ptr) {
2196 				push_r9(&prog);
2197 				ip += 2;
2198 			}
2199 			ip += x86_call_depth_emit_accounting(&prog, func, ip);
2200 			if (emit_call(&prog, func, ip))
2201 				return -EINVAL;
2202 			if (priv_frame_ptr)
2203 				pop_r9(&prog);
2204 			break;
2205 		}
2206 
2207 		case BPF_JMP | BPF_TAIL_CALL:
2208 			if (imm32)
2209 				emit_bpf_tail_call_direct(bpf_prog,
2210 							  &bpf_prog->aux->poke_tab[imm32 - 1],
2211 							  &prog, image + addrs[i - 1],
2212 							  callee_regs_used,
2213 							  stack_depth,
2214 							  ctx);
2215 			else
2216 				emit_bpf_tail_call_indirect(bpf_prog,
2217 							    &prog,
2218 							    callee_regs_used,
2219 							    stack_depth,
2220 							    image + addrs[i - 1],
2221 							    ctx);
2222 			break;
2223 
2224 			/* cond jump */
2225 		case BPF_JMP | BPF_JEQ | BPF_X:
2226 		case BPF_JMP | BPF_JNE | BPF_X:
2227 		case BPF_JMP | BPF_JGT | BPF_X:
2228 		case BPF_JMP | BPF_JLT | BPF_X:
2229 		case BPF_JMP | BPF_JGE | BPF_X:
2230 		case BPF_JMP | BPF_JLE | BPF_X:
2231 		case BPF_JMP | BPF_JSGT | BPF_X:
2232 		case BPF_JMP | BPF_JSLT | BPF_X:
2233 		case BPF_JMP | BPF_JSGE | BPF_X:
2234 		case BPF_JMP | BPF_JSLE | BPF_X:
2235 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2236 		case BPF_JMP32 | BPF_JNE | BPF_X:
2237 		case BPF_JMP32 | BPF_JGT | BPF_X:
2238 		case BPF_JMP32 | BPF_JLT | BPF_X:
2239 		case BPF_JMP32 | BPF_JGE | BPF_X:
2240 		case BPF_JMP32 | BPF_JLE | BPF_X:
2241 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2242 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2243 		case BPF_JMP32 | BPF_JSGE | BPF_X:
2244 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2245 			/* cmp dst_reg, src_reg */
2246 			maybe_emit_mod(&prog, dst_reg, src_reg,
2247 				       BPF_CLASS(insn->code) == BPF_JMP);
2248 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2249 			goto emit_cond_jmp;
2250 
2251 		case BPF_JMP | BPF_JSET | BPF_X:
2252 		case BPF_JMP32 | BPF_JSET | BPF_X:
2253 			/* test dst_reg, src_reg */
2254 			maybe_emit_mod(&prog, dst_reg, src_reg,
2255 				       BPF_CLASS(insn->code) == BPF_JMP);
2256 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2257 			goto emit_cond_jmp;
2258 
2259 		case BPF_JMP | BPF_JSET | BPF_K:
2260 		case BPF_JMP32 | BPF_JSET | BPF_K:
2261 			/* test dst_reg, imm32 */
2262 			maybe_emit_1mod(&prog, dst_reg,
2263 					BPF_CLASS(insn->code) == BPF_JMP);
2264 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2265 			goto emit_cond_jmp;
2266 
2267 		case BPF_JMP | BPF_JEQ | BPF_K:
2268 		case BPF_JMP | BPF_JNE | BPF_K:
2269 		case BPF_JMP | BPF_JGT | BPF_K:
2270 		case BPF_JMP | BPF_JLT | BPF_K:
2271 		case BPF_JMP | BPF_JGE | BPF_K:
2272 		case BPF_JMP | BPF_JLE | BPF_K:
2273 		case BPF_JMP | BPF_JSGT | BPF_K:
2274 		case BPF_JMP | BPF_JSLT | BPF_K:
2275 		case BPF_JMP | BPF_JSGE | BPF_K:
2276 		case BPF_JMP | BPF_JSLE | BPF_K:
2277 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2278 		case BPF_JMP32 | BPF_JNE | BPF_K:
2279 		case BPF_JMP32 | BPF_JGT | BPF_K:
2280 		case BPF_JMP32 | BPF_JLT | BPF_K:
2281 		case BPF_JMP32 | BPF_JGE | BPF_K:
2282 		case BPF_JMP32 | BPF_JLE | BPF_K:
2283 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2284 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2285 		case BPF_JMP32 | BPF_JSGE | BPF_K:
2286 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2287 			/* test dst_reg, dst_reg to save one extra byte */
2288 			if (imm32 == 0) {
2289 				maybe_emit_mod(&prog, dst_reg, dst_reg,
2290 					       BPF_CLASS(insn->code) == BPF_JMP);
2291 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2292 				goto emit_cond_jmp;
2293 			}
2294 
2295 			/* cmp dst_reg, imm8/32 */
2296 			maybe_emit_1mod(&prog, dst_reg,
2297 					BPF_CLASS(insn->code) == BPF_JMP);
2298 
2299 			if (is_imm8(imm32))
2300 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2301 			else
2302 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2303 
2304 emit_cond_jmp:		/* Convert BPF opcode to x86 */
2305 			switch (BPF_OP(insn->code)) {
2306 			case BPF_JEQ:
2307 				jmp_cond = X86_JE;
2308 				break;
2309 			case BPF_JSET:
2310 			case BPF_JNE:
2311 				jmp_cond = X86_JNE;
2312 				break;
2313 			case BPF_JGT:
2314 				/* GT is unsigned '>', JA in x86 */
2315 				jmp_cond = X86_JA;
2316 				break;
2317 			case BPF_JLT:
2318 				/* LT is unsigned '<', JB in x86 */
2319 				jmp_cond = X86_JB;
2320 				break;
2321 			case BPF_JGE:
2322 				/* GE is unsigned '>=', JAE in x86 */
2323 				jmp_cond = X86_JAE;
2324 				break;
2325 			case BPF_JLE:
2326 				/* LE is unsigned '<=', JBE in x86 */
2327 				jmp_cond = X86_JBE;
2328 				break;
2329 			case BPF_JSGT:
2330 				/* Signed '>', GT in x86 */
2331 				jmp_cond = X86_JG;
2332 				break;
2333 			case BPF_JSLT:
2334 				/* Signed '<', LT in x86 */
2335 				jmp_cond = X86_JL;
2336 				break;
2337 			case BPF_JSGE:
2338 				/* Signed '>=', GE in x86 */
2339 				jmp_cond = X86_JGE;
2340 				break;
2341 			case BPF_JSLE:
2342 				/* Signed '<=', LE in x86 */
2343 				jmp_cond = X86_JLE;
2344 				break;
2345 			default: /* to silence GCC warning */
2346 				return -EFAULT;
2347 			}
2348 			jmp_offset = addrs[i + insn->off] - addrs[i];
2349 			if (is_imm8_jmp_offset(jmp_offset)) {
2350 				if (jmp_padding) {
2351 					/* To keep the jmp_offset valid, the extra bytes are
2352 					 * padded before the jump insn, so we subtract the
2353 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2354 					 *
2355 					 * If the previous pass already emits an imm8
2356 					 * jmp_cond, then this BPF insn won't shrink, so
2357 					 * "nops" is 0.
2358 					 *
2359 					 * On the other hand, if the previous pass emits an
2360 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2361 					 * keep the image from shrinking further.
2362 					 *
2363 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2364 					 *     is 2 bytes, so the size difference is 4 bytes.
2365 					 */
2366 					nops = INSN_SZ_DIFF - 2;
2367 					if (nops != 0 && nops != 4) {
2368 						pr_err("unexpected jmp_cond padding: %d bytes\n",
2369 						       nops);
2370 						return -EFAULT;
2371 					}
2372 					emit_nops(&prog, nops);
2373 				}
2374 				EMIT2(jmp_cond, jmp_offset);
2375 			} else if (is_simm32(jmp_offset)) {
2376 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2377 			} else {
2378 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2379 				return -EFAULT;
2380 			}
2381 
2382 			break;
2383 
2384 		case BPF_JMP | BPF_JA:
2385 		case BPF_JMP32 | BPF_JA:
2386 			if (BPF_CLASS(insn->code) == BPF_JMP) {
2387 				if (insn->off == -1)
2388 					/* -1 jmp instructions will always jump
2389 					 * backwards two bytes. Explicitly handling
2390 					 * this case avoids wasting too many passes
2391 					 * when there are long sequences of replaced
2392 					 * dead code.
2393 					 */
2394 					jmp_offset = -2;
2395 				else
2396 					jmp_offset = addrs[i + insn->off] - addrs[i];
2397 			} else {
2398 				if (insn->imm == -1)
2399 					jmp_offset = -2;
2400 				else
2401 					jmp_offset = addrs[i + insn->imm] - addrs[i];
2402 			}
2403 
2404 			if (!jmp_offset) {
2405 				/*
2406 				 * If jmp_padding is enabled, the extra nops will
2407 				 * be inserted. Otherwise, optimize out nop jumps.
2408 				 */
2409 				if (jmp_padding) {
2410 					/* There are 3 possible conditions.
2411 					 * (1) This BPF_JA is already optimized out in
2412 					 *     the previous run, so there is no need
2413 					 *     to pad any extra byte (0 byte).
2414 					 * (2) The previous pass emits an imm8 jmp,
2415 					 *     so we pad 2 bytes to match the previous
2416 					 *     insn size.
2417 					 * (3) Similarly, the previous pass emits an
2418 					 *     imm32 jmp, and 5 bytes is padded.
2419 					 */
2420 					nops = INSN_SZ_DIFF;
2421 					if (nops != 0 && nops != 2 && nops != 5) {
2422 						pr_err("unexpected nop jump padding: %d bytes\n",
2423 						       nops);
2424 						return -EFAULT;
2425 					}
2426 					emit_nops(&prog, nops);
2427 				}
2428 				break;
2429 			}
2430 emit_jmp:
2431 			if (is_imm8_jmp_offset(jmp_offset)) {
2432 				if (jmp_padding) {
2433 					/* To avoid breaking jmp_offset, the extra bytes
2434 					 * are padded before the actual jmp insn, so
2435 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2436 					 *
2437 					 * If the previous pass already emits an imm8
2438 					 * jmp, there is nothing to pad (0 byte).
2439 					 *
2440 					 * If it emits an imm32 jmp (5 bytes) previously
2441 					 * and now an imm8 jmp (2 bytes), then we pad
2442 					 * (5 - 2 = 3) bytes to stop the image from
2443 					 * shrinking further.
2444 					 */
2445 					nops = INSN_SZ_DIFF - 2;
2446 					if (nops != 0 && nops != 3) {
2447 						pr_err("unexpected jump padding: %d bytes\n",
2448 						       nops);
2449 						return -EFAULT;
2450 					}
2451 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2452 				}
2453 				EMIT2(0xEB, jmp_offset);
2454 			} else if (is_simm32(jmp_offset)) {
2455 				EMIT1_off32(0xE9, jmp_offset);
2456 			} else {
2457 				pr_err("jmp gen bug %llx\n", jmp_offset);
2458 				return -EFAULT;
2459 			}
2460 			break;
2461 
2462 		case BPF_JMP | BPF_EXIT:
2463 			if (seen_exit) {
2464 				jmp_offset = ctx->cleanup_addr - addrs[i];
2465 				goto emit_jmp;
2466 			}
2467 			seen_exit = true;
2468 			/* Update cleanup_addr */
2469 			ctx->cleanup_addr = proglen;
2470 			if (bpf_prog->aux->exception_boundary) {
2471 				pop_callee_regs(&prog, all_callee_regs_used);
2472 				pop_r12(&prog);
2473 			} else {
2474 				pop_callee_regs(&prog, callee_regs_used);
2475 				if (arena_vm_start)
2476 					pop_r12(&prog);
2477 			}
2478 			EMIT1(0xC9);         /* leave */
2479 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2480 			break;
2481 
2482 		default:
2483 			/*
2484 			 * By design x86-64 JIT should support all BPF instructions.
2485 			 * This error will be seen if new instruction was added
2486 			 * to the interpreter, but not to the JIT, or if there is
2487 			 * junk in bpf_prog.
2488 			 */
2489 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2490 			return -EINVAL;
2491 		}
2492 
2493 		ilen = prog - temp;
2494 		if (ilen > BPF_MAX_INSN_SIZE) {
2495 			pr_err("bpf_jit: fatal insn size error\n");
2496 			return -EFAULT;
2497 		}
2498 
2499 		if (image) {
2500 			/*
2501 			 * When populating the image, assert that:
2502 			 *
2503 			 *  i) We do not write beyond the allocated space, and
2504 			 * ii) addrs[i] did not change from the prior run, in order
2505 			 *     to validate assumptions made for computing branch
2506 			 *     displacements.
2507 			 */
2508 			if (unlikely(proglen + ilen > oldproglen ||
2509 				     proglen + ilen != addrs[i])) {
2510 				pr_err("bpf_jit: fatal error\n");
2511 				return -EFAULT;
2512 			}
2513 			memcpy(rw_image + proglen, temp, ilen);
2514 		}
2515 		proglen += ilen;
2516 		addrs[i] = proglen;
2517 		prog = temp;
2518 	}
2519 
2520 	if (image && excnt != bpf_prog->aux->num_exentries) {
2521 		pr_err("extable is not populated\n");
2522 		return -EFAULT;
2523 	}
2524 	return proglen;
2525 }
2526 
2527 static void clean_stack_garbage(const struct btf_func_model *m,
2528 				u8 **pprog, int nr_stack_slots,
2529 				int stack_size)
2530 {
2531 	int arg_size, off;
2532 	u8 *prog;
2533 
2534 	/* Generally speaking, the compiler will pass the arguments
2535 	 * on-stack with "push" instruction, which will take 8-byte
2536 	 * on the stack. In this case, there won't be garbage values
2537 	 * while we copy the arguments from origin stack frame to current
2538 	 * in BPF_DW.
2539 	 *
2540 	 * However, sometimes the compiler will only allocate 4-byte on
2541 	 * the stack for the arguments. For now, this case will only
2542 	 * happen if there is only one argument on-stack and its size
2543 	 * not more than 4 byte. In this case, there will be garbage
2544 	 * values on the upper 4-byte where we store the argument on
2545 	 * current stack frame.
2546 	 *
2547 	 * arguments on origin stack:
2548 	 *
2549 	 * stack_arg_1(4-byte) xxx(4-byte)
2550 	 *
2551 	 * what we copy:
2552 	 *
2553 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2554 	 *
2555 	 * and the xxx is the garbage values which we should clean here.
2556 	 */
2557 	if (nr_stack_slots != 1)
2558 		return;
2559 
2560 	/* the size of the last argument */
2561 	arg_size = m->arg_size[m->nr_args - 1];
2562 	if (arg_size <= 4) {
2563 		off = -(stack_size - 4);
2564 		prog = *pprog;
2565 		/* mov DWORD PTR [rbp + off], 0 */
2566 		if (!is_imm8(off))
2567 			EMIT2_off32(0xC7, 0x85, off);
2568 		else
2569 			EMIT3(0xC7, 0x45, off);
2570 		EMIT(0, 4);
2571 		*pprog = prog;
2572 	}
2573 }
2574 
2575 /* get the count of the regs that are used to pass arguments */
2576 static int get_nr_used_regs(const struct btf_func_model *m)
2577 {
2578 	int i, arg_regs, nr_used_regs = 0;
2579 
2580 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2581 		arg_regs = (m->arg_size[i] + 7) / 8;
2582 		if (nr_used_regs + arg_regs <= 6)
2583 			nr_used_regs += arg_regs;
2584 
2585 		if (nr_used_regs >= 6)
2586 			break;
2587 	}
2588 
2589 	return nr_used_regs;
2590 }
2591 
2592 static void save_args(const struct btf_func_model *m, u8 **prog,
2593 		      int stack_size, bool for_call_origin)
2594 {
2595 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2596 	int i, j;
2597 
2598 	/* Store function arguments to stack.
2599 	 * For a function that accepts two pointers the sequence will be:
2600 	 * mov QWORD PTR [rbp-0x10],rdi
2601 	 * mov QWORD PTR [rbp-0x8],rsi
2602 	 */
2603 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2604 		arg_regs = (m->arg_size[i] + 7) / 8;
2605 
2606 		/* According to the research of Yonghong, struct members
2607 		 * should be all in register or all on the stack.
2608 		 * Meanwhile, the compiler will pass the argument on regs
2609 		 * if the remaining regs can hold the argument.
2610 		 *
2611 		 * Disorder of the args can happen. For example:
2612 		 *
2613 		 * struct foo_struct {
2614 		 *     long a;
2615 		 *     int b;
2616 		 * };
2617 		 * int foo(char, char, char, char, char, struct foo_struct,
2618 		 *         char);
2619 		 *
2620 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2621 		 * by stack.
2622 		 */
2623 		if (nr_regs + arg_regs > 6) {
2624 			/* copy function arguments from origin stack frame
2625 			 * into current stack frame.
2626 			 *
2627 			 * The starting address of the arguments on-stack
2628 			 * is:
2629 			 *   rbp + 8(push rbp) +
2630 			 *   8(return addr of origin call) +
2631 			 *   8(return addr of the caller)
2632 			 * which means: rbp + 24
2633 			 */
2634 			for (j = 0; j < arg_regs; j++) {
2635 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2636 					 nr_stack_slots * 8 + 0x18);
2637 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2638 					 -stack_size);
2639 
2640 				if (!nr_stack_slots)
2641 					first_off = stack_size;
2642 				stack_size -= 8;
2643 				nr_stack_slots++;
2644 			}
2645 		} else {
2646 			/* Only copy the arguments on-stack to current
2647 			 * 'stack_size' and ignore the regs, used to
2648 			 * prepare the arguments on-stack for origin call.
2649 			 */
2650 			if (for_call_origin) {
2651 				nr_regs += arg_regs;
2652 				continue;
2653 			}
2654 
2655 			/* copy the arguments from regs into stack */
2656 			for (j = 0; j < arg_regs; j++) {
2657 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2658 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2659 					 -stack_size);
2660 				stack_size -= 8;
2661 				nr_regs++;
2662 			}
2663 		}
2664 	}
2665 
2666 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2667 }
2668 
2669 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2670 			 int stack_size)
2671 {
2672 	int i, j, arg_regs, nr_regs = 0;
2673 
2674 	/* Restore function arguments from stack.
2675 	 * For a function that accepts two pointers the sequence will be:
2676 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2677 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2678 	 *
2679 	 * The logic here is similar to what we do in save_args()
2680 	 */
2681 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2682 		arg_regs = (m->arg_size[i] + 7) / 8;
2683 		if (nr_regs + arg_regs <= 6) {
2684 			for (j = 0; j < arg_regs; j++) {
2685 				emit_ldx(prog, BPF_DW,
2686 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2687 					 BPF_REG_FP,
2688 					 -stack_size);
2689 				stack_size -= 8;
2690 				nr_regs++;
2691 			}
2692 		} else {
2693 			stack_size -= 8 * arg_regs;
2694 		}
2695 
2696 		if (nr_regs >= 6)
2697 			break;
2698 	}
2699 }
2700 
2701 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2702 			   struct bpf_tramp_link *l, int stack_size,
2703 			   int run_ctx_off, bool save_ret,
2704 			   void *image, void *rw_image)
2705 {
2706 	u8 *prog = *pprog;
2707 	u8 *jmp_insn;
2708 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2709 	struct bpf_prog *p = l->link.prog;
2710 	u64 cookie = l->cookie;
2711 
2712 	/* mov rdi, cookie */
2713 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2714 
2715 	/* Prepare struct bpf_tramp_run_ctx.
2716 	 *
2717 	 * bpf_tramp_run_ctx is already preserved by
2718 	 * arch_prepare_bpf_trampoline().
2719 	 *
2720 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2721 	 */
2722 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2723 
2724 	/* arg1: mov rdi, progs[i] */
2725 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2726 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2727 	if (!is_imm8(-run_ctx_off))
2728 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2729 	else
2730 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2731 
2732 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2733 		return -EINVAL;
2734 	/* remember prog start time returned by __bpf_prog_enter */
2735 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2736 
2737 	/* if (__bpf_prog_enter*(prog) == 0)
2738 	 *	goto skip_exec_of_prog;
2739 	 */
2740 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2741 	/* emit 2 nops that will be replaced with JE insn */
2742 	jmp_insn = prog;
2743 	emit_nops(&prog, 2);
2744 
2745 	/* arg1: lea rdi, [rbp - stack_size] */
2746 	if (!is_imm8(-stack_size))
2747 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2748 	else
2749 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2750 	/* arg2: progs[i]->insnsi for interpreter */
2751 	if (!p->jited)
2752 		emit_mov_imm64(&prog, BPF_REG_2,
2753 			       (long) p->insnsi >> 32,
2754 			       (u32) (long) p->insnsi);
2755 	/* call JITed bpf program or interpreter */
2756 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2757 		return -EINVAL;
2758 
2759 	/*
2760 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2761 	 * of the previous call which is then passed on the stack to
2762 	 * the next BPF program.
2763 	 *
2764 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2765 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2766 	 */
2767 	if (save_ret)
2768 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2769 
2770 	/* replace 2 nops with JE insn, since jmp target is known */
2771 	jmp_insn[0] = X86_JE;
2772 	jmp_insn[1] = prog - jmp_insn - 2;
2773 
2774 	/* arg1: mov rdi, progs[i] */
2775 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2776 	/* arg2: mov rsi, rbx <- start time in nsec */
2777 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2778 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2779 	if (!is_imm8(-run_ctx_off))
2780 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2781 	else
2782 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2783 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2784 		return -EINVAL;
2785 
2786 	*pprog = prog;
2787 	return 0;
2788 }
2789 
2790 static void emit_align(u8 **pprog, u32 align)
2791 {
2792 	u8 *target, *prog = *pprog;
2793 
2794 	target = PTR_ALIGN(prog, align);
2795 	if (target != prog)
2796 		emit_nops(&prog, target - prog);
2797 
2798 	*pprog = prog;
2799 }
2800 
2801 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2802 {
2803 	u8 *prog = *pprog;
2804 	s64 offset;
2805 
2806 	offset = func - (ip + 2 + 4);
2807 	if (!is_simm32(offset)) {
2808 		pr_err("Target %p is out of range\n", func);
2809 		return -EINVAL;
2810 	}
2811 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2812 	*pprog = prog;
2813 	return 0;
2814 }
2815 
2816 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2817 		      struct bpf_tramp_links *tl, int stack_size,
2818 		      int run_ctx_off, bool save_ret,
2819 		      void *image, void *rw_image)
2820 {
2821 	int i;
2822 	u8 *prog = *pprog;
2823 
2824 	for (i = 0; i < tl->nr_links; i++) {
2825 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2826 				    run_ctx_off, save_ret, image, rw_image))
2827 			return -EINVAL;
2828 	}
2829 	*pprog = prog;
2830 	return 0;
2831 }
2832 
2833 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2834 			      struct bpf_tramp_links *tl, int stack_size,
2835 			      int run_ctx_off, u8 **branches,
2836 			      void *image, void *rw_image)
2837 {
2838 	u8 *prog = *pprog;
2839 	int i;
2840 
2841 	/* The first fmod_ret program will receive a garbage return value.
2842 	 * Set this to 0 to avoid confusing the program.
2843 	 */
2844 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2845 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2846 	for (i = 0; i < tl->nr_links; i++) {
2847 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2848 				    image, rw_image))
2849 			return -EINVAL;
2850 
2851 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2852 		 * if (*(u64 *)(rbp - 8) !=  0)
2853 		 *	goto do_fexit;
2854 		 */
2855 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2856 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2857 
2858 		/* Save the location of the branch and Generate 6 nops
2859 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2860 		 * are replaced with a conditional jump once do_fexit (i.e. the
2861 		 * start of the fexit invocation) is finalized.
2862 		 */
2863 		branches[i] = prog;
2864 		emit_nops(&prog, 4 + 2);
2865 	}
2866 
2867 	*pprog = prog;
2868 	return 0;
2869 }
2870 
2871 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
2872 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)	\
2873 	__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
2874 
2875 /* Example:
2876  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2877  * its 'struct btf_func_model' will be nr_args=2
2878  * The assembly code when eth_type_trans is executing after trampoline:
2879  *
2880  * push rbp
2881  * mov rbp, rsp
2882  * sub rsp, 16                     // space for skb and dev
2883  * push rbx                        // temp regs to pass start time
2884  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2885  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2886  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2887  * mov rbx, rax                    // remember start time in bpf stats are enabled
2888  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2889  * call addr_of_jited_FENTRY_prog
2890  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2891  * mov rsi, rbx                    // prog start time
2892  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2893  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2894  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2895  * pop rbx
2896  * leave
2897  * ret
2898  *
2899  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2900  * replaced with 'call generated_bpf_trampoline'. When it returns
2901  * eth_type_trans will continue executing with original skb and dev pointers.
2902  *
2903  * The assembly code when eth_type_trans is called from trampoline:
2904  *
2905  * push rbp
2906  * mov rbp, rsp
2907  * sub rsp, 24                     // space for skb, dev, return value
2908  * push rbx                        // temp regs to pass start time
2909  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2910  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2911  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2912  * mov rbx, rax                    // remember start time if bpf stats are enabled
2913  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2914  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2915  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2916  * mov rsi, rbx                    // prog start time
2917  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2918  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2919  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
2920  * call eth_type_trans+5           // execute body of eth_type_trans
2921  * mov qword ptr [rbp - 8], rax    // save return value
2922  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2923  * mov rbx, rax                    // remember start time in bpf stats are enabled
2924  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2925  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
2926  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2927  * mov rsi, rbx                    // prog start time
2928  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2929  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
2930  * pop rbx
2931  * leave
2932  * add rsp, 8                      // skip eth_type_trans's frame
2933  * ret                             // return to its caller
2934  */
2935 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2936 					 void *rw_image_end, void *image,
2937 					 const struct btf_func_model *m, u32 flags,
2938 					 struct bpf_tramp_links *tlinks,
2939 					 void *func_addr)
2940 {
2941 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
2942 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2943 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2944 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2945 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2946 	void *orig_call = func_addr;
2947 	u8 **branches = NULL;
2948 	u8 *prog;
2949 	bool save_ret;
2950 
2951 	/*
2952 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2953 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2954 	 * because @func_addr.
2955 	 */
2956 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2957 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2958 
2959 	/* extra registers for struct arguments */
2960 	for (i = 0; i < m->nr_args; i++) {
2961 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2962 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2963 	}
2964 
2965 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2966 	 * are passed through regs, the remains are through stack.
2967 	 */
2968 	if (nr_regs > MAX_BPF_FUNC_ARGS)
2969 		return -ENOTSUPP;
2970 
2971 	/* Generated trampoline stack layout:
2972 	 *
2973 	 * RBP + 8         [ return address  ]
2974 	 * RBP + 0         [ RBP             ]
2975 	 *
2976 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
2977 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
2978 	 *
2979 	 *                 [ reg_argN        ]  always
2980 	 *                 [ ...             ]
2981 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
2982 	 *
2983 	 * RBP - nregs_off [ regs count	     ]  always
2984 	 *
2985 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
2986 	 *
2987 	 * RBP - rbx_off   [ rbx value       ]  always
2988 	 *
2989 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2990 	 *
2991 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
2992 	 *                     [ ...        ]
2993 	 *                     [ stack_arg2 ]
2994 	 * RBP - arg_stack_off [ stack_arg1 ]
2995 	 * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
2996 	 */
2997 
2998 	/* room for return value of orig_call or fentry prog */
2999 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3000 	if (save_ret)
3001 		stack_size += 8;
3002 
3003 	stack_size += nr_regs * 8;
3004 	regs_off = stack_size;
3005 
3006 	/* regs count  */
3007 	stack_size += 8;
3008 	nregs_off = stack_size;
3009 
3010 	if (flags & BPF_TRAMP_F_IP_ARG)
3011 		stack_size += 8; /* room for IP address argument */
3012 
3013 	ip_off = stack_size;
3014 
3015 	stack_size += 8;
3016 	rbx_off = stack_size;
3017 
3018 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3019 	run_ctx_off = stack_size;
3020 
3021 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3022 		/* the space that used to pass arguments on-stack */
3023 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3024 		/* make sure the stack pointer is 16-byte aligned if we
3025 		 * need pass arguments on stack, which means
3026 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3027 		 * should be 16-byte aligned. Following code depend on
3028 		 * that stack_size is already 8-byte aligned.
3029 		 */
3030 		stack_size += (stack_size % 16) ? 0 : 8;
3031 	}
3032 
3033 	arg_stack_off = stack_size;
3034 
3035 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3036 		/* skip patched call instruction and point orig_call to actual
3037 		 * body of the kernel function.
3038 		 */
3039 		if (is_endbr(*(u32 *)orig_call))
3040 			orig_call += ENDBR_INSN_SIZE;
3041 		orig_call += X86_PATCH_SIZE;
3042 	}
3043 
3044 	prog = rw_image;
3045 
3046 	if (flags & BPF_TRAMP_F_INDIRECT) {
3047 		/*
3048 		 * Indirect call for bpf_struct_ops
3049 		 */
3050 		emit_cfi(&prog, cfi_get_func_hash(func_addr));
3051 	} else {
3052 		/*
3053 		 * Direct-call fentry stub, as such it needs accounting for the
3054 		 * __fentry__ call.
3055 		 */
3056 		x86_call_depth_emit_accounting(&prog, NULL, image);
3057 	}
3058 	EMIT1(0x55);		 /* push rbp */
3059 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3060 	if (!is_imm8(stack_size)) {
3061 		/* sub rsp, stack_size */
3062 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3063 	} else {
3064 		/* sub rsp, stack_size */
3065 		EMIT4(0x48, 0x83, 0xEC, stack_size);
3066 	}
3067 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3068 		EMIT1(0x50);		/* push rax */
3069 	/* mov QWORD PTR [rbp - rbx_off], rbx */
3070 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3071 
3072 	/* Store number of argument registers of the traced function:
3073 	 *   mov rax, nr_regs
3074 	 *   mov QWORD PTR [rbp - nregs_off], rax
3075 	 */
3076 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3077 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3078 
3079 	if (flags & BPF_TRAMP_F_IP_ARG) {
3080 		/* Store IP address of the traced function:
3081 		 * movabsq rax, func_addr
3082 		 * mov QWORD PTR [rbp - ip_off], rax
3083 		 */
3084 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3085 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3086 	}
3087 
3088 	save_args(m, &prog, regs_off, false);
3089 
3090 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3091 		/* arg1: mov rdi, im */
3092 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3093 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
3094 				  image + (prog - (u8 *)rw_image))) {
3095 			ret = -EINVAL;
3096 			goto cleanup;
3097 		}
3098 	}
3099 
3100 	if (fentry->nr_links) {
3101 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3102 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3103 			return -EINVAL;
3104 	}
3105 
3106 	if (fmod_ret->nr_links) {
3107 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3108 				   GFP_KERNEL);
3109 		if (!branches)
3110 			return -ENOMEM;
3111 
3112 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3113 				       run_ctx_off, branches, image, rw_image)) {
3114 			ret = -EINVAL;
3115 			goto cleanup;
3116 		}
3117 	}
3118 
3119 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3120 		restore_regs(m, &prog, regs_off);
3121 		save_args(m, &prog, arg_stack_off, true);
3122 
3123 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3124 			/* Before calling the original function, load the
3125 			 * tail_call_cnt_ptr from stack to rax.
3126 			 */
3127 			LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3128 		}
3129 
3130 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
3131 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3132 			EMIT2(0xff, 0xd3); /* call *rbx */
3133 		} else {
3134 			/* call original function */
3135 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3136 				ret = -EINVAL;
3137 				goto cleanup;
3138 			}
3139 		}
3140 		/* remember return value in a stack for bpf prog to access */
3141 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3142 		im->ip_after_call = image + (prog - (u8 *)rw_image);
3143 		emit_nops(&prog, X86_PATCH_SIZE);
3144 	}
3145 
3146 	if (fmod_ret->nr_links) {
3147 		/* From Intel 64 and IA-32 Architectures Optimization
3148 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3149 		 * Coding Rule 11: All branch targets should be 16-byte
3150 		 * aligned.
3151 		 */
3152 		emit_align(&prog, 16);
3153 		/* Update the branches saved in invoke_bpf_mod_ret with the
3154 		 * aligned address of do_fexit.
3155 		 */
3156 		for (i = 0; i < fmod_ret->nr_links; i++) {
3157 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3158 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
3159 		}
3160 	}
3161 
3162 	if (fexit->nr_links) {
3163 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3164 			       false, image, rw_image)) {
3165 			ret = -EINVAL;
3166 			goto cleanup;
3167 		}
3168 	}
3169 
3170 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
3171 		restore_regs(m, &prog, regs_off);
3172 
3173 	/* This needs to be done regardless. If there were fmod_ret programs,
3174 	 * the return value is only updated on the stack and still needs to be
3175 	 * restored to R0.
3176 	 */
3177 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3178 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
3179 		/* arg1: mov rdi, im */
3180 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3181 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3182 			ret = -EINVAL;
3183 			goto cleanup;
3184 		}
3185 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3186 		/* Before running the original function, load the
3187 		 * tail_call_cnt_ptr from stack to rax.
3188 		 */
3189 		LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3190 	}
3191 
3192 	/* restore return value of orig_call or fentry prog back into RAX */
3193 	if (save_ret)
3194 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3195 
3196 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3197 	EMIT1(0xC9); /* leave */
3198 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3199 		/* skip our return address and return to parent */
3200 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3201 	}
3202 	emit_return(&prog, image + (prog - (u8 *)rw_image));
3203 	/* Make sure the trampoline generation logic doesn't overflow */
3204 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3205 		ret = -EFAULT;
3206 		goto cleanup;
3207 	}
3208 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3209 
3210 cleanup:
3211 	kfree(branches);
3212 	return ret;
3213 }
3214 
3215 void *arch_alloc_bpf_trampoline(unsigned int size)
3216 {
3217 	return bpf_prog_pack_alloc(size, jit_fill_hole);
3218 }
3219 
3220 void arch_free_bpf_trampoline(void *image, unsigned int size)
3221 {
3222 	bpf_prog_pack_free(image, size);
3223 }
3224 
3225 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3226 {
3227 	return 0;
3228 }
3229 
3230 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3231 				const struct btf_func_model *m, u32 flags,
3232 				struct bpf_tramp_links *tlinks,
3233 				void *func_addr)
3234 {
3235 	void *rw_image, *tmp;
3236 	int ret;
3237 	u32 size = image_end - image;
3238 
3239 	/* rw_image doesn't need to be in module memory range, so we can
3240 	 * use kvmalloc.
3241 	 */
3242 	rw_image = kvmalloc(size, GFP_KERNEL);
3243 	if (!rw_image)
3244 		return -ENOMEM;
3245 
3246 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3247 					    flags, tlinks, func_addr);
3248 	if (ret < 0)
3249 		goto out;
3250 
3251 	tmp = bpf_arch_text_copy(image, rw_image, size);
3252 	if (IS_ERR(tmp))
3253 		ret = PTR_ERR(tmp);
3254 out:
3255 	kvfree(rw_image);
3256 	return ret;
3257 }
3258 
3259 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3260 			     struct bpf_tramp_links *tlinks, void *func_addr)
3261 {
3262 	struct bpf_tramp_image im;
3263 	void *image;
3264 	int ret;
3265 
3266 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3267 	 * This will NOT cause fragmentation in direct map, as we do not
3268 	 * call set_memory_*() on this buffer.
3269 	 *
3270 	 * We cannot use kvmalloc here, because we need image to be in
3271 	 * module memory range.
3272 	 */
3273 	image = bpf_jit_alloc_exec(PAGE_SIZE);
3274 	if (!image)
3275 		return -ENOMEM;
3276 
3277 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3278 					    m, flags, tlinks, func_addr);
3279 	bpf_jit_free_exec(image);
3280 	return ret;
3281 }
3282 
3283 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3284 {
3285 	u8 *jg_reloc, *prog = *pprog;
3286 	int pivot, err, jg_bytes = 1;
3287 	s64 jg_offset;
3288 
3289 	if (a == b) {
3290 		/* Leaf node of recursion, i.e. not a range of indices
3291 		 * anymore.
3292 		 */
3293 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
3294 		if (!is_simm32(progs[a]))
3295 			return -1;
3296 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3297 			    progs[a]);
3298 		err = emit_cond_near_jump(&prog,	/* je func */
3299 					  (void *)progs[a], image + (prog - buf),
3300 					  X86_JE);
3301 		if (err)
3302 			return err;
3303 
3304 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3305 
3306 		*pprog = prog;
3307 		return 0;
3308 	}
3309 
3310 	/* Not a leaf node, so we pivot, and recursively descend into
3311 	 * the lower and upper ranges.
3312 	 */
3313 	pivot = (b - a) / 2;
3314 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
3315 	if (!is_simm32(progs[a + pivot]))
3316 		return -1;
3317 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3318 
3319 	if (pivot > 2) {				/* jg upper_part */
3320 		/* Require near jump. */
3321 		jg_bytes = 4;
3322 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3323 	} else {
3324 		EMIT2(X86_JG, 0);
3325 	}
3326 	jg_reloc = prog;
3327 
3328 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
3329 				  progs, image, buf);
3330 	if (err)
3331 		return err;
3332 
3333 	/* From Intel 64 and IA-32 Architectures Optimization
3334 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3335 	 * Coding Rule 11: All branch targets should be 16-byte
3336 	 * aligned.
3337 	 */
3338 	emit_align(&prog, 16);
3339 	jg_offset = prog - jg_reloc;
3340 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3341 
3342 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
3343 				  b, progs, image, buf);
3344 	if (err)
3345 		return err;
3346 
3347 	*pprog = prog;
3348 	return 0;
3349 }
3350 
3351 static int cmp_ips(const void *a, const void *b)
3352 {
3353 	const s64 *ipa = a;
3354 	const s64 *ipb = b;
3355 
3356 	if (*ipa > *ipb)
3357 		return 1;
3358 	if (*ipa < *ipb)
3359 		return -1;
3360 	return 0;
3361 }
3362 
3363 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3364 {
3365 	u8 *prog = buf;
3366 
3367 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3368 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3369 }
3370 
3371 static const char *bpf_get_prog_name(struct bpf_prog *prog)
3372 {
3373 	if (prog->aux->ksym.prog)
3374 		return prog->aux->ksym.name;
3375 	return prog->aux->name;
3376 }
3377 
3378 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3379 {
3380 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3381 	u64 *stack_ptr;
3382 
3383 	for_each_possible_cpu(cpu) {
3384 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3385 		stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3386 		stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3387 	}
3388 }
3389 
3390 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3391 				   struct bpf_prog *prog)
3392 {
3393 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3394 	u64 *stack_ptr;
3395 
3396 	for_each_possible_cpu(cpu) {
3397 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3398 		if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3399 		    stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3400 			pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3401 			       bpf_get_prog_name(prog));
3402 			break;
3403 		}
3404 	}
3405 }
3406 
3407 struct x64_jit_data {
3408 	struct bpf_binary_header *rw_header;
3409 	struct bpf_binary_header *header;
3410 	int *addrs;
3411 	u8 *image;
3412 	int proglen;
3413 	struct jit_context ctx;
3414 };
3415 
3416 #define MAX_PASSES 20
3417 #define PADDING_PASSES (MAX_PASSES - 5)
3418 
3419 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3420 {
3421 	struct bpf_binary_header *rw_header = NULL;
3422 	struct bpf_binary_header *header = NULL;
3423 	struct bpf_prog *tmp, *orig_prog = prog;
3424 	void __percpu *priv_stack_ptr = NULL;
3425 	struct x64_jit_data *jit_data;
3426 	int priv_stack_alloc_sz;
3427 	int proglen, oldproglen = 0;
3428 	struct jit_context ctx = {};
3429 	bool tmp_blinded = false;
3430 	bool extra_pass = false;
3431 	bool padding = false;
3432 	u8 *rw_image = NULL;
3433 	u8 *image = NULL;
3434 	int *addrs;
3435 	int pass;
3436 	int i;
3437 
3438 	if (!prog->jit_requested)
3439 		return orig_prog;
3440 
3441 	tmp = bpf_jit_blind_constants(prog);
3442 	/*
3443 	 * If blinding was requested and we failed during blinding,
3444 	 * we must fall back to the interpreter.
3445 	 */
3446 	if (IS_ERR(tmp))
3447 		return orig_prog;
3448 	if (tmp != prog) {
3449 		tmp_blinded = true;
3450 		prog = tmp;
3451 	}
3452 
3453 	jit_data = prog->aux->jit_data;
3454 	if (!jit_data) {
3455 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3456 		if (!jit_data) {
3457 			prog = orig_prog;
3458 			goto out;
3459 		}
3460 		prog->aux->jit_data = jit_data;
3461 	}
3462 	priv_stack_ptr = prog->aux->priv_stack_ptr;
3463 	if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3464 		/* Allocate actual private stack size with verifier-calculated
3465 		 * stack size plus two memory guards to protect overflow and
3466 		 * underflow.
3467 		 */
3468 		priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3469 				      2 * PRIV_STACK_GUARD_SZ;
3470 		priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3471 		if (!priv_stack_ptr) {
3472 			prog = orig_prog;
3473 			goto out_priv_stack;
3474 		}
3475 
3476 		priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3477 		prog->aux->priv_stack_ptr = priv_stack_ptr;
3478 	}
3479 	addrs = jit_data->addrs;
3480 	if (addrs) {
3481 		ctx = jit_data->ctx;
3482 		oldproglen = jit_data->proglen;
3483 		image = jit_data->image;
3484 		header = jit_data->header;
3485 		rw_header = jit_data->rw_header;
3486 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
3487 		extra_pass = true;
3488 		padding = true;
3489 		goto skip_init_addrs;
3490 	}
3491 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3492 	if (!addrs) {
3493 		prog = orig_prog;
3494 		goto out_addrs;
3495 	}
3496 
3497 	/*
3498 	 * Before first pass, make a rough estimation of addrs[]
3499 	 * each BPF instruction is translated to less than 64 bytes
3500 	 */
3501 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3502 		proglen += 64;
3503 		addrs[i] = proglen;
3504 	}
3505 	ctx.cleanup_addr = proglen;
3506 skip_init_addrs:
3507 
3508 	/*
3509 	 * JITed image shrinks with every pass and the loop iterates
3510 	 * until the image stops shrinking. Very large BPF programs
3511 	 * may converge on the last pass. In such case do one more
3512 	 * pass to emit the final image.
3513 	 */
3514 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3515 		if (!padding && pass >= PADDING_PASSES)
3516 			padding = true;
3517 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3518 		if (proglen <= 0) {
3519 out_image:
3520 			image = NULL;
3521 			if (header) {
3522 				bpf_arch_text_copy(&header->size, &rw_header->size,
3523 						   sizeof(rw_header->size));
3524 				bpf_jit_binary_pack_free(header, rw_header);
3525 			}
3526 			/* Fall back to interpreter mode */
3527 			prog = orig_prog;
3528 			if (extra_pass) {
3529 				prog->bpf_func = NULL;
3530 				prog->jited = 0;
3531 				prog->jited_len = 0;
3532 			}
3533 			goto out_addrs;
3534 		}
3535 		if (image) {
3536 			if (proglen != oldproglen) {
3537 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3538 				       proglen, oldproglen);
3539 				goto out_image;
3540 			}
3541 			break;
3542 		}
3543 		if (proglen == oldproglen) {
3544 			/*
3545 			 * The number of entries in extable is the number of BPF_LDX
3546 			 * insns that access kernel memory via "pointer to BTF type".
3547 			 * The verifier changed their opcode from LDX|MEM|size
3548 			 * to LDX|PROBE_MEM|size to make JITing easier.
3549 			 */
3550 			u32 align = __alignof__(struct exception_table_entry);
3551 			u32 extable_size = prog->aux->num_exentries *
3552 				sizeof(struct exception_table_entry);
3553 
3554 			/* allocate module memory for x86 insns and extable */
3555 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3556 							   &image, align, &rw_header, &rw_image,
3557 							   jit_fill_hole);
3558 			if (!header) {
3559 				prog = orig_prog;
3560 				goto out_addrs;
3561 			}
3562 			prog->aux->extable = (void *) image + roundup(proglen, align);
3563 		}
3564 		oldproglen = proglen;
3565 		cond_resched();
3566 	}
3567 
3568 	if (bpf_jit_enable > 1)
3569 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3570 
3571 	if (image) {
3572 		if (!prog->is_func || extra_pass) {
3573 			/*
3574 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3575 			 *   1) header is not pointing to proper module memory;
3576 			 *   2) the arch doesn't support bpf_arch_text_copy().
3577 			 *
3578 			 * Both cases are serious bugs and justify WARN_ON.
3579 			 */
3580 			if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3581 				/* header has been freed */
3582 				header = NULL;
3583 				goto out_image;
3584 			}
3585 
3586 			bpf_tail_call_direct_fixup(prog);
3587 		} else {
3588 			jit_data->addrs = addrs;
3589 			jit_data->ctx = ctx;
3590 			jit_data->proglen = proglen;
3591 			jit_data->image = image;
3592 			jit_data->header = header;
3593 			jit_data->rw_header = rw_header;
3594 		}
3595 		/*
3596 		 * ctx.prog_offset is used when CFI preambles put code *before*
3597 		 * the function. See emit_cfi(). For FineIBT specifically this code
3598 		 * can also be executed and bpf_prog_kallsyms_add() will
3599 		 * generate an additional symbol to cover this, hence also
3600 		 * decrement proglen.
3601 		 */
3602 		prog->bpf_func = (void *)image + cfi_get_offset();
3603 		prog->jited = 1;
3604 		prog->jited_len = proglen - cfi_get_offset();
3605 	} else {
3606 		prog = orig_prog;
3607 	}
3608 
3609 	if (!image || !prog->is_func || extra_pass) {
3610 		if (image)
3611 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3612 out_addrs:
3613 		kvfree(addrs);
3614 		if (!image && priv_stack_ptr) {
3615 			free_percpu(priv_stack_ptr);
3616 			prog->aux->priv_stack_ptr = NULL;
3617 		}
3618 out_priv_stack:
3619 		kfree(jit_data);
3620 		prog->aux->jit_data = NULL;
3621 	}
3622 out:
3623 	if (tmp_blinded)
3624 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3625 					   tmp : orig_prog);
3626 	return prog;
3627 }
3628 
3629 bool bpf_jit_supports_kfunc_call(void)
3630 {
3631 	return true;
3632 }
3633 
3634 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3635 {
3636 	if (text_poke_copy(dst, src, len) == NULL)
3637 		return ERR_PTR(-EINVAL);
3638 	return dst;
3639 }
3640 
3641 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3642 bool bpf_jit_supports_subprog_tailcalls(void)
3643 {
3644 	return true;
3645 }
3646 
3647 bool bpf_jit_supports_percpu_insn(void)
3648 {
3649 	return true;
3650 }
3651 
3652 void bpf_jit_free(struct bpf_prog *prog)
3653 {
3654 	if (prog->jited) {
3655 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3656 		struct bpf_binary_header *hdr;
3657 		void __percpu *priv_stack_ptr;
3658 		int priv_stack_alloc_sz;
3659 
3660 		/*
3661 		 * If we fail the final pass of JIT (from jit_subprogs),
3662 		 * the program may not be finalized yet. Call finalize here
3663 		 * before freeing it.
3664 		 */
3665 		if (jit_data) {
3666 			bpf_jit_binary_pack_finalize(jit_data->header,
3667 						     jit_data->rw_header);
3668 			kvfree(jit_data->addrs);
3669 			kfree(jit_data);
3670 		}
3671 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3672 		hdr = bpf_jit_binary_pack_hdr(prog);
3673 		bpf_jit_binary_pack_free(hdr, NULL);
3674 		priv_stack_ptr = prog->aux->priv_stack_ptr;
3675 		if (priv_stack_ptr) {
3676 			priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3677 					      2 * PRIV_STACK_GUARD_SZ;
3678 			priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3679 			free_percpu(prog->aux->priv_stack_ptr);
3680 		}
3681 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3682 	}
3683 
3684 	bpf_prog_unlock_free(prog);
3685 }
3686 
3687 bool bpf_jit_supports_exceptions(void)
3688 {
3689 	/* We unwind through both kernel frames (starting from within bpf_throw
3690 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3691 	 * to walk kernel frames and reach BPF frames in the stack trace.
3692 	 */
3693 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3694 }
3695 
3696 bool bpf_jit_supports_private_stack(void)
3697 {
3698 	return true;
3699 }
3700 
3701 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3702 {
3703 #if defined(CONFIG_UNWINDER_ORC)
3704 	struct unwind_state state;
3705 	unsigned long addr;
3706 
3707 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3708 	     unwind_next_frame(&state)) {
3709 		addr = unwind_get_return_address(&state);
3710 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3711 			break;
3712 	}
3713 	return;
3714 #endif
3715 	WARN(1, "verification of programs using bpf_throw should have failed\n");
3716 }
3717 
3718 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3719 			       struct bpf_prog *new, struct bpf_prog *old)
3720 {
3721 	u8 *old_addr, *new_addr, *old_bypass_addr;
3722 	int ret;
3723 
3724 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3725 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3726 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3727 
3728 	/*
3729 	 * On program loading or teardown, the program's kallsym entry
3730 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3731 	 * the kallsyms check.
3732 	 */
3733 	if (new) {
3734 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3735 					   BPF_MOD_JUMP,
3736 					   old_addr, new_addr);
3737 		BUG_ON(ret < 0);
3738 		if (!old) {
3739 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3740 						   BPF_MOD_JUMP,
3741 						   poke->bypass_addr,
3742 						   NULL);
3743 			BUG_ON(ret < 0);
3744 		}
3745 	} else {
3746 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3747 					   BPF_MOD_JUMP,
3748 					   old_bypass_addr,
3749 					   poke->bypass_addr);
3750 		BUG_ON(ret < 0);
3751 		/* let other CPUs finish the execution of program
3752 		 * so that it will not possible to expose them
3753 		 * to invalid nop, stack unwind, nop state
3754 		 */
3755 		if (!ret)
3756 			synchronize_rcu();
3757 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3758 					   BPF_MOD_JUMP,
3759 					   old_addr, NULL);
3760 		BUG_ON(ret < 0);
3761 	}
3762 }
3763 
3764 bool bpf_jit_supports_arena(void)
3765 {
3766 	return true;
3767 }
3768 
3769 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3770 {
3771 	if (!in_arena)
3772 		return true;
3773 	switch (insn->code) {
3774 	case BPF_STX | BPF_ATOMIC | BPF_W:
3775 	case BPF_STX | BPF_ATOMIC | BPF_DW:
3776 		if (insn->imm == (BPF_AND | BPF_FETCH) ||
3777 		    insn->imm == (BPF_OR | BPF_FETCH) ||
3778 		    insn->imm == (BPF_XOR | BPF_FETCH))
3779 			return false;
3780 	}
3781 	return true;
3782 }
3783 
3784 bool bpf_jit_supports_ptr_xchg(void)
3785 {
3786 	return true;
3787 }
3788 
3789 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3790 u64 bpf_arch_uaddress_limit(void)
3791 {
3792 	return 0;
3793 }
3794