xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * bpf_jit_comp.c: BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/text-patching.h>
18 #include <asm/asm-prototypes.h>
19 
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
21 {
22 	if (len == 1)
23 		*ptr = bytes;
24 	else if (len == 2)
25 		*(u16 *)ptr = bytes;
26 	else {
27 		*(u32 *)ptr = bytes;
28 		barrier();
29 	}
30 	return ptr + len;
31 }
32 
33 #define EMIT(bytes, len) \
34 	do { prog = emit_code(prog, bytes, len); } while (0)
35 
36 #define EMIT1(b1)		EMIT(b1, 1)
37 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
40 
41 #define EMIT1_off32(b1, off) \
42 	do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
49 
50 static bool is_imm8(int value)
51 {
52 	return value <= 127 && value >= -128;
53 }
54 
55 static bool is_simm32(s64 value)
56 {
57 	return value == (s64)(s32)value;
58 }
59 
60 static bool is_uimm32(u64 value)
61 {
62 	return value == (u64)(u32)value;
63 }
64 
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC)								 \
67 	do {										 \
68 		if (DST != SRC)								 \
69 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 	} while (0)
71 
72 static int bpf_size_to_x86_bytes(int bpf_size)
73 {
74 	if (bpf_size == BPF_W)
75 		return 4;
76 	else if (bpf_size == BPF_H)
77 		return 2;
78 	else if (bpf_size == BPF_B)
79 		return 1;
80 	else if (bpf_size == BPF_DW)
81 		return 4; /* imm32 */
82 	else
83 		return 0;
84 }
85 
86 /*
87  * List of x86 cond jumps opcodes (. + s8)
88  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89  */
90 #define X86_JB  0x72
91 #define X86_JAE 0x73
92 #define X86_JE  0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA  0x77
96 #define X86_JL  0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG  0x7F
100 
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
103 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
104 
105 /*
106  * The following table maps BPF registers to x86-64 registers.
107  *
108  * x86-64 register R12 is unused, since if used as base address
109  * register in load/store instructions, it always needs an
110  * extra byte of encoding and is callee saved.
111  *
112  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
113  * trampoline. x86-64 register R10 is used for blinding (if enabled).
114  */
115 static const int reg2hex[] = {
116 	[BPF_REG_0] = 0,  /* RAX */
117 	[BPF_REG_1] = 7,  /* RDI */
118 	[BPF_REG_2] = 6,  /* RSI */
119 	[BPF_REG_3] = 2,  /* RDX */
120 	[BPF_REG_4] = 1,  /* RCX */
121 	[BPF_REG_5] = 0,  /* R8  */
122 	[BPF_REG_6] = 3,  /* RBX callee saved */
123 	[BPF_REG_7] = 5,  /* R13 callee saved */
124 	[BPF_REG_8] = 6,  /* R14 callee saved */
125 	[BPF_REG_9] = 7,  /* R15 callee saved */
126 	[BPF_REG_FP] = 5, /* RBP readonly */
127 	[BPF_REG_AX] = 2, /* R10 temp register */
128 	[AUX_REG] = 3,    /* R11 temp register */
129 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
130 };
131 
132 static const int reg2pt_regs[] = {
133 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
134 	[BPF_REG_1] = offsetof(struct pt_regs, di),
135 	[BPF_REG_2] = offsetof(struct pt_regs, si),
136 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
137 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
138 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
139 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
140 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
141 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
142 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
143 };
144 
145 /*
146  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
147  * which need extra byte of encoding.
148  * rax,rcx,...,rbp have simpler encoding
149  */
150 static bool is_ereg(u32 reg)
151 {
152 	return (1 << reg) & (BIT(BPF_REG_5) |
153 			     BIT(AUX_REG) |
154 			     BIT(BPF_REG_7) |
155 			     BIT(BPF_REG_8) |
156 			     BIT(BPF_REG_9) |
157 			     BIT(X86_REG_R9) |
158 			     BIT(BPF_REG_AX));
159 }
160 
161 /*
162  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
163  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
164  * of encoding. al,cl,dl,bl have simpler encoding.
165  */
166 static bool is_ereg_8l(u32 reg)
167 {
168 	return is_ereg(reg) ||
169 	    (1 << reg) & (BIT(BPF_REG_1) |
170 			  BIT(BPF_REG_2) |
171 			  BIT(BPF_REG_FP));
172 }
173 
174 static bool is_axreg(u32 reg)
175 {
176 	return reg == BPF_REG_0;
177 }
178 
179 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
180 static u8 add_1mod(u8 byte, u32 reg)
181 {
182 	if (is_ereg(reg))
183 		byte |= 1;
184 	return byte;
185 }
186 
187 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
188 {
189 	if (is_ereg(r1))
190 		byte |= 1;
191 	if (is_ereg(r2))
192 		byte |= 4;
193 	return byte;
194 }
195 
196 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
197 static u8 add_1reg(u8 byte, u32 dst_reg)
198 {
199 	return byte + reg2hex[dst_reg];
200 }
201 
202 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
203 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
204 {
205 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
206 }
207 
208 /* Some 1-byte opcodes for binary ALU operations */
209 static u8 simple_alu_opcodes[] = {
210 	[BPF_ADD] = 0x01,
211 	[BPF_SUB] = 0x29,
212 	[BPF_AND] = 0x21,
213 	[BPF_OR] = 0x09,
214 	[BPF_XOR] = 0x31,
215 	[BPF_LSH] = 0xE0,
216 	[BPF_RSH] = 0xE8,
217 	[BPF_ARSH] = 0xF8,
218 };
219 
220 static void jit_fill_hole(void *area, unsigned int size)
221 {
222 	/* Fill whole space with INT3 instructions */
223 	memset(area, 0xcc, size);
224 }
225 
226 struct jit_context {
227 	int cleanup_addr; /* Epilogue code offset */
228 };
229 
230 /* Maximum number of bytes emitted while JITing one eBPF insn */
231 #define BPF_MAX_INSN_SIZE	128
232 #define BPF_INSN_SAFETY		64
233 
234 /* Number of bytes emit_patch() needs to generate instructions */
235 #define X86_PATCH_SIZE		5
236 /* Number of bytes that will be skipped on tailcall */
237 #define X86_TAIL_CALL_OFFSET	11
238 
239 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
240 {
241 	u8 *prog = *pprog;
242 
243 	if (callee_regs_used[0])
244 		EMIT1(0x53);         /* push rbx */
245 	if (callee_regs_used[1])
246 		EMIT2(0x41, 0x55);   /* push r13 */
247 	if (callee_regs_used[2])
248 		EMIT2(0x41, 0x56);   /* push r14 */
249 	if (callee_regs_used[3])
250 		EMIT2(0x41, 0x57);   /* push r15 */
251 	*pprog = prog;
252 }
253 
254 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
255 {
256 	u8 *prog = *pprog;
257 
258 	if (callee_regs_used[3])
259 		EMIT2(0x41, 0x5F);   /* pop r15 */
260 	if (callee_regs_used[2])
261 		EMIT2(0x41, 0x5E);   /* pop r14 */
262 	if (callee_regs_used[1])
263 		EMIT2(0x41, 0x5D);   /* pop r13 */
264 	if (callee_regs_used[0])
265 		EMIT1(0x5B);         /* pop rbx */
266 	*pprog = prog;
267 }
268 
269 /*
270  * Emit x86-64 prologue code for BPF program.
271  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
272  * while jumping to another program
273  */
274 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
275 			  bool tail_call_reachable, bool is_subprog)
276 {
277 	u8 *prog = *pprog;
278 
279 	/* BPF trampoline can be made to work without these nops,
280 	 * but let's waste 5 bytes for now and optimize later
281 	 */
282 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
283 	prog += X86_PATCH_SIZE;
284 	if (!ebpf_from_cbpf) {
285 		if (tail_call_reachable && !is_subprog)
286 			EMIT2(0x31, 0xC0); /* xor eax, eax */
287 		else
288 			EMIT2(0x66, 0x90); /* nop2 */
289 	}
290 	EMIT1(0x55);             /* push rbp */
291 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
292 	/* sub rsp, rounded_stack_depth */
293 	if (stack_depth)
294 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
295 	if (tail_call_reachable)
296 		EMIT1(0x50);         /* push rax */
297 	*pprog = prog;
298 }
299 
300 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
301 {
302 	u8 *prog = *pprog;
303 	s64 offset;
304 
305 	offset = func - (ip + X86_PATCH_SIZE);
306 	if (!is_simm32(offset)) {
307 		pr_err("Target call %p is out of range\n", func);
308 		return -ERANGE;
309 	}
310 	EMIT1_off32(opcode, offset);
311 	*pprog = prog;
312 	return 0;
313 }
314 
315 static int emit_call(u8 **pprog, void *func, void *ip)
316 {
317 	return emit_patch(pprog, func, ip, 0xE8);
318 }
319 
320 static int emit_jump(u8 **pprog, void *func, void *ip)
321 {
322 	return emit_patch(pprog, func, ip, 0xE9);
323 }
324 
325 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
326 				void *old_addr, void *new_addr,
327 				const bool text_live)
328 {
329 	const u8 *nop_insn = x86_nops[5];
330 	u8 old_insn[X86_PATCH_SIZE];
331 	u8 new_insn[X86_PATCH_SIZE];
332 	u8 *prog;
333 	int ret;
334 
335 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
336 	if (old_addr) {
337 		prog = old_insn;
338 		ret = t == BPF_MOD_CALL ?
339 		      emit_call(&prog, old_addr, ip) :
340 		      emit_jump(&prog, old_addr, ip);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
346 	if (new_addr) {
347 		prog = new_insn;
348 		ret = t == BPF_MOD_CALL ?
349 		      emit_call(&prog, new_addr, ip) :
350 		      emit_jump(&prog, new_addr, ip);
351 		if (ret)
352 			return ret;
353 	}
354 
355 	ret = -EBUSY;
356 	mutex_lock(&text_mutex);
357 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
358 		goto out;
359 	ret = 1;
360 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
361 		if (text_live)
362 			text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
363 		else
364 			memcpy(ip, new_insn, X86_PATCH_SIZE);
365 		ret = 0;
366 	}
367 out:
368 	mutex_unlock(&text_mutex);
369 	return ret;
370 }
371 
372 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
373 		       void *old_addr, void *new_addr)
374 {
375 	if (!is_kernel_text((long)ip) &&
376 	    !is_bpf_text_address((long)ip))
377 		/* BPF poking in modules is not supported */
378 		return -EINVAL;
379 
380 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true);
381 }
382 
383 static int get_pop_bytes(bool *callee_regs_used)
384 {
385 	int bytes = 0;
386 
387 	if (callee_regs_used[3])
388 		bytes += 2;
389 	if (callee_regs_used[2])
390 		bytes += 2;
391 	if (callee_regs_used[1])
392 		bytes += 2;
393 	if (callee_regs_used[0])
394 		bytes += 1;
395 
396 	return bytes;
397 }
398 
399 /*
400  * Generate the following code:
401  *
402  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
403  *   if (index >= array->map.max_entries)
404  *     goto out;
405  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
406  *     goto out;
407  *   prog = array->ptrs[index];
408  *   if (prog == NULL)
409  *     goto out;
410  *   goto *(prog->bpf_func + prologue_size);
411  * out:
412  */
413 static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used,
414 					u32 stack_depth)
415 {
416 	int tcc_off = -4 - round_up(stack_depth, 8);
417 	u8 *prog = *pprog;
418 	int pop_bytes = 0;
419 	int off1 = 42;
420 	int off2 = 31;
421 	int off3 = 9;
422 
423 	/* count the additional bytes used for popping callee regs from stack
424 	 * that need to be taken into account for each of the offsets that
425 	 * are used for bailing out of the tail call
426 	 */
427 	pop_bytes = get_pop_bytes(callee_regs_used);
428 	off1 += pop_bytes;
429 	off2 += pop_bytes;
430 	off3 += pop_bytes;
431 
432 	if (stack_depth) {
433 		off1 += 7;
434 		off2 += 7;
435 		off3 += 7;
436 	}
437 
438 	/*
439 	 * rdi - pointer to ctx
440 	 * rsi - pointer to bpf_array
441 	 * rdx - index in bpf_array
442 	 */
443 
444 	/*
445 	 * if (index >= array->map.max_entries)
446 	 *	goto out;
447 	 */
448 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
449 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
450 	      offsetof(struct bpf_array, map.max_entries));
451 #define OFFSET1 (off1 + RETPOLINE_RCX_BPF_JIT_SIZE) /* Number of bytes to jump */
452 	EMIT2(X86_JBE, OFFSET1);                  /* jbe out */
453 
454 	/*
455 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
456 	 *	goto out;
457 	 */
458 	EMIT2_off32(0x8B, 0x85, tcc_off);         /* mov eax, dword ptr [rbp - tcc_off] */
459 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);     /* cmp eax, MAX_TAIL_CALL_CNT */
460 #define OFFSET2 (off2 + RETPOLINE_RCX_BPF_JIT_SIZE)
461 	EMIT2(X86_JA, OFFSET2);                   /* ja out */
462 	EMIT3(0x83, 0xC0, 0x01);                  /* add eax, 1 */
463 	EMIT2_off32(0x89, 0x85, tcc_off);         /* mov dword ptr [rbp - tcc_off], eax */
464 
465 	/* prog = array->ptrs[index]; */
466 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
467 		    offsetof(struct bpf_array, ptrs));
468 
469 	/*
470 	 * if (prog == NULL)
471 	 *	goto out;
472 	 */
473 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
474 #define OFFSET3 (off3 + RETPOLINE_RCX_BPF_JIT_SIZE)
475 	EMIT2(X86_JE, OFFSET3);                   /* je out */
476 
477 	*pprog = prog;
478 	pop_callee_regs(pprog, callee_regs_used);
479 	prog = *pprog;
480 
481 	EMIT1(0x58);                              /* pop rax */
482 	if (stack_depth)
483 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
484 			    round_up(stack_depth, 8));
485 
486 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
487 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
488 	      offsetof(struct bpf_prog, bpf_func));
489 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
490 	      X86_TAIL_CALL_OFFSET);
491 	/*
492 	 * Now we're ready to jump into next BPF program
493 	 * rdi == ctx (1st arg)
494 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
495 	 */
496 	RETPOLINE_RCX_BPF_JIT();
497 
498 	/* out: */
499 	*pprog = prog;
500 }
501 
502 static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke,
503 				      u8 **pprog, int addr, u8 *image,
504 				      bool *callee_regs_used, u32 stack_depth)
505 {
506 	int tcc_off = -4 - round_up(stack_depth, 8);
507 	u8 *prog = *pprog;
508 	int pop_bytes = 0;
509 	int off1 = 20;
510 	int poke_off;
511 
512 	/* count the additional bytes used for popping callee regs to stack
513 	 * that need to be taken into account for jump offset that is used for
514 	 * bailing out from of the tail call when limit is reached
515 	 */
516 	pop_bytes = get_pop_bytes(callee_regs_used);
517 	off1 += pop_bytes;
518 
519 	/*
520 	 * total bytes for:
521 	 * - nop5/ jmpq $off
522 	 * - pop callee regs
523 	 * - sub rsp, $val if depth > 0
524 	 * - pop rax
525 	 */
526 	poke_off = X86_PATCH_SIZE + pop_bytes + 1;
527 	if (stack_depth) {
528 		poke_off += 7;
529 		off1 += 7;
530 	}
531 
532 	/*
533 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
534 	 *	goto out;
535 	 */
536 	EMIT2_off32(0x8B, 0x85, tcc_off);             /* mov eax, dword ptr [rbp - tcc_off] */
537 	EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT);         /* cmp eax, MAX_TAIL_CALL_CNT */
538 	EMIT2(X86_JA, off1);                          /* ja out */
539 	EMIT3(0x83, 0xC0, 0x01);                      /* add eax, 1 */
540 	EMIT2_off32(0x89, 0x85, tcc_off);             /* mov dword ptr [rbp - tcc_off], eax */
541 
542 	poke->tailcall_bypass = image + (addr - poke_off - X86_PATCH_SIZE);
543 	poke->adj_off = X86_TAIL_CALL_OFFSET;
544 	poke->tailcall_target = image + (addr - X86_PATCH_SIZE);
545 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
546 
547 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
548 		  poke->tailcall_bypass);
549 
550 	*pprog = prog;
551 	pop_callee_regs(pprog, callee_regs_used);
552 	prog = *pprog;
553 	EMIT1(0x58);                                  /* pop rax */
554 	if (stack_depth)
555 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
556 
557 	memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
558 	prog += X86_PATCH_SIZE;
559 	/* out: */
560 
561 	*pprog = prog;
562 }
563 
564 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
565 {
566 	struct bpf_jit_poke_descriptor *poke;
567 	struct bpf_array *array;
568 	struct bpf_prog *target;
569 	int i, ret;
570 
571 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
572 		poke = &prog->aux->poke_tab[i];
573 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
574 
575 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
576 			continue;
577 
578 		array = container_of(poke->tail_call.map, struct bpf_array, map);
579 		mutex_lock(&array->aux->poke_mutex);
580 		target = array->ptrs[poke->tail_call.key];
581 		if (target) {
582 			/* Plain memcpy is used when image is not live yet
583 			 * and still not locked as read-only. Once poke
584 			 * location is active (poke->tailcall_target_stable),
585 			 * any parallel bpf_arch_text_poke() might occur
586 			 * still on the read-write image until we finally
587 			 * locked it as read-only. Both modifications on
588 			 * the given image are under text_mutex to avoid
589 			 * interference.
590 			 */
591 			ret = __bpf_arch_text_poke(poke->tailcall_target,
592 						   BPF_MOD_JUMP, NULL,
593 						   (u8 *)target->bpf_func +
594 						   poke->adj_off, false);
595 			BUG_ON(ret < 0);
596 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
597 						   BPF_MOD_JUMP,
598 						   (u8 *)poke->tailcall_target +
599 						   X86_PATCH_SIZE, NULL, false);
600 			BUG_ON(ret < 0);
601 		}
602 		WRITE_ONCE(poke->tailcall_target_stable, true);
603 		mutex_unlock(&array->aux->poke_mutex);
604 	}
605 }
606 
607 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
608 			   u32 dst_reg, const u32 imm32)
609 {
610 	u8 *prog = *pprog;
611 	u8 b1, b2, b3;
612 
613 	/*
614 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
615 	 * (which zero-extends imm32) to save 2 bytes.
616 	 */
617 	if (sign_propagate && (s32)imm32 < 0) {
618 		/* 'mov %rax, imm32' sign extends imm32 */
619 		b1 = add_1mod(0x48, dst_reg);
620 		b2 = 0xC7;
621 		b3 = 0xC0;
622 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
623 		goto done;
624 	}
625 
626 	/*
627 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
628 	 * to save 3 bytes.
629 	 */
630 	if (imm32 == 0) {
631 		if (is_ereg(dst_reg))
632 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
633 		b2 = 0x31; /* xor */
634 		b3 = 0xC0;
635 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
636 		goto done;
637 	}
638 
639 	/* mov %eax, imm32 */
640 	if (is_ereg(dst_reg))
641 		EMIT1(add_1mod(0x40, dst_reg));
642 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
643 done:
644 	*pprog = prog;
645 }
646 
647 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
648 			   const u32 imm32_hi, const u32 imm32_lo)
649 {
650 	u8 *prog = *pprog;
651 
652 	if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
653 		/*
654 		 * For emitting plain u32, where sign bit must not be
655 		 * propagated LLVM tends to load imm64 over mov32
656 		 * directly, so save couple of bytes by just doing
657 		 * 'mov %eax, imm32' instead.
658 		 */
659 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
660 	} else {
661 		/* movabsq %rax, imm64 */
662 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
663 		EMIT(imm32_lo, 4);
664 		EMIT(imm32_hi, 4);
665 	}
666 
667 	*pprog = prog;
668 }
669 
670 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
671 {
672 	u8 *prog = *pprog;
673 
674 	if (is64) {
675 		/* mov dst, src */
676 		EMIT_mov(dst_reg, src_reg);
677 	} else {
678 		/* mov32 dst, src */
679 		if (is_ereg(dst_reg) || is_ereg(src_reg))
680 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
681 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
682 	}
683 
684 	*pprog = prog;
685 }
686 
687 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
688 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
689 {
690 	u8 *prog = *pprog;
691 
692 	if (is_imm8(off)) {
693 		/* 1-byte signed displacement.
694 		 *
695 		 * If off == 0 we could skip this and save one extra byte, but
696 		 * special case of x86 R13 which always needs an offset is not
697 		 * worth the hassle
698 		 */
699 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
700 	} else {
701 		/* 4-byte signed displacement */
702 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
703 	}
704 	*pprog = prog;
705 }
706 
707 /*
708  * Emit a REX byte if it will be necessary to address these registers
709  */
710 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
711 {
712 	u8 *prog = *pprog;
713 
714 	if (is64)
715 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
716 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
717 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
718 	*pprog = prog;
719 }
720 
721 /* LDX: dst_reg = *(u8*)(src_reg + off) */
722 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
723 {
724 	u8 *prog = *pprog;
725 
726 	switch (size) {
727 	case BPF_B:
728 		/* Emit 'movzx rax, byte ptr [rax + off]' */
729 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
730 		break;
731 	case BPF_H:
732 		/* Emit 'movzx rax, word ptr [rax + off]' */
733 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
734 		break;
735 	case BPF_W:
736 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
737 		if (is_ereg(dst_reg) || is_ereg(src_reg))
738 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
739 		else
740 			EMIT1(0x8B);
741 		break;
742 	case BPF_DW:
743 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
744 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
745 		break;
746 	}
747 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
748 	*pprog = prog;
749 }
750 
751 /* STX: *(u8*)(dst_reg + off) = src_reg */
752 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
753 {
754 	u8 *prog = *pprog;
755 
756 	switch (size) {
757 	case BPF_B:
758 		/* Emit 'mov byte ptr [rax + off], al' */
759 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
760 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
761 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
762 		else
763 			EMIT1(0x88);
764 		break;
765 	case BPF_H:
766 		if (is_ereg(dst_reg) || is_ereg(src_reg))
767 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
768 		else
769 			EMIT2(0x66, 0x89);
770 		break;
771 	case BPF_W:
772 		if (is_ereg(dst_reg) || is_ereg(src_reg))
773 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
774 		else
775 			EMIT1(0x89);
776 		break;
777 	case BPF_DW:
778 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
779 		break;
780 	}
781 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
782 	*pprog = prog;
783 }
784 
785 static int emit_atomic(u8 **pprog, u8 atomic_op,
786 		       u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
787 {
788 	u8 *prog = *pprog;
789 
790 	EMIT1(0xF0); /* lock prefix */
791 
792 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
793 
794 	/* emit opcode */
795 	switch (atomic_op) {
796 	case BPF_ADD:
797 	case BPF_SUB:
798 	case BPF_AND:
799 	case BPF_OR:
800 	case BPF_XOR:
801 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
802 		EMIT1(simple_alu_opcodes[atomic_op]);
803 		break;
804 	case BPF_ADD | BPF_FETCH:
805 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
806 		EMIT2(0x0F, 0xC1);
807 		break;
808 	case BPF_XCHG:
809 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
810 		EMIT1(0x87);
811 		break;
812 	case BPF_CMPXCHG:
813 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
814 		EMIT2(0x0F, 0xB1);
815 		break;
816 	default:
817 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
818 		return -EFAULT;
819 	}
820 
821 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
822 
823 	*pprog = prog;
824 	return 0;
825 }
826 
827 static bool ex_handler_bpf(const struct exception_table_entry *x,
828 			   struct pt_regs *regs, int trapnr,
829 			   unsigned long error_code, unsigned long fault_addr)
830 {
831 	u32 reg = x->fixup >> 8;
832 
833 	/* jump over faulting load and clear dest register */
834 	*(unsigned long *)((void *)regs + reg) = 0;
835 	regs->ip += x->fixup & 0xff;
836 	return true;
837 }
838 
839 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
840 			     bool *regs_used, bool *tail_call_seen)
841 {
842 	int i;
843 
844 	for (i = 1; i <= insn_cnt; i++, insn++) {
845 		if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
846 			*tail_call_seen = true;
847 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
848 			regs_used[0] = true;
849 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
850 			regs_used[1] = true;
851 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
852 			regs_used[2] = true;
853 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
854 			regs_used[3] = true;
855 	}
856 }
857 
858 static void emit_nops(u8 **pprog, int len)
859 {
860 	u8 *prog = *pprog;
861 	int i, noplen;
862 
863 	while (len > 0) {
864 		noplen = len;
865 
866 		if (noplen > ASM_NOP_MAX)
867 			noplen = ASM_NOP_MAX;
868 
869 		for (i = 0; i < noplen; i++)
870 			EMIT1(x86_nops[noplen][i]);
871 		len -= noplen;
872 	}
873 
874 	*pprog = prog;
875 }
876 
877 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
878 
879 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
880 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
881 {
882 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
883 	struct bpf_insn *insn = bpf_prog->insnsi;
884 	bool callee_regs_used[4] = {};
885 	int insn_cnt = bpf_prog->len;
886 	bool tail_call_seen = false;
887 	bool seen_exit = false;
888 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
889 	int i, excnt = 0;
890 	int ilen, proglen = 0;
891 	u8 *prog = temp;
892 	int err;
893 
894 	detect_reg_usage(insn, insn_cnt, callee_regs_used,
895 			 &tail_call_seen);
896 
897 	/* tail call's presence in current prog implies it is reachable */
898 	tail_call_reachable |= tail_call_seen;
899 
900 	emit_prologue(&prog, bpf_prog->aux->stack_depth,
901 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
902 		      bpf_prog->aux->func_idx != 0);
903 	push_callee_regs(&prog, callee_regs_used);
904 
905 	ilen = prog - temp;
906 	if (image)
907 		memcpy(image + proglen, temp, ilen);
908 	proglen += ilen;
909 	addrs[0] = proglen;
910 	prog = temp;
911 
912 	for (i = 1; i <= insn_cnt; i++, insn++) {
913 		const s32 imm32 = insn->imm;
914 		u32 dst_reg = insn->dst_reg;
915 		u32 src_reg = insn->src_reg;
916 		u8 b2 = 0, b3 = 0;
917 		u8 *start_of_ldx;
918 		s64 jmp_offset;
919 		u8 jmp_cond;
920 		u8 *func;
921 		int nops;
922 
923 		switch (insn->code) {
924 			/* ALU */
925 		case BPF_ALU | BPF_ADD | BPF_X:
926 		case BPF_ALU | BPF_SUB | BPF_X:
927 		case BPF_ALU | BPF_AND | BPF_X:
928 		case BPF_ALU | BPF_OR | BPF_X:
929 		case BPF_ALU | BPF_XOR | BPF_X:
930 		case BPF_ALU64 | BPF_ADD | BPF_X:
931 		case BPF_ALU64 | BPF_SUB | BPF_X:
932 		case BPF_ALU64 | BPF_AND | BPF_X:
933 		case BPF_ALU64 | BPF_OR | BPF_X:
934 		case BPF_ALU64 | BPF_XOR | BPF_X:
935 			maybe_emit_mod(&prog, dst_reg, src_reg,
936 				       BPF_CLASS(insn->code) == BPF_ALU64);
937 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
938 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
939 			break;
940 
941 		case BPF_ALU64 | BPF_MOV | BPF_X:
942 		case BPF_ALU | BPF_MOV | BPF_X:
943 			emit_mov_reg(&prog,
944 				     BPF_CLASS(insn->code) == BPF_ALU64,
945 				     dst_reg, src_reg);
946 			break;
947 
948 			/* neg dst */
949 		case BPF_ALU | BPF_NEG:
950 		case BPF_ALU64 | BPF_NEG:
951 			if (BPF_CLASS(insn->code) == BPF_ALU64)
952 				EMIT1(add_1mod(0x48, dst_reg));
953 			else if (is_ereg(dst_reg))
954 				EMIT1(add_1mod(0x40, dst_reg));
955 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
956 			break;
957 
958 		case BPF_ALU | BPF_ADD | BPF_K:
959 		case BPF_ALU | BPF_SUB | BPF_K:
960 		case BPF_ALU | BPF_AND | BPF_K:
961 		case BPF_ALU | BPF_OR | BPF_K:
962 		case BPF_ALU | BPF_XOR | BPF_K:
963 		case BPF_ALU64 | BPF_ADD | BPF_K:
964 		case BPF_ALU64 | BPF_SUB | BPF_K:
965 		case BPF_ALU64 | BPF_AND | BPF_K:
966 		case BPF_ALU64 | BPF_OR | BPF_K:
967 		case BPF_ALU64 | BPF_XOR | BPF_K:
968 			if (BPF_CLASS(insn->code) == BPF_ALU64)
969 				EMIT1(add_1mod(0x48, dst_reg));
970 			else if (is_ereg(dst_reg))
971 				EMIT1(add_1mod(0x40, dst_reg));
972 
973 			/*
974 			 * b3 holds 'normal' opcode, b2 short form only valid
975 			 * in case dst is eax/rax.
976 			 */
977 			switch (BPF_OP(insn->code)) {
978 			case BPF_ADD:
979 				b3 = 0xC0;
980 				b2 = 0x05;
981 				break;
982 			case BPF_SUB:
983 				b3 = 0xE8;
984 				b2 = 0x2D;
985 				break;
986 			case BPF_AND:
987 				b3 = 0xE0;
988 				b2 = 0x25;
989 				break;
990 			case BPF_OR:
991 				b3 = 0xC8;
992 				b2 = 0x0D;
993 				break;
994 			case BPF_XOR:
995 				b3 = 0xF0;
996 				b2 = 0x35;
997 				break;
998 			}
999 
1000 			if (is_imm8(imm32))
1001 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1002 			else if (is_axreg(dst_reg))
1003 				EMIT1_off32(b2, imm32);
1004 			else
1005 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1006 			break;
1007 
1008 		case BPF_ALU64 | BPF_MOV | BPF_K:
1009 		case BPF_ALU | BPF_MOV | BPF_K:
1010 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1011 				       dst_reg, imm32);
1012 			break;
1013 
1014 		case BPF_LD | BPF_IMM | BPF_DW:
1015 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1016 			insn++;
1017 			i++;
1018 			break;
1019 
1020 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1021 		case BPF_ALU | BPF_MOD | BPF_X:
1022 		case BPF_ALU | BPF_DIV | BPF_X:
1023 		case BPF_ALU | BPF_MOD | BPF_K:
1024 		case BPF_ALU | BPF_DIV | BPF_K:
1025 		case BPF_ALU64 | BPF_MOD | BPF_X:
1026 		case BPF_ALU64 | BPF_DIV | BPF_X:
1027 		case BPF_ALU64 | BPF_MOD | BPF_K:
1028 		case BPF_ALU64 | BPF_DIV | BPF_K:
1029 			EMIT1(0x50); /* push rax */
1030 			EMIT1(0x52); /* push rdx */
1031 
1032 			if (BPF_SRC(insn->code) == BPF_X)
1033 				/* mov r11, src_reg */
1034 				EMIT_mov(AUX_REG, src_reg);
1035 			else
1036 				/* mov r11, imm32 */
1037 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1038 
1039 			/* mov rax, dst_reg */
1040 			EMIT_mov(BPF_REG_0, dst_reg);
1041 
1042 			/*
1043 			 * xor edx, edx
1044 			 * equivalent to 'xor rdx, rdx', but one byte less
1045 			 */
1046 			EMIT2(0x31, 0xd2);
1047 
1048 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1049 				/* div r11 */
1050 				EMIT3(0x49, 0xF7, 0xF3);
1051 			else
1052 				/* div r11d */
1053 				EMIT3(0x41, 0xF7, 0xF3);
1054 
1055 			if (BPF_OP(insn->code) == BPF_MOD)
1056 				/* mov r11, rdx */
1057 				EMIT3(0x49, 0x89, 0xD3);
1058 			else
1059 				/* mov r11, rax */
1060 				EMIT3(0x49, 0x89, 0xC3);
1061 
1062 			EMIT1(0x5A); /* pop rdx */
1063 			EMIT1(0x58); /* pop rax */
1064 
1065 			/* mov dst_reg, r11 */
1066 			EMIT_mov(dst_reg, AUX_REG);
1067 			break;
1068 
1069 		case BPF_ALU | BPF_MUL | BPF_K:
1070 		case BPF_ALU | BPF_MUL | BPF_X:
1071 		case BPF_ALU64 | BPF_MUL | BPF_K:
1072 		case BPF_ALU64 | BPF_MUL | BPF_X:
1073 		{
1074 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1075 
1076 			if (dst_reg != BPF_REG_0)
1077 				EMIT1(0x50); /* push rax */
1078 			if (dst_reg != BPF_REG_3)
1079 				EMIT1(0x52); /* push rdx */
1080 
1081 			/* mov r11, dst_reg */
1082 			EMIT_mov(AUX_REG, dst_reg);
1083 
1084 			if (BPF_SRC(insn->code) == BPF_X)
1085 				emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
1086 			else
1087 				emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
1088 
1089 			if (is64)
1090 				EMIT1(add_1mod(0x48, AUX_REG));
1091 			else if (is_ereg(AUX_REG))
1092 				EMIT1(add_1mod(0x40, AUX_REG));
1093 			/* mul(q) r11 */
1094 			EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
1095 
1096 			if (dst_reg != BPF_REG_3)
1097 				EMIT1(0x5A); /* pop rdx */
1098 			if (dst_reg != BPF_REG_0) {
1099 				/* mov dst_reg, rax */
1100 				EMIT_mov(dst_reg, BPF_REG_0);
1101 				EMIT1(0x58); /* pop rax */
1102 			}
1103 			break;
1104 		}
1105 			/* Shifts */
1106 		case BPF_ALU | BPF_LSH | BPF_K:
1107 		case BPF_ALU | BPF_RSH | BPF_K:
1108 		case BPF_ALU | BPF_ARSH | BPF_K:
1109 		case BPF_ALU64 | BPF_LSH | BPF_K:
1110 		case BPF_ALU64 | BPF_RSH | BPF_K:
1111 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1112 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1113 				EMIT1(add_1mod(0x48, dst_reg));
1114 			else if (is_ereg(dst_reg))
1115 				EMIT1(add_1mod(0x40, dst_reg));
1116 
1117 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1118 			if (imm32 == 1)
1119 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1120 			else
1121 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1122 			break;
1123 
1124 		case BPF_ALU | BPF_LSH | BPF_X:
1125 		case BPF_ALU | BPF_RSH | BPF_X:
1126 		case BPF_ALU | BPF_ARSH | BPF_X:
1127 		case BPF_ALU64 | BPF_LSH | BPF_X:
1128 		case BPF_ALU64 | BPF_RSH | BPF_X:
1129 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1130 
1131 			/* Check for bad case when dst_reg == rcx */
1132 			if (dst_reg == BPF_REG_4) {
1133 				/* mov r11, dst_reg */
1134 				EMIT_mov(AUX_REG, dst_reg);
1135 				dst_reg = AUX_REG;
1136 			}
1137 
1138 			if (src_reg != BPF_REG_4) { /* common case */
1139 				EMIT1(0x51); /* push rcx */
1140 
1141 				/* mov rcx, src_reg */
1142 				EMIT_mov(BPF_REG_4, src_reg);
1143 			}
1144 
1145 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1146 			if (BPF_CLASS(insn->code) == BPF_ALU64)
1147 				EMIT1(add_1mod(0x48, dst_reg));
1148 			else if (is_ereg(dst_reg))
1149 				EMIT1(add_1mod(0x40, dst_reg));
1150 
1151 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1152 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1153 
1154 			if (src_reg != BPF_REG_4)
1155 				EMIT1(0x59); /* pop rcx */
1156 
1157 			if (insn->dst_reg == BPF_REG_4)
1158 				/* mov dst_reg, r11 */
1159 				EMIT_mov(insn->dst_reg, AUX_REG);
1160 			break;
1161 
1162 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1163 			switch (imm32) {
1164 			case 16:
1165 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1166 				EMIT1(0x66);
1167 				if (is_ereg(dst_reg))
1168 					EMIT1(0x41);
1169 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1170 
1171 				/* Emit 'movzwl eax, ax' */
1172 				if (is_ereg(dst_reg))
1173 					EMIT3(0x45, 0x0F, 0xB7);
1174 				else
1175 					EMIT2(0x0F, 0xB7);
1176 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1177 				break;
1178 			case 32:
1179 				/* Emit 'bswap eax' to swap lower 4 bytes */
1180 				if (is_ereg(dst_reg))
1181 					EMIT2(0x41, 0x0F);
1182 				else
1183 					EMIT1(0x0F);
1184 				EMIT1(add_1reg(0xC8, dst_reg));
1185 				break;
1186 			case 64:
1187 				/* Emit 'bswap rax' to swap 8 bytes */
1188 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1189 				      add_1reg(0xC8, dst_reg));
1190 				break;
1191 			}
1192 			break;
1193 
1194 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1195 			switch (imm32) {
1196 			case 16:
1197 				/*
1198 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1199 				 * into 64 bit
1200 				 */
1201 				if (is_ereg(dst_reg))
1202 					EMIT3(0x45, 0x0F, 0xB7);
1203 				else
1204 					EMIT2(0x0F, 0xB7);
1205 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1206 				break;
1207 			case 32:
1208 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1209 				if (is_ereg(dst_reg))
1210 					EMIT1(0x45);
1211 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1212 				break;
1213 			case 64:
1214 				/* nop */
1215 				break;
1216 			}
1217 			break;
1218 
1219 			/* ST: *(u8*)(dst_reg + off) = imm */
1220 		case BPF_ST | BPF_MEM | BPF_B:
1221 			if (is_ereg(dst_reg))
1222 				EMIT2(0x41, 0xC6);
1223 			else
1224 				EMIT1(0xC6);
1225 			goto st;
1226 		case BPF_ST | BPF_MEM | BPF_H:
1227 			if (is_ereg(dst_reg))
1228 				EMIT3(0x66, 0x41, 0xC7);
1229 			else
1230 				EMIT2(0x66, 0xC7);
1231 			goto st;
1232 		case BPF_ST | BPF_MEM | BPF_W:
1233 			if (is_ereg(dst_reg))
1234 				EMIT2(0x41, 0xC7);
1235 			else
1236 				EMIT1(0xC7);
1237 			goto st;
1238 		case BPF_ST | BPF_MEM | BPF_DW:
1239 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1240 
1241 st:			if (is_imm8(insn->off))
1242 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1243 			else
1244 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1245 
1246 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1247 			break;
1248 
1249 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1250 		case BPF_STX | BPF_MEM | BPF_B:
1251 		case BPF_STX | BPF_MEM | BPF_H:
1252 		case BPF_STX | BPF_MEM | BPF_W:
1253 		case BPF_STX | BPF_MEM | BPF_DW:
1254 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1255 			break;
1256 
1257 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
1258 		case BPF_LDX | BPF_MEM | BPF_B:
1259 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1260 		case BPF_LDX | BPF_MEM | BPF_H:
1261 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1262 		case BPF_LDX | BPF_MEM | BPF_W:
1263 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1264 		case BPF_LDX | BPF_MEM | BPF_DW:
1265 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1266 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1267 				/* test src_reg, src_reg */
1268 				maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */
1269 				EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg));
1270 				/* jne start_of_ldx */
1271 				EMIT2(X86_JNE, 0);
1272 				/* xor dst_reg, dst_reg */
1273 				emit_mov_imm32(&prog, false, dst_reg, 0);
1274 				/* jmp byte_after_ldx */
1275 				EMIT2(0xEB, 0);
1276 
1277 				/* populate jmp_offset for JNE above */
1278 				temp[4] = prog - temp - 5 /* sizeof(test + jne) */;
1279 				start_of_ldx = prog;
1280 			}
1281 			emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1282 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
1283 				struct exception_table_entry *ex;
1284 				u8 *_insn = image + proglen + (start_of_ldx - temp);
1285 				s64 delta;
1286 
1287 				/* populate jmp_offset for JMP above */
1288 				start_of_ldx[-1] = prog - start_of_ldx;
1289 
1290 				if (!bpf_prog->aux->extable)
1291 					break;
1292 
1293 				if (excnt >= bpf_prog->aux->num_exentries) {
1294 					pr_err("ex gen bug\n");
1295 					return -EFAULT;
1296 				}
1297 				ex = &bpf_prog->aux->extable[excnt++];
1298 
1299 				delta = _insn - (u8 *)&ex->insn;
1300 				if (!is_simm32(delta)) {
1301 					pr_err("extable->insn doesn't fit into 32-bit\n");
1302 					return -EFAULT;
1303 				}
1304 				ex->insn = delta;
1305 
1306 				delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
1307 				if (!is_simm32(delta)) {
1308 					pr_err("extable->handler doesn't fit into 32-bit\n");
1309 					return -EFAULT;
1310 				}
1311 				ex->handler = delta;
1312 
1313 				if (dst_reg > BPF_REG_9) {
1314 					pr_err("verifier error\n");
1315 					return -EFAULT;
1316 				}
1317 				/*
1318 				 * Compute size of x86 insn and its target dest x86 register.
1319 				 * ex_handler_bpf() will use lower 8 bits to adjust
1320 				 * pt_regs->ip to jump over this x86 instruction
1321 				 * and upper bits to figure out which pt_regs to zero out.
1322 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
1323 				 * of 4 bytes will be ignored and rbx will be zero inited.
1324 				 */
1325 				ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
1326 			}
1327 			break;
1328 
1329 		case BPF_STX | BPF_ATOMIC | BPF_W:
1330 		case BPF_STX | BPF_ATOMIC | BPF_DW:
1331 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
1332 			    insn->imm == (BPF_OR | BPF_FETCH) ||
1333 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
1334 				u8 *branch_target;
1335 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
1336 				u32 real_src_reg = src_reg;
1337 
1338 				/*
1339 				 * Can't be implemented with a single x86 insn.
1340 				 * Need to do a CMPXCHG loop.
1341 				 */
1342 
1343 				/* Will need RAX as a CMPXCHG operand so save R0 */
1344 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
1345 				if (src_reg == BPF_REG_0)
1346 					real_src_reg = BPF_REG_AX;
1347 
1348 				branch_target = prog;
1349 				/* Load old value */
1350 				emit_ldx(&prog, BPF_SIZE(insn->code),
1351 					 BPF_REG_0, dst_reg, insn->off);
1352 				/*
1353 				 * Perform the (commutative) operation locally,
1354 				 * put the result in the AUX_REG.
1355 				 */
1356 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
1357 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
1358 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
1359 				      add_2reg(0xC0, AUX_REG, real_src_reg));
1360 				/* Attempt to swap in new value */
1361 				err = emit_atomic(&prog, BPF_CMPXCHG,
1362 						  dst_reg, AUX_REG, insn->off,
1363 						  BPF_SIZE(insn->code));
1364 				if (WARN_ON(err))
1365 					return err;
1366 				/*
1367 				 * ZF tells us whether we won the race. If it's
1368 				 * cleared we need to try again.
1369 				 */
1370 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
1371 				/* Return the pre-modification value */
1372 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
1373 				/* Restore R0 after clobbering RAX */
1374 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
1375 				break;
1376 
1377 			}
1378 
1379 			err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
1380 						  insn->off, BPF_SIZE(insn->code));
1381 			if (err)
1382 				return err;
1383 			break;
1384 
1385 			/* call */
1386 		case BPF_JMP | BPF_CALL:
1387 			func = (u8 *) __bpf_call_base + imm32;
1388 			if (tail_call_reachable) {
1389 				EMIT3_off32(0x48, 0x8B, 0x85,
1390 					    -(bpf_prog->aux->stack_depth + 8));
1391 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7))
1392 					return -EINVAL;
1393 			} else {
1394 				if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
1395 					return -EINVAL;
1396 			}
1397 			break;
1398 
1399 		case BPF_JMP | BPF_TAIL_CALL:
1400 			if (imm32)
1401 				emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1],
1402 							  &prog, addrs[i], image,
1403 							  callee_regs_used,
1404 							  bpf_prog->aux->stack_depth);
1405 			else
1406 				emit_bpf_tail_call_indirect(&prog,
1407 							    callee_regs_used,
1408 							    bpf_prog->aux->stack_depth);
1409 			break;
1410 
1411 			/* cond jump */
1412 		case BPF_JMP | BPF_JEQ | BPF_X:
1413 		case BPF_JMP | BPF_JNE | BPF_X:
1414 		case BPF_JMP | BPF_JGT | BPF_X:
1415 		case BPF_JMP | BPF_JLT | BPF_X:
1416 		case BPF_JMP | BPF_JGE | BPF_X:
1417 		case BPF_JMP | BPF_JLE | BPF_X:
1418 		case BPF_JMP | BPF_JSGT | BPF_X:
1419 		case BPF_JMP | BPF_JSLT | BPF_X:
1420 		case BPF_JMP | BPF_JSGE | BPF_X:
1421 		case BPF_JMP | BPF_JSLE | BPF_X:
1422 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1423 		case BPF_JMP32 | BPF_JNE | BPF_X:
1424 		case BPF_JMP32 | BPF_JGT | BPF_X:
1425 		case BPF_JMP32 | BPF_JLT | BPF_X:
1426 		case BPF_JMP32 | BPF_JGE | BPF_X:
1427 		case BPF_JMP32 | BPF_JLE | BPF_X:
1428 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1429 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1430 		case BPF_JMP32 | BPF_JSGE | BPF_X:
1431 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1432 			/* cmp dst_reg, src_reg */
1433 			maybe_emit_mod(&prog, dst_reg, src_reg,
1434 				       BPF_CLASS(insn->code) == BPF_JMP);
1435 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
1436 			goto emit_cond_jmp;
1437 
1438 		case BPF_JMP | BPF_JSET | BPF_X:
1439 		case BPF_JMP32 | BPF_JSET | BPF_X:
1440 			/* test dst_reg, src_reg */
1441 			maybe_emit_mod(&prog, dst_reg, src_reg,
1442 				       BPF_CLASS(insn->code) == BPF_JMP);
1443 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
1444 			goto emit_cond_jmp;
1445 
1446 		case BPF_JMP | BPF_JSET | BPF_K:
1447 		case BPF_JMP32 | BPF_JSET | BPF_K:
1448 			/* test dst_reg, imm32 */
1449 			if (BPF_CLASS(insn->code) == BPF_JMP)
1450 				EMIT1(add_1mod(0x48, dst_reg));
1451 			else if (is_ereg(dst_reg))
1452 				EMIT1(add_1mod(0x40, dst_reg));
1453 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
1454 			goto emit_cond_jmp;
1455 
1456 		case BPF_JMP | BPF_JEQ | BPF_K:
1457 		case BPF_JMP | BPF_JNE | BPF_K:
1458 		case BPF_JMP | BPF_JGT | BPF_K:
1459 		case BPF_JMP | BPF_JLT | BPF_K:
1460 		case BPF_JMP | BPF_JGE | BPF_K:
1461 		case BPF_JMP | BPF_JLE | BPF_K:
1462 		case BPF_JMP | BPF_JSGT | BPF_K:
1463 		case BPF_JMP | BPF_JSLT | BPF_K:
1464 		case BPF_JMP | BPF_JSGE | BPF_K:
1465 		case BPF_JMP | BPF_JSLE | BPF_K:
1466 		case BPF_JMP32 | BPF_JEQ | BPF_K:
1467 		case BPF_JMP32 | BPF_JNE | BPF_K:
1468 		case BPF_JMP32 | BPF_JGT | BPF_K:
1469 		case BPF_JMP32 | BPF_JLT | BPF_K:
1470 		case BPF_JMP32 | BPF_JGE | BPF_K:
1471 		case BPF_JMP32 | BPF_JLE | BPF_K:
1472 		case BPF_JMP32 | BPF_JSGT | BPF_K:
1473 		case BPF_JMP32 | BPF_JSLT | BPF_K:
1474 		case BPF_JMP32 | BPF_JSGE | BPF_K:
1475 		case BPF_JMP32 | BPF_JSLE | BPF_K:
1476 			/* test dst_reg, dst_reg to save one extra byte */
1477 			if (imm32 == 0) {
1478 				maybe_emit_mod(&prog, dst_reg, dst_reg,
1479 					       BPF_CLASS(insn->code) == BPF_JMP);
1480 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1481 				goto emit_cond_jmp;
1482 			}
1483 
1484 			/* cmp dst_reg, imm8/32 */
1485 			if (BPF_CLASS(insn->code) == BPF_JMP)
1486 				EMIT1(add_1mod(0x48, dst_reg));
1487 			else if (is_ereg(dst_reg))
1488 				EMIT1(add_1mod(0x40, dst_reg));
1489 
1490 			if (is_imm8(imm32))
1491 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
1492 			else
1493 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
1494 
1495 emit_cond_jmp:		/* Convert BPF opcode to x86 */
1496 			switch (BPF_OP(insn->code)) {
1497 			case BPF_JEQ:
1498 				jmp_cond = X86_JE;
1499 				break;
1500 			case BPF_JSET:
1501 			case BPF_JNE:
1502 				jmp_cond = X86_JNE;
1503 				break;
1504 			case BPF_JGT:
1505 				/* GT is unsigned '>', JA in x86 */
1506 				jmp_cond = X86_JA;
1507 				break;
1508 			case BPF_JLT:
1509 				/* LT is unsigned '<', JB in x86 */
1510 				jmp_cond = X86_JB;
1511 				break;
1512 			case BPF_JGE:
1513 				/* GE is unsigned '>=', JAE in x86 */
1514 				jmp_cond = X86_JAE;
1515 				break;
1516 			case BPF_JLE:
1517 				/* LE is unsigned '<=', JBE in x86 */
1518 				jmp_cond = X86_JBE;
1519 				break;
1520 			case BPF_JSGT:
1521 				/* Signed '>', GT in x86 */
1522 				jmp_cond = X86_JG;
1523 				break;
1524 			case BPF_JSLT:
1525 				/* Signed '<', LT in x86 */
1526 				jmp_cond = X86_JL;
1527 				break;
1528 			case BPF_JSGE:
1529 				/* Signed '>=', GE in x86 */
1530 				jmp_cond = X86_JGE;
1531 				break;
1532 			case BPF_JSLE:
1533 				/* Signed '<=', LE in x86 */
1534 				jmp_cond = X86_JLE;
1535 				break;
1536 			default: /* to silence GCC warning */
1537 				return -EFAULT;
1538 			}
1539 			jmp_offset = addrs[i + insn->off] - addrs[i];
1540 			if (is_imm8(jmp_offset)) {
1541 				if (jmp_padding) {
1542 					/* To keep the jmp_offset valid, the extra bytes are
1543 					 * padded before the jump insn, so we subtract the
1544 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
1545 					 *
1546 					 * If the previous pass already emits an imm8
1547 					 * jmp_cond, then this BPF insn won't shrink, so
1548 					 * "nops" is 0.
1549 					 *
1550 					 * On the other hand, if the previous pass emits an
1551 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
1552 					 * keep the image from shrinking further.
1553 					 *
1554 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
1555 					 *     is 2 bytes, so the size difference is 4 bytes.
1556 					 */
1557 					nops = INSN_SZ_DIFF - 2;
1558 					if (nops != 0 && nops != 4) {
1559 						pr_err("unexpected jmp_cond padding: %d bytes\n",
1560 						       nops);
1561 						return -EFAULT;
1562 					}
1563 					emit_nops(&prog, nops);
1564 				}
1565 				EMIT2(jmp_cond, jmp_offset);
1566 			} else if (is_simm32(jmp_offset)) {
1567 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
1568 			} else {
1569 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
1570 				return -EFAULT;
1571 			}
1572 
1573 			break;
1574 
1575 		case BPF_JMP | BPF_JA:
1576 			if (insn->off == -1)
1577 				/* -1 jmp instructions will always jump
1578 				 * backwards two bytes. Explicitly handling
1579 				 * this case avoids wasting too many passes
1580 				 * when there are long sequences of replaced
1581 				 * dead code.
1582 				 */
1583 				jmp_offset = -2;
1584 			else
1585 				jmp_offset = addrs[i + insn->off] - addrs[i];
1586 
1587 			if (!jmp_offset) {
1588 				/*
1589 				 * If jmp_padding is enabled, the extra nops will
1590 				 * be inserted. Otherwise, optimize out nop jumps.
1591 				 */
1592 				if (jmp_padding) {
1593 					/* There are 3 possible conditions.
1594 					 * (1) This BPF_JA is already optimized out in
1595 					 *     the previous run, so there is no need
1596 					 *     to pad any extra byte (0 byte).
1597 					 * (2) The previous pass emits an imm8 jmp,
1598 					 *     so we pad 2 bytes to match the previous
1599 					 *     insn size.
1600 					 * (3) Similarly, the previous pass emits an
1601 					 *     imm32 jmp, and 5 bytes is padded.
1602 					 */
1603 					nops = INSN_SZ_DIFF;
1604 					if (nops != 0 && nops != 2 && nops != 5) {
1605 						pr_err("unexpected nop jump padding: %d bytes\n",
1606 						       nops);
1607 						return -EFAULT;
1608 					}
1609 					emit_nops(&prog, nops);
1610 				}
1611 				break;
1612 			}
1613 emit_jmp:
1614 			if (is_imm8(jmp_offset)) {
1615 				if (jmp_padding) {
1616 					/* To avoid breaking jmp_offset, the extra bytes
1617 					 * are padded before the actual jmp insn, so
1618 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
1619 					 *
1620 					 * If the previous pass already emits an imm8
1621 					 * jmp, there is nothing to pad (0 byte).
1622 					 *
1623 					 * If it emits an imm32 jmp (5 bytes) previously
1624 					 * and now an imm8 jmp (2 bytes), then we pad
1625 					 * (5 - 2 = 3) bytes to stop the image from
1626 					 * shrinking further.
1627 					 */
1628 					nops = INSN_SZ_DIFF - 2;
1629 					if (nops != 0 && nops != 3) {
1630 						pr_err("unexpected jump padding: %d bytes\n",
1631 						       nops);
1632 						return -EFAULT;
1633 					}
1634 					emit_nops(&prog, INSN_SZ_DIFF - 2);
1635 				}
1636 				EMIT2(0xEB, jmp_offset);
1637 			} else if (is_simm32(jmp_offset)) {
1638 				EMIT1_off32(0xE9, jmp_offset);
1639 			} else {
1640 				pr_err("jmp gen bug %llx\n", jmp_offset);
1641 				return -EFAULT;
1642 			}
1643 			break;
1644 
1645 		case BPF_JMP | BPF_EXIT:
1646 			if (seen_exit) {
1647 				jmp_offset = ctx->cleanup_addr - addrs[i];
1648 				goto emit_jmp;
1649 			}
1650 			seen_exit = true;
1651 			/* Update cleanup_addr */
1652 			ctx->cleanup_addr = proglen;
1653 			pop_callee_regs(&prog, callee_regs_used);
1654 			EMIT1(0xC9);         /* leave */
1655 			EMIT1(0xC3);         /* ret */
1656 			break;
1657 
1658 		default:
1659 			/*
1660 			 * By design x86-64 JIT should support all BPF instructions.
1661 			 * This error will be seen if new instruction was added
1662 			 * to the interpreter, but not to the JIT, or if there is
1663 			 * junk in bpf_prog.
1664 			 */
1665 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1666 			return -EINVAL;
1667 		}
1668 
1669 		ilen = prog - temp;
1670 		if (ilen > BPF_MAX_INSN_SIZE) {
1671 			pr_err("bpf_jit: fatal insn size error\n");
1672 			return -EFAULT;
1673 		}
1674 
1675 		if (image) {
1676 			/*
1677 			 * When populating the image, assert that:
1678 			 *
1679 			 *  i) We do not write beyond the allocated space, and
1680 			 * ii) addrs[i] did not change from the prior run, in order
1681 			 *     to validate assumptions made for computing branch
1682 			 *     displacements.
1683 			 */
1684 			if (unlikely(proglen + ilen > oldproglen ||
1685 				     proglen + ilen != addrs[i])) {
1686 				pr_err("bpf_jit: fatal error\n");
1687 				return -EFAULT;
1688 			}
1689 			memcpy(image + proglen, temp, ilen);
1690 		}
1691 		proglen += ilen;
1692 		addrs[i] = proglen;
1693 		prog = temp;
1694 	}
1695 
1696 	if (image && excnt != bpf_prog->aux->num_exentries) {
1697 		pr_err("extable is not populated\n");
1698 		return -EFAULT;
1699 	}
1700 	return proglen;
1701 }
1702 
1703 static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1704 		      int stack_size)
1705 {
1706 	int i;
1707 	/* Store function arguments to stack.
1708 	 * For a function that accepts two pointers the sequence will be:
1709 	 * mov QWORD PTR [rbp-0x10],rdi
1710 	 * mov QWORD PTR [rbp-0x8],rsi
1711 	 */
1712 	for (i = 0; i < min(nr_args, 6); i++)
1713 		emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
1714 			 BPF_REG_FP,
1715 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1716 			 -(stack_size - i * 8));
1717 }
1718 
1719 static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args,
1720 			 int stack_size)
1721 {
1722 	int i;
1723 
1724 	/* Restore function arguments from stack.
1725 	 * For a function that accepts two pointers the sequence will be:
1726 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
1727 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
1728 	 */
1729 	for (i = 0; i < min(nr_args, 6); i++)
1730 		emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
1731 			 i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
1732 			 BPF_REG_FP,
1733 			 -(stack_size - i * 8));
1734 }
1735 
1736 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
1737 			   struct bpf_prog *p, int stack_size, bool mod_ret)
1738 {
1739 	u8 *prog = *pprog;
1740 	u8 *jmp_insn;
1741 
1742 	/* arg1: mov rdi, progs[i] */
1743 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1744 	if (emit_call(&prog,
1745 		      p->aux->sleepable ? __bpf_prog_enter_sleepable :
1746 		      __bpf_prog_enter, prog))
1747 			return -EINVAL;
1748 	/* remember prog start time returned by __bpf_prog_enter */
1749 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
1750 
1751 	/* if (__bpf_prog_enter*(prog) == 0)
1752 	 *	goto skip_exec_of_prog;
1753 	 */
1754 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
1755 	/* emit 2 nops that will be replaced with JE insn */
1756 	jmp_insn = prog;
1757 	emit_nops(&prog, 2);
1758 
1759 	/* arg1: lea rdi, [rbp - stack_size] */
1760 	EMIT4(0x48, 0x8D, 0x7D, -stack_size);
1761 	/* arg2: progs[i]->insnsi for interpreter */
1762 	if (!p->jited)
1763 		emit_mov_imm64(&prog, BPF_REG_2,
1764 			       (long) p->insnsi >> 32,
1765 			       (u32) (long) p->insnsi);
1766 	/* call JITed bpf program or interpreter */
1767 	if (emit_call(&prog, p->bpf_func, prog))
1768 		return -EINVAL;
1769 
1770 	/* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
1771 	 * of the previous call which is then passed on the stack to
1772 	 * the next BPF program.
1773 	 */
1774 	if (mod_ret)
1775 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1776 
1777 	/* replace 2 nops with JE insn, since jmp target is known */
1778 	jmp_insn[0] = X86_JE;
1779 	jmp_insn[1] = prog - jmp_insn - 2;
1780 
1781 	/* arg1: mov rdi, progs[i] */
1782 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
1783 	/* arg2: mov rsi, rbx <- start time in nsec */
1784 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
1785 	if (emit_call(&prog,
1786 		      p->aux->sleepable ? __bpf_prog_exit_sleepable :
1787 		      __bpf_prog_exit, prog))
1788 			return -EINVAL;
1789 
1790 	*pprog = prog;
1791 	return 0;
1792 }
1793 
1794 static void emit_align(u8 **pprog, u32 align)
1795 {
1796 	u8 *target, *prog = *pprog;
1797 
1798 	target = PTR_ALIGN(prog, align);
1799 	if (target != prog)
1800 		emit_nops(&prog, target - prog);
1801 
1802 	*pprog = prog;
1803 }
1804 
1805 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
1806 {
1807 	u8 *prog = *pprog;
1808 	s64 offset;
1809 
1810 	offset = func - (ip + 2 + 4);
1811 	if (!is_simm32(offset)) {
1812 		pr_err("Target %p is out of range\n", func);
1813 		return -EINVAL;
1814 	}
1815 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
1816 	*pprog = prog;
1817 	return 0;
1818 }
1819 
1820 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
1821 		      struct bpf_tramp_progs *tp, int stack_size)
1822 {
1823 	int i;
1824 	u8 *prog = *pprog;
1825 
1826 	for (i = 0; i < tp->nr_progs; i++) {
1827 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, false))
1828 			return -EINVAL;
1829 	}
1830 	*pprog = prog;
1831 	return 0;
1832 }
1833 
1834 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
1835 			      struct bpf_tramp_progs *tp, int stack_size,
1836 			      u8 **branches)
1837 {
1838 	u8 *prog = *pprog;
1839 	int i;
1840 
1841 	/* The first fmod_ret program will receive a garbage return value.
1842 	 * Set this to 0 to avoid confusing the program.
1843 	 */
1844 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
1845 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
1846 	for (i = 0; i < tp->nr_progs; i++) {
1847 		if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true))
1848 			return -EINVAL;
1849 
1850 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
1851 		 * if (*(u64 *)(rbp - 8) !=  0)
1852 		 *	goto do_fexit;
1853 		 */
1854 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
1855 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
1856 
1857 		/* Save the location of the branch and Generate 6 nops
1858 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
1859 		 * are replaced with a conditional jump once do_fexit (i.e. the
1860 		 * start of the fexit invocation) is finalized.
1861 		 */
1862 		branches[i] = prog;
1863 		emit_nops(&prog, 4 + 2);
1864 	}
1865 
1866 	*pprog = prog;
1867 	return 0;
1868 }
1869 
1870 /* Example:
1871  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
1872  * its 'struct btf_func_model' will be nr_args=2
1873  * The assembly code when eth_type_trans is executing after trampoline:
1874  *
1875  * push rbp
1876  * mov rbp, rsp
1877  * sub rsp, 16                     // space for skb and dev
1878  * push rbx                        // temp regs to pass start time
1879  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
1880  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
1881  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1882  * mov rbx, rax                    // remember start time in bpf stats are enabled
1883  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
1884  * call addr_of_jited_FENTRY_prog
1885  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1886  * mov rsi, rbx                    // prog start time
1887  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1888  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
1889  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
1890  * pop rbx
1891  * leave
1892  * ret
1893  *
1894  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
1895  * replaced with 'call generated_bpf_trampoline'. When it returns
1896  * eth_type_trans will continue executing with original skb and dev pointers.
1897  *
1898  * The assembly code when eth_type_trans is called from trampoline:
1899  *
1900  * push rbp
1901  * mov rbp, rsp
1902  * sub rsp, 24                     // space for skb, dev, return value
1903  * push rbx                        // temp regs to pass start time
1904  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
1905  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
1906  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1907  * mov rbx, rax                    // remember start time if bpf stats are enabled
1908  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1909  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
1910  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1911  * mov rsi, rbx                    // prog start time
1912  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1913  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
1914  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
1915  * call eth_type_trans+5           // execute body of eth_type_trans
1916  * mov qword ptr [rbp - 8], rax    // save return value
1917  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
1918  * mov rbx, rax                    // remember start time in bpf stats are enabled
1919  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
1920  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
1921  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
1922  * mov rsi, rbx                    // prog start time
1923  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
1924  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
1925  * pop rbx
1926  * leave
1927  * add rsp, 8                      // skip eth_type_trans's frame
1928  * ret                             // return to its caller
1929  */
1930 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1931 				const struct btf_func_model *m, u32 flags,
1932 				struct bpf_tramp_progs *tprogs,
1933 				void *orig_call)
1934 {
1935 	int ret, i, nr_args = m->nr_args;
1936 	int stack_size = nr_args * 8;
1937 	struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY];
1938 	struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT];
1939 	struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN];
1940 	u8 **branches = NULL;
1941 	u8 *prog;
1942 
1943 	/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
1944 	if (nr_args > 6)
1945 		return -ENOTSUPP;
1946 
1947 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
1948 	    (flags & BPF_TRAMP_F_SKIP_FRAME))
1949 		return -EINVAL;
1950 
1951 	if (flags & BPF_TRAMP_F_CALL_ORIG)
1952 		stack_size += 8; /* room for return value of orig_call */
1953 
1954 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
1955 		/* skip patched call instruction and point orig_call to actual
1956 		 * body of the kernel function.
1957 		 */
1958 		orig_call += X86_PATCH_SIZE;
1959 
1960 	prog = image;
1961 
1962 	EMIT1(0x55);		 /* push rbp */
1963 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
1964 	EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
1965 	EMIT1(0x53);		 /* push rbx */
1966 
1967 	save_regs(m, &prog, nr_args, stack_size);
1968 
1969 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1970 		/* arg1: mov rdi, im */
1971 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
1972 		if (emit_call(&prog, __bpf_tramp_enter, prog)) {
1973 			ret = -EINVAL;
1974 			goto cleanup;
1975 		}
1976 	}
1977 
1978 	if (fentry->nr_progs)
1979 		if (invoke_bpf(m, &prog, fentry, stack_size))
1980 			return -EINVAL;
1981 
1982 	if (fmod_ret->nr_progs) {
1983 		branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *),
1984 				   GFP_KERNEL);
1985 		if (!branches)
1986 			return -ENOMEM;
1987 
1988 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size,
1989 				       branches)) {
1990 			ret = -EINVAL;
1991 			goto cleanup;
1992 		}
1993 	}
1994 
1995 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
1996 		restore_regs(m, &prog, nr_args, stack_size);
1997 
1998 		/* call original function */
1999 		if (emit_call(&prog, orig_call, prog)) {
2000 			ret = -EINVAL;
2001 			goto cleanup;
2002 		}
2003 		/* remember return value in a stack for bpf prog to access */
2004 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2005 		im->ip_after_call = prog;
2006 		memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
2007 		prog += X86_PATCH_SIZE;
2008 	}
2009 
2010 	if (fmod_ret->nr_progs) {
2011 		/* From Intel 64 and IA-32 Architectures Optimization
2012 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2013 		 * Coding Rule 11: All branch targets should be 16-byte
2014 		 * aligned.
2015 		 */
2016 		emit_align(&prog, 16);
2017 		/* Update the branches saved in invoke_bpf_mod_ret with the
2018 		 * aligned address of do_fexit.
2019 		 */
2020 		for (i = 0; i < fmod_ret->nr_progs; i++)
2021 			emit_cond_near_jump(&branches[i], prog, branches[i],
2022 					    X86_JNE);
2023 	}
2024 
2025 	if (fexit->nr_progs)
2026 		if (invoke_bpf(m, &prog, fexit, stack_size)) {
2027 			ret = -EINVAL;
2028 			goto cleanup;
2029 		}
2030 
2031 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2032 		restore_regs(m, &prog, nr_args, stack_size);
2033 
2034 	/* This needs to be done regardless. If there were fmod_ret programs,
2035 	 * the return value is only updated on the stack and still needs to be
2036 	 * restored to R0.
2037 	 */
2038 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2039 		im->ip_epilogue = prog;
2040 		/* arg1: mov rdi, im */
2041 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
2042 		if (emit_call(&prog, __bpf_tramp_exit, prog)) {
2043 			ret = -EINVAL;
2044 			goto cleanup;
2045 		}
2046 		/* restore original return value back into RAX */
2047 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
2048 	}
2049 
2050 	EMIT1(0x5B); /* pop rbx */
2051 	EMIT1(0xC9); /* leave */
2052 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2053 		/* skip our return address and return to parent */
2054 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
2055 	EMIT1(0xC3); /* ret */
2056 	/* Make sure the trampoline generation logic doesn't overflow */
2057 	if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) {
2058 		ret = -EFAULT;
2059 		goto cleanup;
2060 	}
2061 	ret = prog - (u8 *)image;
2062 
2063 cleanup:
2064 	kfree(branches);
2065 	return ret;
2066 }
2067 
2068 static int emit_fallback_jump(u8 **pprog)
2069 {
2070 	u8 *prog = *pprog;
2071 	int err = 0;
2072 
2073 #ifdef CONFIG_RETPOLINE
2074 	/* Note that this assumes the the compiler uses external
2075 	 * thunks for indirect calls. Both clang and GCC use the same
2076 	 * naming convention for external thunks.
2077 	 */
2078 	err = emit_jump(&prog, __x86_indirect_thunk_rdx, prog);
2079 #else
2080 	EMIT2(0xFF, 0xE2);	/* jmp rdx */
2081 #endif
2082 	*pprog = prog;
2083 	return err;
2084 }
2085 
2086 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs)
2087 {
2088 	u8 *jg_reloc, *prog = *pprog;
2089 	int pivot, err, jg_bytes = 1;
2090 	s64 jg_offset;
2091 
2092 	if (a == b) {
2093 		/* Leaf node of recursion, i.e. not a range of indices
2094 		 * anymore.
2095 		 */
2096 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
2097 		if (!is_simm32(progs[a]))
2098 			return -1;
2099 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
2100 			    progs[a]);
2101 		err = emit_cond_near_jump(&prog,	/* je func */
2102 					  (void *)progs[a], prog,
2103 					  X86_JE);
2104 		if (err)
2105 			return err;
2106 
2107 		err = emit_fallback_jump(&prog);	/* jmp thunk/indirect */
2108 		if (err)
2109 			return err;
2110 
2111 		*pprog = prog;
2112 		return 0;
2113 	}
2114 
2115 	/* Not a leaf node, so we pivot, and recursively descend into
2116 	 * the lower and upper ranges.
2117 	 */
2118 	pivot = (b - a) / 2;
2119 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
2120 	if (!is_simm32(progs[a + pivot]))
2121 		return -1;
2122 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
2123 
2124 	if (pivot > 2) {				/* jg upper_part */
2125 		/* Require near jump. */
2126 		jg_bytes = 4;
2127 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
2128 	} else {
2129 		EMIT2(X86_JG, 0);
2130 	}
2131 	jg_reloc = prog;
2132 
2133 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
2134 				  progs);
2135 	if (err)
2136 		return err;
2137 
2138 	/* From Intel 64 and IA-32 Architectures Optimization
2139 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
2140 	 * Coding Rule 11: All branch targets should be 16-byte
2141 	 * aligned.
2142 	 */
2143 	emit_align(&prog, 16);
2144 	jg_offset = prog - jg_reloc;
2145 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
2146 
2147 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
2148 				  b, progs);
2149 	if (err)
2150 		return err;
2151 
2152 	*pprog = prog;
2153 	return 0;
2154 }
2155 
2156 static int cmp_ips(const void *a, const void *b)
2157 {
2158 	const s64 *ipa = a;
2159 	const s64 *ipb = b;
2160 
2161 	if (*ipa > *ipb)
2162 		return 1;
2163 	if (*ipa < *ipb)
2164 		return -1;
2165 	return 0;
2166 }
2167 
2168 int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs)
2169 {
2170 	u8 *prog = image;
2171 
2172 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
2173 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs);
2174 }
2175 
2176 struct x64_jit_data {
2177 	struct bpf_binary_header *header;
2178 	int *addrs;
2179 	u8 *image;
2180 	int proglen;
2181 	struct jit_context ctx;
2182 };
2183 
2184 #define MAX_PASSES 20
2185 #define PADDING_PASSES (MAX_PASSES - 5)
2186 
2187 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2188 {
2189 	struct bpf_binary_header *header = NULL;
2190 	struct bpf_prog *tmp, *orig_prog = prog;
2191 	struct x64_jit_data *jit_data;
2192 	int proglen, oldproglen = 0;
2193 	struct jit_context ctx = {};
2194 	bool tmp_blinded = false;
2195 	bool extra_pass = false;
2196 	bool padding = false;
2197 	u8 *image = NULL;
2198 	int *addrs;
2199 	int pass;
2200 	int i;
2201 
2202 	if (!prog->jit_requested)
2203 		return orig_prog;
2204 
2205 	tmp = bpf_jit_blind_constants(prog);
2206 	/*
2207 	 * If blinding was requested and we failed during blinding,
2208 	 * we must fall back to the interpreter.
2209 	 */
2210 	if (IS_ERR(tmp))
2211 		return orig_prog;
2212 	if (tmp != prog) {
2213 		tmp_blinded = true;
2214 		prog = tmp;
2215 	}
2216 
2217 	jit_data = prog->aux->jit_data;
2218 	if (!jit_data) {
2219 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2220 		if (!jit_data) {
2221 			prog = orig_prog;
2222 			goto out;
2223 		}
2224 		prog->aux->jit_data = jit_data;
2225 	}
2226 	addrs = jit_data->addrs;
2227 	if (addrs) {
2228 		ctx = jit_data->ctx;
2229 		oldproglen = jit_data->proglen;
2230 		image = jit_data->image;
2231 		header = jit_data->header;
2232 		extra_pass = true;
2233 		padding = true;
2234 		goto skip_init_addrs;
2235 	}
2236 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
2237 	if (!addrs) {
2238 		prog = orig_prog;
2239 		goto out_addrs;
2240 	}
2241 
2242 	/*
2243 	 * Before first pass, make a rough estimation of addrs[]
2244 	 * each BPF instruction is translated to less than 64 bytes
2245 	 */
2246 	for (proglen = 0, i = 0; i <= prog->len; i++) {
2247 		proglen += 64;
2248 		addrs[i] = proglen;
2249 	}
2250 	ctx.cleanup_addr = proglen;
2251 skip_init_addrs:
2252 
2253 	/*
2254 	 * JITed image shrinks with every pass and the loop iterates
2255 	 * until the image stops shrinking. Very large BPF programs
2256 	 * may converge on the last pass. In such case do one more
2257 	 * pass to emit the final image.
2258 	 */
2259 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
2260 		if (!padding && pass >= PADDING_PASSES)
2261 			padding = true;
2262 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding);
2263 		if (proglen <= 0) {
2264 out_image:
2265 			image = NULL;
2266 			if (header)
2267 				bpf_jit_binary_free(header);
2268 			prog = orig_prog;
2269 			goto out_addrs;
2270 		}
2271 		if (image) {
2272 			if (proglen != oldproglen) {
2273 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2274 				       proglen, oldproglen);
2275 				goto out_image;
2276 			}
2277 			break;
2278 		}
2279 		if (proglen == oldproglen) {
2280 			/*
2281 			 * The number of entries in extable is the number of BPF_LDX
2282 			 * insns that access kernel memory via "pointer to BTF type".
2283 			 * The verifier changed their opcode from LDX|MEM|size
2284 			 * to LDX|PROBE_MEM|size to make JITing easier.
2285 			 */
2286 			u32 align = __alignof__(struct exception_table_entry);
2287 			u32 extable_size = prog->aux->num_exentries *
2288 				sizeof(struct exception_table_entry);
2289 
2290 			/* allocate module memory for x86 insns and extable */
2291 			header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
2292 						      &image, align, jit_fill_hole);
2293 			if (!header) {
2294 				prog = orig_prog;
2295 				goto out_addrs;
2296 			}
2297 			prog->aux->extable = (void *) image + roundup(proglen, align);
2298 		}
2299 		oldproglen = proglen;
2300 		cond_resched();
2301 	}
2302 
2303 	if (bpf_jit_enable > 1)
2304 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2305 
2306 	if (image) {
2307 		if (!prog->is_func || extra_pass) {
2308 			bpf_tail_call_direct_fixup(prog);
2309 			bpf_jit_binary_lock_ro(header);
2310 		} else {
2311 			jit_data->addrs = addrs;
2312 			jit_data->ctx = ctx;
2313 			jit_data->proglen = proglen;
2314 			jit_data->image = image;
2315 			jit_data->header = header;
2316 		}
2317 		prog->bpf_func = (void *)image;
2318 		prog->jited = 1;
2319 		prog->jited_len = proglen;
2320 	} else {
2321 		prog = orig_prog;
2322 	}
2323 
2324 	if (!image || !prog->is_func || extra_pass) {
2325 		if (image)
2326 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
2327 out_addrs:
2328 		kvfree(addrs);
2329 		kfree(jit_data);
2330 		prog->aux->jit_data = NULL;
2331 	}
2332 out:
2333 	if (tmp_blinded)
2334 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2335 					   tmp : orig_prog);
2336 	return prog;
2337 }
2338 
2339 bool bpf_jit_supports_kfunc_call(void)
2340 {
2341 	return true;
2342 }
2343