xref: /linux/arch/x86/net/bpf_jit_comp.c (revision 7a9b709e7cc5ce1ffb84ce07bf6d157e1de758df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler
4  *
5  * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6  * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7  */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
21 
22 static bool all_callee_regs_used[4] = {true, true, true, true};
23 
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
25 {
26 	if (len == 1)
27 		*ptr = bytes;
28 	else if (len == 2)
29 		*(u16 *)ptr = bytes;
30 	else {
31 		*(u32 *)ptr = bytes;
32 		barrier();
33 	}
34 	return ptr + len;
35 }
36 
37 #define EMIT(bytes, len) \
38 	do { prog = emit_code(prog, bytes, len); } while (0)
39 
40 #define EMIT1(b1)		EMIT(b1, 1)
41 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4)   EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
44 
45 #define EMIT1_off32(b1, off) \
46 	do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
53 
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR()		EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON()	EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
61 
62 static bool is_imm8(int value)
63 {
64 	return value <= 127 && value >= -128;
65 }
66 
67 /*
68  * Let us limit the positive offset to be <= 123.
69  * This is to ensure eventual jit convergence For the following patterns:
70  * ...
71  * pass4, final_proglen=4391:
72  *   ...
73  *   20e:    48 85 ff                test   rdi,rdi
74  *   211:    74 7d                   je     0x290
75  *   213:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
76  *   ...
77  *   289:    48 85 ff                test   rdi,rdi
78  *   28c:    74 17                   je     0x2a5
79  *   28e:    e9 7f ff ff ff          jmp    0x212
80  *   293:    bf 03 00 00 00          mov    edi,0x3
81  * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
82  * and insn at 0x28e is 5-byte jmp insn with offset -129.
83  *
84  * pass5, final_proglen=4392:
85  *   ...
86  *   20e:    48 85 ff                test   rdi,rdi
87  *   211:    0f 84 80 00 00 00       je     0x297
88  *   217:    48 8b 77 00             mov    rsi,QWORD PTR [rdi+0x0]
89  *   ...
90  *   28d:    48 85 ff                test   rdi,rdi
91  *   290:    74 1a                   je     0x2ac
92  *   292:    eb 84                   jmp    0x218
93  *   294:    bf 03 00 00 00          mov    edi,0x3
94  * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
95  * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
96  * At the same time, insn at 0x292 is a 2-byte insn since its offset is
97  * -124.
98  *
99  * pass6 will repeat the same code as in pass4 and this will prevent
100  * eventual convergence.
101  *
102  * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
103  * cycle in the above. In the above example je offset <= 0x7c should work.
104  *
105  * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
106  * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
107  * avoid no convergence issue.
108  *
109  * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
110  * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
111  */
112 static bool is_imm8_jmp_offset(int value)
113 {
114 	return value <= 123 && value >= -128;
115 }
116 
117 static bool is_simm32(s64 value)
118 {
119 	return value == (s64)(s32)value;
120 }
121 
122 static bool is_uimm32(u64 value)
123 {
124 	return value == (u64)(u32)value;
125 }
126 
127 /* mov dst, src */
128 #define EMIT_mov(DST, SRC)								 \
129 	do {										 \
130 		if (DST != SRC)								 \
131 			EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
132 	} while (0)
133 
134 static int bpf_size_to_x86_bytes(int bpf_size)
135 {
136 	if (bpf_size == BPF_W)
137 		return 4;
138 	else if (bpf_size == BPF_H)
139 		return 2;
140 	else if (bpf_size == BPF_B)
141 		return 1;
142 	else if (bpf_size == BPF_DW)
143 		return 4; /* imm32 */
144 	else
145 		return 0;
146 }
147 
148 /*
149  * List of x86 cond jumps opcodes (. + s8)
150  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
151  */
152 #define X86_JB  0x72
153 #define X86_JAE 0x73
154 #define X86_JE  0x74
155 #define X86_JNE 0x75
156 #define X86_JBE 0x76
157 #define X86_JA  0x77
158 #define X86_JL  0x7C
159 #define X86_JGE 0x7D
160 #define X86_JLE 0x7E
161 #define X86_JG  0x7F
162 
163 /* Pick a register outside of BPF range for JIT internal work */
164 #define AUX_REG (MAX_BPF_JIT_REG + 1)
165 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
166 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
167 
168 /*
169  * The following table maps BPF registers to x86-64 registers.
170  *
171  * x86-64 register R12 is unused, since if used as base address
172  * register in load/store instructions, it always needs an
173  * extra byte of encoding and is callee saved.
174  *
175  * x86-64 register R9 is not used by BPF programs, but can be used by BPF
176  * trampoline. x86-64 register R10 is used for blinding (if enabled).
177  */
178 static const int reg2hex[] = {
179 	[BPF_REG_0] = 0,  /* RAX */
180 	[BPF_REG_1] = 7,  /* RDI */
181 	[BPF_REG_2] = 6,  /* RSI */
182 	[BPF_REG_3] = 2,  /* RDX */
183 	[BPF_REG_4] = 1,  /* RCX */
184 	[BPF_REG_5] = 0,  /* R8  */
185 	[BPF_REG_6] = 3,  /* RBX callee saved */
186 	[BPF_REG_7] = 5,  /* R13 callee saved */
187 	[BPF_REG_8] = 6,  /* R14 callee saved */
188 	[BPF_REG_9] = 7,  /* R15 callee saved */
189 	[BPF_REG_FP] = 5, /* RBP readonly */
190 	[BPF_REG_AX] = 2, /* R10 temp register */
191 	[AUX_REG] = 3,    /* R11 temp register */
192 	[X86_REG_R9] = 1, /* R9 register, 6th function argument */
193 	[X86_REG_R12] = 4, /* R12 callee saved */
194 };
195 
196 static const int reg2pt_regs[] = {
197 	[BPF_REG_0] = offsetof(struct pt_regs, ax),
198 	[BPF_REG_1] = offsetof(struct pt_regs, di),
199 	[BPF_REG_2] = offsetof(struct pt_regs, si),
200 	[BPF_REG_3] = offsetof(struct pt_regs, dx),
201 	[BPF_REG_4] = offsetof(struct pt_regs, cx),
202 	[BPF_REG_5] = offsetof(struct pt_regs, r8),
203 	[BPF_REG_6] = offsetof(struct pt_regs, bx),
204 	[BPF_REG_7] = offsetof(struct pt_regs, r13),
205 	[BPF_REG_8] = offsetof(struct pt_regs, r14),
206 	[BPF_REG_9] = offsetof(struct pt_regs, r15),
207 };
208 
209 /*
210  * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
211  * which need extra byte of encoding.
212  * rax,rcx,...,rbp have simpler encoding
213  */
214 static bool is_ereg(u32 reg)
215 {
216 	return (1 << reg) & (BIT(BPF_REG_5) |
217 			     BIT(AUX_REG) |
218 			     BIT(BPF_REG_7) |
219 			     BIT(BPF_REG_8) |
220 			     BIT(BPF_REG_9) |
221 			     BIT(X86_REG_R9) |
222 			     BIT(X86_REG_R12) |
223 			     BIT(BPF_REG_AX));
224 }
225 
226 /*
227  * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
228  * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
229  * of encoding. al,cl,dl,bl have simpler encoding.
230  */
231 static bool is_ereg_8l(u32 reg)
232 {
233 	return is_ereg(reg) ||
234 	    (1 << reg) & (BIT(BPF_REG_1) |
235 			  BIT(BPF_REG_2) |
236 			  BIT(BPF_REG_FP));
237 }
238 
239 static bool is_axreg(u32 reg)
240 {
241 	return reg == BPF_REG_0;
242 }
243 
244 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
245 static u8 add_1mod(u8 byte, u32 reg)
246 {
247 	if (is_ereg(reg))
248 		byte |= 1;
249 	return byte;
250 }
251 
252 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
253 {
254 	if (is_ereg(r1))
255 		byte |= 1;
256 	if (is_ereg(r2))
257 		byte |= 4;
258 	return byte;
259 }
260 
261 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
262 {
263 	if (is_ereg(r1))
264 		byte |= 1;
265 	if (is_ereg(index))
266 		byte |= 2;
267 	if (is_ereg(r2))
268 		byte |= 4;
269 	return byte;
270 }
271 
272 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
273 static u8 add_1reg(u8 byte, u32 dst_reg)
274 {
275 	return byte + reg2hex[dst_reg];
276 }
277 
278 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
279 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
280 {
281 	return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
282 }
283 
284 /* Some 1-byte opcodes for binary ALU operations */
285 static u8 simple_alu_opcodes[] = {
286 	[BPF_ADD] = 0x01,
287 	[BPF_SUB] = 0x29,
288 	[BPF_AND] = 0x21,
289 	[BPF_OR] = 0x09,
290 	[BPF_XOR] = 0x31,
291 	[BPF_LSH] = 0xE0,
292 	[BPF_RSH] = 0xE8,
293 	[BPF_ARSH] = 0xF8,
294 };
295 
296 static void jit_fill_hole(void *area, unsigned int size)
297 {
298 	/* Fill whole space with INT3 instructions */
299 	memset(area, 0xcc, size);
300 }
301 
302 int bpf_arch_text_invalidate(void *dst, size_t len)
303 {
304 	return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
305 }
306 
307 struct jit_context {
308 	int cleanup_addr; /* Epilogue code offset */
309 
310 	/*
311 	 * Program specific offsets of labels in the code; these rely on the
312 	 * JIT doing at least 2 passes, recording the position on the first
313 	 * pass, only to generate the correct offset on the second pass.
314 	 */
315 	int tail_call_direct_label;
316 	int tail_call_indirect_label;
317 };
318 
319 /* Maximum number of bytes emitted while JITing one eBPF insn */
320 #define BPF_MAX_INSN_SIZE	128
321 #define BPF_INSN_SAFETY		64
322 
323 /* Number of bytes emit_patch() needs to generate instructions */
324 #define X86_PATCH_SIZE		5
325 /* Number of bytes that will be skipped on tailcall */
326 #define X86_TAIL_CALL_OFFSET	(12 + ENDBR_INSN_SIZE)
327 
328 static void push_r9(u8 **pprog)
329 {
330 	u8 *prog = *pprog;
331 
332 	EMIT2(0x41, 0x51);   /* push r9 */
333 	*pprog = prog;
334 }
335 
336 static void pop_r9(u8 **pprog)
337 {
338 	u8 *prog = *pprog;
339 
340 	EMIT2(0x41, 0x59);   /* pop r9 */
341 	*pprog = prog;
342 }
343 
344 static void push_r12(u8 **pprog)
345 {
346 	u8 *prog = *pprog;
347 
348 	EMIT2(0x41, 0x54);   /* push r12 */
349 	*pprog = prog;
350 }
351 
352 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
353 {
354 	u8 *prog = *pprog;
355 
356 	if (callee_regs_used[0])
357 		EMIT1(0x53);         /* push rbx */
358 	if (callee_regs_used[1])
359 		EMIT2(0x41, 0x55);   /* push r13 */
360 	if (callee_regs_used[2])
361 		EMIT2(0x41, 0x56);   /* push r14 */
362 	if (callee_regs_used[3])
363 		EMIT2(0x41, 0x57);   /* push r15 */
364 	*pprog = prog;
365 }
366 
367 static void pop_r12(u8 **pprog)
368 {
369 	u8 *prog = *pprog;
370 
371 	EMIT2(0x41, 0x5C);   /* pop r12 */
372 	*pprog = prog;
373 }
374 
375 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
376 {
377 	u8 *prog = *pprog;
378 
379 	if (callee_regs_used[3])
380 		EMIT2(0x41, 0x5F);   /* pop r15 */
381 	if (callee_regs_used[2])
382 		EMIT2(0x41, 0x5E);   /* pop r14 */
383 	if (callee_regs_used[1])
384 		EMIT2(0x41, 0x5D);   /* pop r13 */
385 	if (callee_regs_used[0])
386 		EMIT1(0x5B);         /* pop rbx */
387 	*pprog = prog;
388 }
389 
390 static void emit_nops(u8 **pprog, int len)
391 {
392 	u8 *prog = *pprog;
393 	int i, noplen;
394 
395 	while (len > 0) {
396 		noplen = len;
397 
398 		if (noplen > ASM_NOP_MAX)
399 			noplen = ASM_NOP_MAX;
400 
401 		for (i = 0; i < noplen; i++)
402 			EMIT1(x86_nops[noplen][i]);
403 		len -= noplen;
404 	}
405 
406 	*pprog = prog;
407 }
408 
409 /*
410  * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
411  * in arch/x86/kernel/alternative.c
412  */
413 static int emit_call(u8 **prog, void *func, void *ip);
414 
415 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity)
416 {
417 	u8 *prog = *pprog;
418 
419 	EMIT_ENDBR();
420 	EMIT3_off32(0x41, 0x81, 0xea, hash);		/* subl $hash, %r10d	*/
421 	if (cfi_bhi) {
422 		emit_call(&prog, __bhi_args[arity], ip + 11);
423 	} else {
424 		EMIT2(0x75, 0xf9);			/* jne.d8 .-7		*/
425 		EMIT3(0x0f, 0x1f, 0x00);		/* nop3			*/
426 	}
427 	EMIT_ENDBR_POISON();
428 
429 	*pprog = prog;
430 }
431 
432 static void emit_kcfi(u8 **pprog, u32 hash)
433 {
434 	u8 *prog = *pprog;
435 
436 	EMIT1_off32(0xb8, hash);			/* movl $hash, %eax	*/
437 #ifdef CONFIG_CALL_PADDING
438 	EMIT1(0x90);
439 	EMIT1(0x90);
440 	EMIT1(0x90);
441 	EMIT1(0x90);
442 	EMIT1(0x90);
443 	EMIT1(0x90);
444 	EMIT1(0x90);
445 	EMIT1(0x90);
446 	EMIT1(0x90);
447 	EMIT1(0x90);
448 	EMIT1(0x90);
449 #endif
450 	EMIT_ENDBR();
451 
452 	*pprog = prog;
453 }
454 
455 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity)
456 {
457 	u8 *prog = *pprog;
458 
459 	switch (cfi_mode) {
460 	case CFI_FINEIBT:
461 		emit_fineibt(&prog, ip, hash, arity);
462 		break;
463 
464 	case CFI_KCFI:
465 		emit_kcfi(&prog, hash);
466 		break;
467 
468 	default:
469 		EMIT_ENDBR();
470 		break;
471 	}
472 
473 	*pprog = prog;
474 }
475 
476 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
477 {
478 	u8 *prog = *pprog;
479 
480 	if (!is_subprog) {
481 		/* cmp rax, MAX_TAIL_CALL_CNT */
482 		EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
483 		EMIT2(X86_JA, 6);        /* ja 6 */
484 		/* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
485 		 * case1: entry of main prog.
486 		 * case2: tail callee of main prog.
487 		 */
488 		EMIT1(0x50);             /* push rax */
489 		/* Make rax as tail_call_cnt_ptr. */
490 		EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
491 		EMIT2(0xEB, 1);          /* jmp 1 */
492 		/* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
493 		 * case: tail callee of subprog.
494 		 */
495 		EMIT1(0x50);             /* push rax */
496 		/* push tail_call_cnt_ptr */
497 		EMIT1(0x50);             /* push rax */
498 	} else { /* is_subprog */
499 		/* rax is tail_call_cnt_ptr. */
500 		EMIT1(0x50);             /* push rax */
501 		EMIT1(0x50);             /* push rax */
502 	}
503 
504 	*pprog = prog;
505 }
506 
507 /*
508  * Emit x86-64 prologue code for BPF program.
509  * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
510  * while jumping to another program
511  */
512 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf,
513 			  bool tail_call_reachable, bool is_subprog,
514 			  bool is_exception_cb)
515 {
516 	u8 *prog = *pprog;
517 
518 	if (is_subprog) {
519 		emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5);
520 	} else {
521 		emit_cfi(&prog, ip, cfi_bpf_hash, 1);
522 	}
523 	/* BPF trampoline can be made to work without these nops,
524 	 * but let's waste 5 bytes for now and optimize later
525 	 */
526 	emit_nops(&prog, X86_PATCH_SIZE);
527 	if (!ebpf_from_cbpf) {
528 		if (tail_call_reachable && !is_subprog)
529 			/* When it's the entry of the whole tailcall context,
530 			 * zeroing rax means initialising tail_call_cnt.
531 			 */
532 			EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
533 		else
534 			/* Keep the same instruction layout. */
535 			emit_nops(&prog, 3);     /* nop3 */
536 	}
537 	/* Exception callback receives FP as third parameter */
538 	if (is_exception_cb) {
539 		EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
540 		EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
541 		/* The main frame must have exception_boundary as true, so we
542 		 * first restore those callee-saved regs from stack, before
543 		 * reusing the stack frame.
544 		 */
545 		pop_callee_regs(&prog, all_callee_regs_used);
546 		pop_r12(&prog);
547 		/* Reset the stack frame. */
548 		EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
549 	} else {
550 		EMIT1(0x55);             /* push rbp */
551 		EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
552 	}
553 
554 	/* X86_TAIL_CALL_OFFSET is here */
555 	EMIT_ENDBR();
556 
557 	/* sub rsp, rounded_stack_depth */
558 	if (stack_depth)
559 		EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
560 	if (tail_call_reachable)
561 		emit_prologue_tail_call(&prog, is_subprog);
562 	*pprog = prog;
563 }
564 
565 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
566 {
567 	u8 *prog = *pprog;
568 	s64 offset;
569 
570 	offset = func - (ip + X86_PATCH_SIZE);
571 	if (!is_simm32(offset)) {
572 		pr_err("Target call %p is out of range\n", func);
573 		return -ERANGE;
574 	}
575 	EMIT1_off32(opcode, offset);
576 	*pprog = prog;
577 	return 0;
578 }
579 
580 static int emit_call(u8 **pprog, void *func, void *ip)
581 {
582 	return emit_patch(pprog, func, ip, 0xE8);
583 }
584 
585 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
586 {
587 	OPTIMIZER_HIDE_VAR(func);
588 	ip += x86_call_depth_emit_accounting(pprog, func, ip);
589 	return emit_patch(pprog, func, ip, 0xE8);
590 }
591 
592 static int emit_jump(u8 **pprog, void *func, void *ip)
593 {
594 	return emit_patch(pprog, func, ip, 0xE9);
595 }
596 
597 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
598 				void *old_addr, void *new_addr)
599 {
600 	const u8 *nop_insn = x86_nops[5];
601 	u8 old_insn[X86_PATCH_SIZE];
602 	u8 new_insn[X86_PATCH_SIZE];
603 	u8 *prog;
604 	int ret;
605 
606 	memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
607 	if (old_addr) {
608 		prog = old_insn;
609 		ret = t == BPF_MOD_CALL ?
610 		      emit_call(&prog, old_addr, ip) :
611 		      emit_jump(&prog, old_addr, ip);
612 		if (ret)
613 			return ret;
614 	}
615 
616 	memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
617 	if (new_addr) {
618 		prog = new_insn;
619 		ret = t == BPF_MOD_CALL ?
620 		      emit_call(&prog, new_addr, ip) :
621 		      emit_jump(&prog, new_addr, ip);
622 		if (ret)
623 			return ret;
624 	}
625 
626 	ret = -EBUSY;
627 	mutex_lock(&text_mutex);
628 	if (memcmp(ip, old_insn, X86_PATCH_SIZE))
629 		goto out;
630 	ret = 1;
631 	if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
632 		text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
633 		ret = 0;
634 	}
635 out:
636 	mutex_unlock(&text_mutex);
637 	return ret;
638 }
639 
640 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
641 		       void *old_addr, void *new_addr)
642 {
643 	if (!is_kernel_text((long)ip) &&
644 	    !is_bpf_text_address((long)ip))
645 		/* BPF poking in modules is not supported */
646 		return -EINVAL;
647 
648 	/*
649 	 * See emit_prologue(), for IBT builds the trampoline hook is preceded
650 	 * with an ENDBR instruction.
651 	 */
652 	if (is_endbr(ip))
653 		ip += ENDBR_INSN_SIZE;
654 
655 	return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
656 }
657 
658 #define EMIT_LFENCE()	EMIT3(0x0F, 0xAE, 0xE8)
659 
660 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
661 {
662 	u8 *prog = *pprog;
663 
664 	if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) {
665 		OPTIMIZER_HIDE_VAR(reg);
666 		emit_jump(&prog, its_static_thunk(reg), ip);
667 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
668 		EMIT_LFENCE();
669 		EMIT2(0xFF, 0xE0 + reg);
670 	} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
671 		OPTIMIZER_HIDE_VAR(reg);
672 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
673 			emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
674 		else
675 			emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
676 	} else {
677 		EMIT2(0xFF, 0xE0 + reg);	/* jmp *%\reg */
678 		if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
679 			EMIT1(0xCC);		/* int3 */
680 	}
681 
682 	*pprog = prog;
683 }
684 
685 static void emit_return(u8 **pprog, u8 *ip)
686 {
687 	u8 *prog = *pprog;
688 
689 	if (cpu_wants_rethunk()) {
690 		emit_jump(&prog, x86_return_thunk, ip);
691 	} else {
692 		EMIT1(0xC3);		/* ret */
693 		if (IS_ENABLED(CONFIG_MITIGATION_SLS))
694 			EMIT1(0xCC);	/* int3 */
695 	}
696 
697 	*pprog = prog;
698 }
699 
700 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)	(-16 - round_up(stack, 8))
701 
702 /*
703  * Generate the following code:
704  *
705  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
706  *   if (index >= array->map.max_entries)
707  *     goto out;
708  *   if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
709  *     goto out;
710  *   prog = array->ptrs[index];
711  *   if (prog == NULL)
712  *     goto out;
713  *   goto *(prog->bpf_func + prologue_size);
714  * out:
715  */
716 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
717 					u8 **pprog, bool *callee_regs_used,
718 					u32 stack_depth, u8 *ip,
719 					struct jit_context *ctx)
720 {
721 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
722 	u8 *prog = *pprog, *start = *pprog;
723 	int offset;
724 
725 	/*
726 	 * rdi - pointer to ctx
727 	 * rsi - pointer to bpf_array
728 	 * rdx - index in bpf_array
729 	 */
730 
731 	/*
732 	 * if (index >= array->map.max_entries)
733 	 *	goto out;
734 	 */
735 	EMIT2(0x89, 0xD2);                        /* mov edx, edx */
736 	EMIT3(0x39, 0x56,                         /* cmp dword ptr [rsi + 16], edx */
737 	      offsetof(struct bpf_array, map.max_entries));
738 
739 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
740 	EMIT2(X86_JBE, offset);                   /* jbe out */
741 
742 	/*
743 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
744 	 *	goto out;
745 	 */
746 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
747 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
748 
749 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
750 	EMIT2(X86_JAE, offset);                   /* jae out */
751 
752 	/* prog = array->ptrs[index]; */
753 	EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6,       /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
754 		    offsetof(struct bpf_array, ptrs));
755 
756 	/*
757 	 * if (prog == NULL)
758 	 *	goto out;
759 	 */
760 	EMIT3(0x48, 0x85, 0xC9);                  /* test rcx,rcx */
761 
762 	offset = ctx->tail_call_indirect_label - (prog + 2 - start);
763 	EMIT2(X86_JE, offset);                    /* je out */
764 
765 	/* Inc tail_call_cnt if the slot is populated. */
766 	EMIT4(0x48, 0x83, 0x00, 0x01);            /* add qword ptr [rax], 1 */
767 
768 	if (bpf_prog->aux->exception_boundary) {
769 		pop_callee_regs(&prog, all_callee_regs_used);
770 		pop_r12(&prog);
771 	} else {
772 		pop_callee_regs(&prog, callee_regs_used);
773 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
774 			pop_r12(&prog);
775 	}
776 
777 	/* Pop tail_call_cnt_ptr. */
778 	EMIT1(0x58);                              /* pop rax */
779 	/* Pop tail_call_cnt, if it's main prog.
780 	 * Pop tail_call_cnt_ptr, if it's subprog.
781 	 */
782 	EMIT1(0x58);                              /* pop rax */
783 	if (stack_depth)
784 		EMIT3_off32(0x48, 0x81, 0xC4,     /* add rsp, sd */
785 			    round_up(stack_depth, 8));
786 
787 	/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
788 	EMIT4(0x48, 0x8B, 0x49,                   /* mov rcx, qword ptr [rcx + 32] */
789 	      offsetof(struct bpf_prog, bpf_func));
790 	EMIT4(0x48, 0x83, 0xC1,                   /* add rcx, X86_TAIL_CALL_OFFSET */
791 	      X86_TAIL_CALL_OFFSET);
792 	/*
793 	 * Now we're ready to jump into next BPF program
794 	 * rdi == ctx (1st arg)
795 	 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
796 	 */
797 	emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
798 
799 	/* out: */
800 	ctx->tail_call_indirect_label = prog - start;
801 	*pprog = prog;
802 }
803 
804 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
805 				      struct bpf_jit_poke_descriptor *poke,
806 				      u8 **pprog, u8 *ip,
807 				      bool *callee_regs_used, u32 stack_depth,
808 				      struct jit_context *ctx)
809 {
810 	int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
811 	u8 *prog = *pprog, *start = *pprog;
812 	int offset;
813 
814 	/*
815 	 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
816 	 *	goto out;
817 	 */
818 	EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off);   /* mov rax, qword ptr [rbp - tcc_ptr_off] */
819 	EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT);   /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
820 
821 	offset = ctx->tail_call_direct_label - (prog + 2 - start);
822 	EMIT2(X86_JAE, offset);                       /* jae out */
823 
824 	poke->tailcall_bypass = ip + (prog - start);
825 	poke->adj_off = X86_TAIL_CALL_OFFSET;
826 	poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
827 	poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
828 
829 	emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
830 		  poke->tailcall_bypass);
831 
832 	/* Inc tail_call_cnt if the slot is populated. */
833 	EMIT4(0x48, 0x83, 0x00, 0x01);                /* add qword ptr [rax], 1 */
834 
835 	if (bpf_prog->aux->exception_boundary) {
836 		pop_callee_regs(&prog, all_callee_regs_used);
837 		pop_r12(&prog);
838 	} else {
839 		pop_callee_regs(&prog, callee_regs_used);
840 		if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
841 			pop_r12(&prog);
842 	}
843 
844 	/* Pop tail_call_cnt_ptr. */
845 	EMIT1(0x58);                                  /* pop rax */
846 	/* Pop tail_call_cnt, if it's main prog.
847 	 * Pop tail_call_cnt_ptr, if it's subprog.
848 	 */
849 	EMIT1(0x58);                                  /* pop rax */
850 	if (stack_depth)
851 		EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
852 
853 	emit_nops(&prog, X86_PATCH_SIZE);
854 
855 	/* out: */
856 	ctx->tail_call_direct_label = prog - start;
857 
858 	*pprog = prog;
859 }
860 
861 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
862 {
863 	struct bpf_jit_poke_descriptor *poke;
864 	struct bpf_array *array;
865 	struct bpf_prog *target;
866 	int i, ret;
867 
868 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
869 		poke = &prog->aux->poke_tab[i];
870 		if (poke->aux && poke->aux != prog->aux)
871 			continue;
872 
873 		WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
874 
875 		if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
876 			continue;
877 
878 		array = container_of(poke->tail_call.map, struct bpf_array, map);
879 		mutex_lock(&array->aux->poke_mutex);
880 		target = array->ptrs[poke->tail_call.key];
881 		if (target) {
882 			ret = __bpf_arch_text_poke(poke->tailcall_target,
883 						   BPF_MOD_JUMP, NULL,
884 						   (u8 *)target->bpf_func +
885 						   poke->adj_off);
886 			BUG_ON(ret < 0);
887 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
888 						   BPF_MOD_JUMP,
889 						   (u8 *)poke->tailcall_target +
890 						   X86_PATCH_SIZE, NULL);
891 			BUG_ON(ret < 0);
892 		}
893 		WRITE_ONCE(poke->tailcall_target_stable, true);
894 		mutex_unlock(&array->aux->poke_mutex);
895 	}
896 }
897 
898 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
899 			   u32 dst_reg, const u32 imm32)
900 {
901 	u8 *prog = *pprog;
902 	u8 b1, b2, b3;
903 
904 	/*
905 	 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
906 	 * (which zero-extends imm32) to save 2 bytes.
907 	 */
908 	if (sign_propagate && (s32)imm32 < 0) {
909 		/* 'mov %rax, imm32' sign extends imm32 */
910 		b1 = add_1mod(0x48, dst_reg);
911 		b2 = 0xC7;
912 		b3 = 0xC0;
913 		EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
914 		goto done;
915 	}
916 
917 	/*
918 	 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
919 	 * to save 3 bytes.
920 	 */
921 	if (imm32 == 0) {
922 		if (is_ereg(dst_reg))
923 			EMIT1(add_2mod(0x40, dst_reg, dst_reg));
924 		b2 = 0x31; /* xor */
925 		b3 = 0xC0;
926 		EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
927 		goto done;
928 	}
929 
930 	/* mov %eax, imm32 */
931 	if (is_ereg(dst_reg))
932 		EMIT1(add_1mod(0x40, dst_reg));
933 	EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
934 done:
935 	*pprog = prog;
936 }
937 
938 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
939 			   const u32 imm32_hi, const u32 imm32_lo)
940 {
941 	u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
942 	u8 *prog = *pprog;
943 
944 	if (is_uimm32(imm64)) {
945 		/*
946 		 * For emitting plain u32, where sign bit must not be
947 		 * propagated LLVM tends to load imm64 over mov32
948 		 * directly, so save couple of bytes by just doing
949 		 * 'mov %eax, imm32' instead.
950 		 */
951 		emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
952 	} else if (is_simm32(imm64)) {
953 		emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
954 	} else {
955 		/* movabsq rax, imm64 */
956 		EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
957 		EMIT(imm32_lo, 4);
958 		EMIT(imm32_hi, 4);
959 	}
960 
961 	*pprog = prog;
962 }
963 
964 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
965 {
966 	u8 *prog = *pprog;
967 
968 	if (is64) {
969 		/* mov dst, src */
970 		EMIT_mov(dst_reg, src_reg);
971 	} else {
972 		/* mov32 dst, src */
973 		if (is_ereg(dst_reg) || is_ereg(src_reg))
974 			EMIT1(add_2mod(0x40, dst_reg, src_reg));
975 		EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
976 	}
977 
978 	*pprog = prog;
979 }
980 
981 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
982 			   u32 src_reg)
983 {
984 	u8 *prog = *pprog;
985 
986 	if (is64) {
987 		/* movs[b,w,l]q dst, src */
988 		if (num_bits == 8)
989 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
990 			      add_2reg(0xC0, src_reg, dst_reg));
991 		else if (num_bits == 16)
992 			EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
993 			      add_2reg(0xC0, src_reg, dst_reg));
994 		else if (num_bits == 32)
995 			EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
996 			      add_2reg(0xC0, src_reg, dst_reg));
997 	} else {
998 		/* movs[b,w]l dst, src */
999 		if (num_bits == 8) {
1000 			EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
1001 			      add_2reg(0xC0, src_reg, dst_reg));
1002 		} else if (num_bits == 16) {
1003 			if (is_ereg(dst_reg) || is_ereg(src_reg))
1004 				EMIT1(add_2mod(0x40, src_reg, dst_reg));
1005 			EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
1006 			      add_2reg(0xC0, src_reg, dst_reg));
1007 		}
1008 	}
1009 
1010 	*pprog = prog;
1011 }
1012 
1013 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
1014 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
1015 {
1016 	u8 *prog = *pprog;
1017 
1018 	if (is_imm8(off)) {
1019 		/* 1-byte signed displacement.
1020 		 *
1021 		 * If off == 0 we could skip this and save one extra byte, but
1022 		 * special case of x86 R13 which always needs an offset is not
1023 		 * worth the hassle
1024 		 */
1025 		EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
1026 	} else {
1027 		/* 4-byte signed displacement */
1028 		EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1029 	}
1030 	*pprog = prog;
1031 }
1032 
1033 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1034 {
1035 	u8 *prog = *pprog;
1036 
1037 	if (is_imm8(off)) {
1038 		EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1039 	} else {
1040 		EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1041 	}
1042 	*pprog = prog;
1043 }
1044 
1045 /*
1046  * Emit a REX byte if it will be necessary to address these registers
1047  */
1048 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1049 {
1050 	u8 *prog = *pprog;
1051 
1052 	if (is64)
1053 		EMIT1(add_2mod(0x48, dst_reg, src_reg));
1054 	else if (is_ereg(dst_reg) || is_ereg(src_reg))
1055 		EMIT1(add_2mod(0x40, dst_reg, src_reg));
1056 	*pprog = prog;
1057 }
1058 
1059 /*
1060  * Similar version of maybe_emit_mod() for a single register
1061  */
1062 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1063 {
1064 	u8 *prog = *pprog;
1065 
1066 	if (is64)
1067 		EMIT1(add_1mod(0x48, reg));
1068 	else if (is_ereg(reg))
1069 		EMIT1(add_1mod(0x40, reg));
1070 	*pprog = prog;
1071 }
1072 
1073 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1074 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1075 {
1076 	u8 *prog = *pprog;
1077 
1078 	switch (size) {
1079 	case BPF_B:
1080 		/* Emit 'movzx rax, byte ptr [rax + off]' */
1081 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1082 		break;
1083 	case BPF_H:
1084 		/* Emit 'movzx rax, word ptr [rax + off]' */
1085 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1086 		break;
1087 	case BPF_W:
1088 		/* Emit 'mov eax, dword ptr [rax+0x14]' */
1089 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1090 			EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1091 		else
1092 			EMIT1(0x8B);
1093 		break;
1094 	case BPF_DW:
1095 		/* Emit 'mov rax, qword ptr [rax+0x14]' */
1096 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1097 		break;
1098 	}
1099 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1100 	*pprog = prog;
1101 }
1102 
1103 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1104 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1105 {
1106 	u8 *prog = *pprog;
1107 
1108 	switch (size) {
1109 	case BPF_B:
1110 		/* Emit 'movsx rax, byte ptr [rax + off]' */
1111 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1112 		break;
1113 	case BPF_H:
1114 		/* Emit 'movsx rax, word ptr [rax + off]' */
1115 		EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1116 		break;
1117 	case BPF_W:
1118 		/* Emit 'movsx rax, dword ptr [rax+0x14]' */
1119 		EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1120 		break;
1121 	}
1122 	emit_insn_suffix(&prog, src_reg, dst_reg, off);
1123 	*pprog = prog;
1124 }
1125 
1126 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1127 {
1128 	u8 *prog = *pprog;
1129 
1130 	switch (size) {
1131 	case BPF_B:
1132 		/* movzx rax, byte ptr [rax + r12 + off] */
1133 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1134 		break;
1135 	case BPF_H:
1136 		/* movzx rax, word ptr [rax + r12 + off] */
1137 		EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1138 		break;
1139 	case BPF_W:
1140 		/* mov eax, dword ptr [rax + r12 + off] */
1141 		EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1142 		break;
1143 	case BPF_DW:
1144 		/* mov rax, qword ptr [rax + r12 + off] */
1145 		EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1146 		break;
1147 	}
1148 	emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1149 	*pprog = prog;
1150 }
1151 
1152 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1153 {
1154 	emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1155 }
1156 
1157 /* STX: *(u8*)(dst_reg + off) = src_reg */
1158 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1159 {
1160 	u8 *prog = *pprog;
1161 
1162 	switch (size) {
1163 	case BPF_B:
1164 		/* Emit 'mov byte ptr [rax + off], al' */
1165 		if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1166 			/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1167 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1168 		else
1169 			EMIT1(0x88);
1170 		break;
1171 	case BPF_H:
1172 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1173 			EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1174 		else
1175 			EMIT2(0x66, 0x89);
1176 		break;
1177 	case BPF_W:
1178 		if (is_ereg(dst_reg) || is_ereg(src_reg))
1179 			EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1180 		else
1181 			EMIT1(0x89);
1182 		break;
1183 	case BPF_DW:
1184 		EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1185 		break;
1186 	}
1187 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1188 	*pprog = prog;
1189 }
1190 
1191 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1192 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1193 {
1194 	u8 *prog = *pprog;
1195 
1196 	switch (size) {
1197 	case BPF_B:
1198 		/* mov byte ptr [rax + r12 + off], al */
1199 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1200 		break;
1201 	case BPF_H:
1202 		/* mov word ptr [rax + r12 + off], ax */
1203 		EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1204 		break;
1205 	case BPF_W:
1206 		/* mov dword ptr [rax + r12 + 1], eax */
1207 		EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1208 		break;
1209 	case BPF_DW:
1210 		/* mov qword ptr [rax + r12 + 1], rax */
1211 		EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1212 		break;
1213 	}
1214 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1215 	*pprog = prog;
1216 }
1217 
1218 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1219 {
1220 	emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1221 }
1222 
1223 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1224 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1225 {
1226 	u8 *prog = *pprog;
1227 
1228 	switch (size) {
1229 	case BPF_B:
1230 		/* mov byte ptr [rax + r12 + off], imm8 */
1231 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1232 		break;
1233 	case BPF_H:
1234 		/* mov word ptr [rax + r12 + off], imm16 */
1235 		EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1236 		break;
1237 	case BPF_W:
1238 		/* mov dword ptr [rax + r12 + 1], imm32 */
1239 		EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1240 		break;
1241 	case BPF_DW:
1242 		/* mov qword ptr [rax + r12 + 1], imm32 */
1243 		EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1244 		break;
1245 	}
1246 	emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1247 	EMIT(imm, bpf_size_to_x86_bytes(size));
1248 	*pprog = prog;
1249 }
1250 
1251 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1252 {
1253 	emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1254 }
1255 
1256 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op,
1257 			   u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1258 {
1259 	u8 *prog = *pprog;
1260 
1261 	EMIT1(0xF0); /* lock prefix */
1262 
1263 	maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1264 
1265 	/* emit opcode */
1266 	switch (atomic_op) {
1267 	case BPF_ADD:
1268 	case BPF_AND:
1269 	case BPF_OR:
1270 	case BPF_XOR:
1271 		/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1272 		EMIT1(simple_alu_opcodes[atomic_op]);
1273 		break;
1274 	case BPF_ADD | BPF_FETCH:
1275 		/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1276 		EMIT2(0x0F, 0xC1);
1277 		break;
1278 	case BPF_XCHG:
1279 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1280 		EMIT1(0x87);
1281 		break;
1282 	case BPF_CMPXCHG:
1283 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1284 		EMIT2(0x0F, 0xB1);
1285 		break;
1286 	default:
1287 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1288 		return -EFAULT;
1289 	}
1290 
1291 	emit_insn_suffix(&prog, dst_reg, src_reg, off);
1292 
1293 	*pprog = prog;
1294 	return 0;
1295 }
1296 
1297 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size,
1298 				 u32 dst_reg, u32 src_reg, u32 index_reg,
1299 				 int off)
1300 {
1301 	u8 *prog = *pprog;
1302 
1303 	EMIT1(0xF0); /* lock prefix */
1304 	switch (size) {
1305 	case BPF_W:
1306 		EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1307 		break;
1308 	case BPF_DW:
1309 		EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1310 		break;
1311 	default:
1312 		pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
1313 		return -EFAULT;
1314 	}
1315 
1316 	/* emit opcode */
1317 	switch (atomic_op) {
1318 	case BPF_ADD:
1319 	case BPF_AND:
1320 	case BPF_OR:
1321 	case BPF_XOR:
1322 		/* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1323 		EMIT1(simple_alu_opcodes[atomic_op]);
1324 		break;
1325 	case BPF_ADD | BPF_FETCH:
1326 		/* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1327 		EMIT2(0x0F, 0xC1);
1328 		break;
1329 	case BPF_XCHG:
1330 		/* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1331 		EMIT1(0x87);
1332 		break;
1333 	case BPF_CMPXCHG:
1334 		/* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1335 		EMIT2(0x0F, 0xB1);
1336 		break;
1337 	default:
1338 		pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1339 		return -EFAULT;
1340 	}
1341 	emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1342 	*pprog = prog;
1343 	return 0;
1344 }
1345 
1346 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg,
1347 			     u32 src_reg, s16 off, u8 bpf_size)
1348 {
1349 	switch (atomic_op) {
1350 	case BPF_LOAD_ACQ:
1351 		/* dst_reg = smp_load_acquire(src_reg + off16) */
1352 		emit_ldx(pprog, bpf_size, dst_reg, src_reg, off);
1353 		break;
1354 	case BPF_STORE_REL:
1355 		/* smp_store_release(dst_reg + off16, src_reg) */
1356 		emit_stx(pprog, bpf_size, dst_reg, src_reg, off);
1357 		break;
1358 	default:
1359 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1360 		       atomic_op);
1361 		return -EFAULT;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size,
1368 				   u32 dst_reg, u32 src_reg, u32 index_reg,
1369 				   int off)
1370 {
1371 	switch (atomic_op) {
1372 	case BPF_LOAD_ACQ:
1373 		/* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */
1374 		emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1375 		break;
1376 	case BPF_STORE_REL:
1377 		/* smp_store_release(dst_reg + idx_reg + off16, src_reg) */
1378 		emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off);
1379 		break;
1380 	default:
1381 		pr_err("bpf_jit: unknown atomic load/store opcode %02x\n",
1382 		       atomic_op);
1383 		return -EFAULT;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 #define DONT_CLEAR 1
1390 
1391 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1392 {
1393 	u32 reg = x->fixup >> 8;
1394 
1395 	/* jump over faulting load and clear dest register */
1396 	if (reg != DONT_CLEAR)
1397 		*(unsigned long *)((void *)regs + reg) = 0;
1398 	regs->ip += x->fixup & 0xff;
1399 	return true;
1400 }
1401 
1402 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1403 			     bool *regs_used)
1404 {
1405 	int i;
1406 
1407 	for (i = 1; i <= insn_cnt; i++, insn++) {
1408 		if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1409 			regs_used[0] = true;
1410 		if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1411 			regs_used[1] = true;
1412 		if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1413 			regs_used[2] = true;
1414 		if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1415 			regs_used[3] = true;
1416 	}
1417 }
1418 
1419 /* emit the 3-byte VEX prefix
1420  *
1421  * r: same as rex.r, extra bit for ModRM reg field
1422  * x: same as rex.x, extra bit for SIB index field
1423  * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1424  * m: opcode map select, encoding escape bytes e.g. 0x0f38
1425  * w: same as rex.w (32 bit or 64 bit) or opcode specific
1426  * src_reg2: additional source reg (encoded as BPF reg)
1427  * l: vector length (128 bit or 256 bit) or reserved
1428  * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1429  */
1430 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1431 		      bool w, u8 src_reg2, bool l, u8 pp)
1432 {
1433 	u8 *prog = *pprog;
1434 	const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1435 	u8 b1, b2;
1436 	u8 vvvv = reg2hex[src_reg2];
1437 
1438 	/* reg2hex gives only the lower 3 bit of vvvv */
1439 	if (is_ereg(src_reg2))
1440 		vvvv |= 1 << 3;
1441 
1442 	/*
1443 	 * 2nd byte of 3-byte VEX prefix
1444 	 * ~ means bit inverted encoding
1445 	 *
1446 	 *    7                           0
1447 	 *  +---+---+---+---+---+---+---+---+
1448 	 *  |~R |~X |~B |         m         |
1449 	 *  +---+---+---+---+---+---+---+---+
1450 	 */
1451 	b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1452 	/*
1453 	 * 3rd byte of 3-byte VEX prefix
1454 	 *
1455 	 *    7                           0
1456 	 *  +---+---+---+---+---+---+---+---+
1457 	 *  | W |     ~vvvv     | L |   pp  |
1458 	 *  +---+---+---+---+---+---+---+---+
1459 	 */
1460 	b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1461 
1462 	EMIT3(b0, b1, b2);
1463 	*pprog = prog;
1464 }
1465 
1466 /* emit BMI2 shift instruction */
1467 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1468 {
1469 	u8 *prog = *pprog;
1470 	bool r = is_ereg(dst_reg);
1471 	u8 m = 2; /* escape code 0f38 */
1472 
1473 	emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1474 	EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1475 	*pprog = prog;
1476 }
1477 
1478 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr)
1479 {
1480 	u8 *prog = *pprog;
1481 
1482 	/* movabs r9, priv_frame_ptr */
1483 	emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32,
1484 		       (u32) (__force long) priv_frame_ptr);
1485 
1486 #ifdef CONFIG_SMP
1487 	/* add <r9>, gs:[<off>] */
1488 	EMIT2(0x65, 0x4c);
1489 	EMIT3(0x03, 0x0c, 0x25);
1490 	EMIT((u32)(unsigned long)&this_cpu_off, 4);
1491 #endif
1492 
1493 	*pprog = prog;
1494 }
1495 
1496 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1497 
1498 #define __LOAD_TCC_PTR(off)			\
1499 	EMIT3_off32(0x48, 0x8B, 0x85, off)
1500 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1501 #define LOAD_TAIL_CALL_CNT_PTR(stack)				\
1502 	__LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1503 
1504 /* Memory size/value to protect private stack overflow/underflow */
1505 #define PRIV_STACK_GUARD_SZ    8
1506 #define PRIV_STACK_GUARD_VAL   0xEB9F12345678eb9fULL
1507 
1508 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1509 		  int oldproglen, struct jit_context *ctx, bool jmp_padding)
1510 {
1511 	bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1512 	struct bpf_insn *insn = bpf_prog->insnsi;
1513 	bool callee_regs_used[4] = {};
1514 	int insn_cnt = bpf_prog->len;
1515 	bool seen_exit = false;
1516 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1517 	void __percpu *priv_frame_ptr = NULL;
1518 	u64 arena_vm_start, user_vm_start;
1519 	void __percpu *priv_stack_ptr;
1520 	int i, excnt = 0;
1521 	int ilen, proglen = 0;
1522 	u8 *prog = temp;
1523 	u32 stack_depth;
1524 	int err;
1525 
1526 	stack_depth = bpf_prog->aux->stack_depth;
1527 	priv_stack_ptr = bpf_prog->aux->priv_stack_ptr;
1528 	if (priv_stack_ptr) {
1529 		priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8);
1530 		stack_depth = 0;
1531 	}
1532 
1533 	arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1534 	user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1535 
1536 	detect_reg_usage(insn, insn_cnt, callee_regs_used);
1537 
1538 	emit_prologue(&prog, image, stack_depth,
1539 		      bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1540 		      bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1541 	/* Exception callback will clobber callee regs for its own use, and
1542 	 * restore the original callee regs from main prog's stack frame.
1543 	 */
1544 	if (bpf_prog->aux->exception_boundary) {
1545 		/* We also need to save r12, which is not mapped to any BPF
1546 		 * register, as we throw after entry into the kernel, which may
1547 		 * overwrite r12.
1548 		 */
1549 		push_r12(&prog);
1550 		push_callee_regs(&prog, all_callee_regs_used);
1551 	} else {
1552 		if (arena_vm_start)
1553 			push_r12(&prog);
1554 		push_callee_regs(&prog, callee_regs_used);
1555 	}
1556 	if (arena_vm_start)
1557 		emit_mov_imm64(&prog, X86_REG_R12,
1558 			       arena_vm_start >> 32, (u32) arena_vm_start);
1559 
1560 	if (priv_frame_ptr)
1561 		emit_priv_frame_ptr(&prog, priv_frame_ptr);
1562 
1563 	ilen = prog - temp;
1564 	if (rw_image)
1565 		memcpy(rw_image + proglen, temp, ilen);
1566 	proglen += ilen;
1567 	addrs[0] = proglen;
1568 	prog = temp;
1569 
1570 	for (i = 1; i <= insn_cnt; i++, insn++) {
1571 		const s32 imm32 = insn->imm;
1572 		u32 dst_reg = insn->dst_reg;
1573 		u32 src_reg = insn->src_reg;
1574 		u8 b2 = 0, b3 = 0;
1575 		u8 *start_of_ldx;
1576 		s64 jmp_offset;
1577 		s16 insn_off;
1578 		u8 jmp_cond;
1579 		u8 *func;
1580 		int nops;
1581 
1582 		if (priv_frame_ptr) {
1583 			if (src_reg == BPF_REG_FP)
1584 				src_reg = X86_REG_R9;
1585 
1586 			if (dst_reg == BPF_REG_FP)
1587 				dst_reg = X86_REG_R9;
1588 		}
1589 
1590 		switch (insn->code) {
1591 			/* ALU */
1592 		case BPF_ALU | BPF_ADD | BPF_X:
1593 		case BPF_ALU | BPF_SUB | BPF_X:
1594 		case BPF_ALU | BPF_AND | BPF_X:
1595 		case BPF_ALU | BPF_OR | BPF_X:
1596 		case BPF_ALU | BPF_XOR | BPF_X:
1597 		case BPF_ALU64 | BPF_ADD | BPF_X:
1598 		case BPF_ALU64 | BPF_SUB | BPF_X:
1599 		case BPF_ALU64 | BPF_AND | BPF_X:
1600 		case BPF_ALU64 | BPF_OR | BPF_X:
1601 		case BPF_ALU64 | BPF_XOR | BPF_X:
1602 			maybe_emit_mod(&prog, dst_reg, src_reg,
1603 				       BPF_CLASS(insn->code) == BPF_ALU64);
1604 			b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1605 			EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1606 			break;
1607 
1608 		case BPF_ALU64 | BPF_MOV | BPF_X:
1609 			if (insn_is_cast_user(insn)) {
1610 				if (dst_reg != src_reg)
1611 					/* 32-bit mov */
1612 					emit_mov_reg(&prog, false, dst_reg, src_reg);
1613 				/* shl dst_reg, 32 */
1614 				maybe_emit_1mod(&prog, dst_reg, true);
1615 				EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1616 
1617 				/* or dst_reg, user_vm_start */
1618 				maybe_emit_1mod(&prog, dst_reg, true);
1619 				if (is_axreg(dst_reg))
1620 					EMIT1_off32(0x0D,  user_vm_start >> 32);
1621 				else
1622 					EMIT2_off32(0x81, add_1reg(0xC8, dst_reg),  user_vm_start >> 32);
1623 
1624 				/* rol dst_reg, 32 */
1625 				maybe_emit_1mod(&prog, dst_reg, true);
1626 				EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1627 
1628 				/* xor r11, r11 */
1629 				EMIT3(0x4D, 0x31, 0xDB);
1630 
1631 				/* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1632 				maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1633 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1634 
1635 				/* cmove r11, dst_reg; if so, set dst_reg to zero */
1636 				/* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1637 				maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1638 				EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1639 				break;
1640 			} else if (insn_is_mov_percpu_addr(insn)) {
1641 				/* mov <dst>, <src> (if necessary) */
1642 				EMIT_mov(dst_reg, src_reg);
1643 #ifdef CONFIG_SMP
1644 				/* add <dst>, gs:[<off>] */
1645 				EMIT2(0x65, add_1mod(0x48, dst_reg));
1646 				EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1647 				EMIT((u32)(unsigned long)&this_cpu_off, 4);
1648 #endif
1649 				break;
1650 			}
1651 			fallthrough;
1652 		case BPF_ALU | BPF_MOV | BPF_X:
1653 			if (insn->off == 0)
1654 				emit_mov_reg(&prog,
1655 					     BPF_CLASS(insn->code) == BPF_ALU64,
1656 					     dst_reg, src_reg);
1657 			else
1658 				emit_movsx_reg(&prog, insn->off,
1659 					       BPF_CLASS(insn->code) == BPF_ALU64,
1660 					       dst_reg, src_reg);
1661 			break;
1662 
1663 			/* neg dst */
1664 		case BPF_ALU | BPF_NEG:
1665 		case BPF_ALU64 | BPF_NEG:
1666 			maybe_emit_1mod(&prog, dst_reg,
1667 					BPF_CLASS(insn->code) == BPF_ALU64);
1668 			EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1669 			break;
1670 
1671 		case BPF_ALU | BPF_ADD | BPF_K:
1672 		case BPF_ALU | BPF_SUB | BPF_K:
1673 		case BPF_ALU | BPF_AND | BPF_K:
1674 		case BPF_ALU | BPF_OR | BPF_K:
1675 		case BPF_ALU | BPF_XOR | BPF_K:
1676 		case BPF_ALU64 | BPF_ADD | BPF_K:
1677 		case BPF_ALU64 | BPF_SUB | BPF_K:
1678 		case BPF_ALU64 | BPF_AND | BPF_K:
1679 		case BPF_ALU64 | BPF_OR | BPF_K:
1680 		case BPF_ALU64 | BPF_XOR | BPF_K:
1681 			maybe_emit_1mod(&prog, dst_reg,
1682 					BPF_CLASS(insn->code) == BPF_ALU64);
1683 
1684 			/*
1685 			 * b3 holds 'normal' opcode, b2 short form only valid
1686 			 * in case dst is eax/rax.
1687 			 */
1688 			switch (BPF_OP(insn->code)) {
1689 			case BPF_ADD:
1690 				b3 = 0xC0;
1691 				b2 = 0x05;
1692 				break;
1693 			case BPF_SUB:
1694 				b3 = 0xE8;
1695 				b2 = 0x2D;
1696 				break;
1697 			case BPF_AND:
1698 				b3 = 0xE0;
1699 				b2 = 0x25;
1700 				break;
1701 			case BPF_OR:
1702 				b3 = 0xC8;
1703 				b2 = 0x0D;
1704 				break;
1705 			case BPF_XOR:
1706 				b3 = 0xF0;
1707 				b2 = 0x35;
1708 				break;
1709 			}
1710 
1711 			if (is_imm8(imm32))
1712 				EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1713 			else if (is_axreg(dst_reg))
1714 				EMIT1_off32(b2, imm32);
1715 			else
1716 				EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1717 			break;
1718 
1719 		case BPF_ALU64 | BPF_MOV | BPF_K:
1720 		case BPF_ALU | BPF_MOV | BPF_K:
1721 			emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1722 				       dst_reg, imm32);
1723 			break;
1724 
1725 		case BPF_LD | BPF_IMM | BPF_DW:
1726 			emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1727 			insn++;
1728 			i++;
1729 			break;
1730 
1731 			/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1732 		case BPF_ALU | BPF_MOD | BPF_X:
1733 		case BPF_ALU | BPF_DIV | BPF_X:
1734 		case BPF_ALU | BPF_MOD | BPF_K:
1735 		case BPF_ALU | BPF_DIV | BPF_K:
1736 		case BPF_ALU64 | BPF_MOD | BPF_X:
1737 		case BPF_ALU64 | BPF_DIV | BPF_X:
1738 		case BPF_ALU64 | BPF_MOD | BPF_K:
1739 		case BPF_ALU64 | BPF_DIV | BPF_K: {
1740 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1741 
1742 			if (dst_reg != BPF_REG_0)
1743 				EMIT1(0x50); /* push rax */
1744 			if (dst_reg != BPF_REG_3)
1745 				EMIT1(0x52); /* push rdx */
1746 
1747 			if (BPF_SRC(insn->code) == BPF_X) {
1748 				if (src_reg == BPF_REG_0 ||
1749 				    src_reg == BPF_REG_3) {
1750 					/* mov r11, src_reg */
1751 					EMIT_mov(AUX_REG, src_reg);
1752 					src_reg = AUX_REG;
1753 				}
1754 			} else {
1755 				/* mov r11, imm32 */
1756 				EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1757 				src_reg = AUX_REG;
1758 			}
1759 
1760 			if (dst_reg != BPF_REG_0)
1761 				/* mov rax, dst_reg */
1762 				emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1763 
1764 			if (insn->off == 0) {
1765 				/*
1766 				 * xor edx, edx
1767 				 * equivalent to 'xor rdx, rdx', but one byte less
1768 				 */
1769 				EMIT2(0x31, 0xd2);
1770 
1771 				/* div src_reg */
1772 				maybe_emit_1mod(&prog, src_reg, is64);
1773 				EMIT2(0xF7, add_1reg(0xF0, src_reg));
1774 			} else {
1775 				if (BPF_CLASS(insn->code) == BPF_ALU)
1776 					EMIT1(0x99); /* cdq */
1777 				else
1778 					EMIT2(0x48, 0x99); /* cqo */
1779 
1780 				/* idiv src_reg */
1781 				maybe_emit_1mod(&prog, src_reg, is64);
1782 				EMIT2(0xF7, add_1reg(0xF8, src_reg));
1783 			}
1784 
1785 			if (BPF_OP(insn->code) == BPF_MOD &&
1786 			    dst_reg != BPF_REG_3)
1787 				/* mov dst_reg, rdx */
1788 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1789 			else if (BPF_OP(insn->code) == BPF_DIV &&
1790 				 dst_reg != BPF_REG_0)
1791 				/* mov dst_reg, rax */
1792 				emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1793 
1794 			if (dst_reg != BPF_REG_3)
1795 				EMIT1(0x5A); /* pop rdx */
1796 			if (dst_reg != BPF_REG_0)
1797 				EMIT1(0x58); /* pop rax */
1798 			break;
1799 		}
1800 
1801 		case BPF_ALU | BPF_MUL | BPF_K:
1802 		case BPF_ALU64 | BPF_MUL | BPF_K:
1803 			maybe_emit_mod(&prog, dst_reg, dst_reg,
1804 				       BPF_CLASS(insn->code) == BPF_ALU64);
1805 
1806 			if (is_imm8(imm32))
1807 				/* imul dst_reg, dst_reg, imm8 */
1808 				EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1809 				      imm32);
1810 			else
1811 				/* imul dst_reg, dst_reg, imm32 */
1812 				EMIT2_off32(0x69,
1813 					    add_2reg(0xC0, dst_reg, dst_reg),
1814 					    imm32);
1815 			break;
1816 
1817 		case BPF_ALU | BPF_MUL | BPF_X:
1818 		case BPF_ALU64 | BPF_MUL | BPF_X:
1819 			maybe_emit_mod(&prog, src_reg, dst_reg,
1820 				       BPF_CLASS(insn->code) == BPF_ALU64);
1821 
1822 			/* imul dst_reg, src_reg */
1823 			EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1824 			break;
1825 
1826 			/* Shifts */
1827 		case BPF_ALU | BPF_LSH | BPF_K:
1828 		case BPF_ALU | BPF_RSH | BPF_K:
1829 		case BPF_ALU | BPF_ARSH | BPF_K:
1830 		case BPF_ALU64 | BPF_LSH | BPF_K:
1831 		case BPF_ALU64 | BPF_RSH | BPF_K:
1832 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1833 			maybe_emit_1mod(&prog, dst_reg,
1834 					BPF_CLASS(insn->code) == BPF_ALU64);
1835 
1836 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1837 			if (imm32 == 1)
1838 				EMIT2(0xD1, add_1reg(b3, dst_reg));
1839 			else
1840 				EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1841 			break;
1842 
1843 		case BPF_ALU | BPF_LSH | BPF_X:
1844 		case BPF_ALU | BPF_RSH | BPF_X:
1845 		case BPF_ALU | BPF_ARSH | BPF_X:
1846 		case BPF_ALU64 | BPF_LSH | BPF_X:
1847 		case BPF_ALU64 | BPF_RSH | BPF_X:
1848 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1849 			/* BMI2 shifts aren't better when shift count is already in rcx */
1850 			if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1851 				/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1852 				bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1853 				u8 op;
1854 
1855 				switch (BPF_OP(insn->code)) {
1856 				case BPF_LSH:
1857 					op = 1; /* prefix 0x66 */
1858 					break;
1859 				case BPF_RSH:
1860 					op = 3; /* prefix 0xf2 */
1861 					break;
1862 				case BPF_ARSH:
1863 					op = 2; /* prefix 0xf3 */
1864 					break;
1865 				}
1866 
1867 				emit_shiftx(&prog, dst_reg, src_reg, w, op);
1868 
1869 				break;
1870 			}
1871 
1872 			if (src_reg != BPF_REG_4) { /* common case */
1873 				/* Check for bad case when dst_reg == rcx */
1874 				if (dst_reg == BPF_REG_4) {
1875 					/* mov r11, dst_reg */
1876 					EMIT_mov(AUX_REG, dst_reg);
1877 					dst_reg = AUX_REG;
1878 				} else {
1879 					EMIT1(0x51); /* push rcx */
1880 				}
1881 				/* mov rcx, src_reg */
1882 				EMIT_mov(BPF_REG_4, src_reg);
1883 			}
1884 
1885 			/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1886 			maybe_emit_1mod(&prog, dst_reg,
1887 					BPF_CLASS(insn->code) == BPF_ALU64);
1888 
1889 			b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1890 			EMIT2(0xD3, add_1reg(b3, dst_reg));
1891 
1892 			if (src_reg != BPF_REG_4) {
1893 				if (insn->dst_reg == BPF_REG_4)
1894 					/* mov dst_reg, r11 */
1895 					EMIT_mov(insn->dst_reg, AUX_REG);
1896 				else
1897 					EMIT1(0x59); /* pop rcx */
1898 			}
1899 
1900 			break;
1901 
1902 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1903 		case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1904 			switch (imm32) {
1905 			case 16:
1906 				/* Emit 'ror %ax, 8' to swap lower 2 bytes */
1907 				EMIT1(0x66);
1908 				if (is_ereg(dst_reg))
1909 					EMIT1(0x41);
1910 				EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1911 
1912 				/* Emit 'movzwl eax, ax' */
1913 				if (is_ereg(dst_reg))
1914 					EMIT3(0x45, 0x0F, 0xB7);
1915 				else
1916 					EMIT2(0x0F, 0xB7);
1917 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1918 				break;
1919 			case 32:
1920 				/* Emit 'bswap eax' to swap lower 4 bytes */
1921 				if (is_ereg(dst_reg))
1922 					EMIT2(0x41, 0x0F);
1923 				else
1924 					EMIT1(0x0F);
1925 				EMIT1(add_1reg(0xC8, dst_reg));
1926 				break;
1927 			case 64:
1928 				/* Emit 'bswap rax' to swap 8 bytes */
1929 				EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1930 				      add_1reg(0xC8, dst_reg));
1931 				break;
1932 			}
1933 			break;
1934 
1935 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1936 			switch (imm32) {
1937 			case 16:
1938 				/*
1939 				 * Emit 'movzwl eax, ax' to zero extend 16-bit
1940 				 * into 64 bit
1941 				 */
1942 				if (is_ereg(dst_reg))
1943 					EMIT3(0x45, 0x0F, 0xB7);
1944 				else
1945 					EMIT2(0x0F, 0xB7);
1946 				EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1947 				break;
1948 			case 32:
1949 				/* Emit 'mov eax, eax' to clear upper 32-bits */
1950 				if (is_ereg(dst_reg))
1951 					EMIT1(0x45);
1952 				EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1953 				break;
1954 			case 64:
1955 				/* nop */
1956 				break;
1957 			}
1958 			break;
1959 
1960 			/* speculation barrier */
1961 		case BPF_ST | BPF_NOSPEC:
1962 			EMIT_LFENCE();
1963 			break;
1964 
1965 			/* ST: *(u8*)(dst_reg + off) = imm */
1966 		case BPF_ST | BPF_MEM | BPF_B:
1967 			if (is_ereg(dst_reg))
1968 				EMIT2(0x41, 0xC6);
1969 			else
1970 				EMIT1(0xC6);
1971 			goto st;
1972 		case BPF_ST | BPF_MEM | BPF_H:
1973 			if (is_ereg(dst_reg))
1974 				EMIT3(0x66, 0x41, 0xC7);
1975 			else
1976 				EMIT2(0x66, 0xC7);
1977 			goto st;
1978 		case BPF_ST | BPF_MEM | BPF_W:
1979 			if (is_ereg(dst_reg))
1980 				EMIT2(0x41, 0xC7);
1981 			else
1982 				EMIT1(0xC7);
1983 			goto st;
1984 		case BPF_ST | BPF_MEM | BPF_DW:
1985 			EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1986 
1987 st:			if (is_imm8(insn->off))
1988 				EMIT2(add_1reg(0x40, dst_reg), insn->off);
1989 			else
1990 				EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1991 
1992 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1993 			break;
1994 
1995 			/* STX: *(u8*)(dst_reg + off) = src_reg */
1996 		case BPF_STX | BPF_MEM | BPF_B:
1997 		case BPF_STX | BPF_MEM | BPF_H:
1998 		case BPF_STX | BPF_MEM | BPF_W:
1999 		case BPF_STX | BPF_MEM | BPF_DW:
2000 			emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2001 			break;
2002 
2003 		case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
2004 		case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
2005 		case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
2006 		case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
2007 			start_of_ldx = prog;
2008 			emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
2009 			goto populate_extable;
2010 
2011 			/* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
2012 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
2013 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
2014 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
2015 		case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
2016 		case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
2017 		case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
2018 		case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
2019 		case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
2020 			start_of_ldx = prog;
2021 			if (BPF_CLASS(insn->code) == BPF_LDX)
2022 				emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2023 			else
2024 				emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
2025 populate_extable:
2026 			{
2027 				struct exception_table_entry *ex;
2028 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2029 				s64 delta;
2030 
2031 				if (!bpf_prog->aux->extable)
2032 					break;
2033 
2034 				if (excnt >= bpf_prog->aux->num_exentries) {
2035 					pr_err("mem32 extable bug\n");
2036 					return -EFAULT;
2037 				}
2038 				ex = &bpf_prog->aux->extable[excnt++];
2039 
2040 				delta = _insn - (u8 *)&ex->insn;
2041 				/* switch ex to rw buffer for writes */
2042 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2043 
2044 				ex->insn = delta;
2045 
2046 				ex->data = EX_TYPE_BPF;
2047 
2048 				ex->fixup = (prog - start_of_ldx) |
2049 					((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
2050 			}
2051 			break;
2052 
2053 			/* LDX: dst_reg = *(u8*)(src_reg + off) */
2054 		case BPF_LDX | BPF_MEM | BPF_B:
2055 		case BPF_LDX | BPF_PROBE_MEM | BPF_B:
2056 		case BPF_LDX | BPF_MEM | BPF_H:
2057 		case BPF_LDX | BPF_PROBE_MEM | BPF_H:
2058 		case BPF_LDX | BPF_MEM | BPF_W:
2059 		case BPF_LDX | BPF_PROBE_MEM | BPF_W:
2060 		case BPF_LDX | BPF_MEM | BPF_DW:
2061 		case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
2062 			/* LDXS: dst_reg = *(s8*)(src_reg + off) */
2063 		case BPF_LDX | BPF_MEMSX | BPF_B:
2064 		case BPF_LDX | BPF_MEMSX | BPF_H:
2065 		case BPF_LDX | BPF_MEMSX | BPF_W:
2066 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
2067 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
2068 		case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
2069 			insn_off = insn->off;
2070 
2071 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2072 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2073 				/* Conservatively check that src_reg + insn->off is a kernel address:
2074 				 *   src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
2075 				 *   and
2076 				 *   src_reg + insn->off < VSYSCALL_ADDR
2077 				 */
2078 
2079 				u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
2080 				u8 *end_of_jmp;
2081 
2082 				/* movabsq r10, VSYSCALL_ADDR */
2083 				emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
2084 					       (u32)(long)VSYSCALL_ADDR);
2085 
2086 				/* mov src_reg, r11 */
2087 				EMIT_mov(AUX_REG, src_reg);
2088 
2089 				if (insn->off) {
2090 					/* add r11, insn->off */
2091 					maybe_emit_1mod(&prog, AUX_REG, true);
2092 					EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
2093 				}
2094 
2095 				/* sub r11, r10 */
2096 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2097 				EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2098 
2099 				/* movabsq r10, limit */
2100 				emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
2101 					       (u32)(long)limit);
2102 
2103 				/* cmp r10, r11 */
2104 				maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
2105 				EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
2106 
2107 				/* if unsigned '>', goto load */
2108 				EMIT2(X86_JA, 0);
2109 				end_of_jmp = prog;
2110 
2111 				/* xor dst_reg, dst_reg */
2112 				emit_mov_imm32(&prog, false, dst_reg, 0);
2113 				/* jmp byte_after_ldx */
2114 				EMIT2(0xEB, 0);
2115 
2116 				/* populate jmp_offset for JAE above to jump to start_of_ldx */
2117 				start_of_ldx = prog;
2118 				end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2119 			}
2120 			if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2121 			    BPF_MODE(insn->code) == BPF_MEMSX)
2122 				emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2123 			else
2124 				emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2125 			if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2126 			    BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2127 				struct exception_table_entry *ex;
2128 				u8 *_insn = image + proglen + (start_of_ldx - temp);
2129 				s64 delta;
2130 
2131 				/* populate jmp_offset for JMP above */
2132 				start_of_ldx[-1] = prog - start_of_ldx;
2133 
2134 				if (!bpf_prog->aux->extable)
2135 					break;
2136 
2137 				if (excnt >= bpf_prog->aux->num_exentries) {
2138 					pr_err("ex gen bug\n");
2139 					return -EFAULT;
2140 				}
2141 				ex = &bpf_prog->aux->extable[excnt++];
2142 
2143 				delta = _insn - (u8 *)&ex->insn;
2144 				if (!is_simm32(delta)) {
2145 					pr_err("extable->insn doesn't fit into 32-bit\n");
2146 					return -EFAULT;
2147 				}
2148 				/* switch ex to rw buffer for writes */
2149 				ex = (void *)rw_image + ((void *)ex - (void *)image);
2150 
2151 				ex->insn = delta;
2152 
2153 				ex->data = EX_TYPE_BPF;
2154 
2155 				if (dst_reg > BPF_REG_9) {
2156 					pr_err("verifier error\n");
2157 					return -EFAULT;
2158 				}
2159 				/*
2160 				 * Compute size of x86 insn and its target dest x86 register.
2161 				 * ex_handler_bpf() will use lower 8 bits to adjust
2162 				 * pt_regs->ip to jump over this x86 instruction
2163 				 * and upper bits to figure out which pt_regs to zero out.
2164 				 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2165 				 * of 4 bytes will be ignored and rbx will be zero inited.
2166 				 */
2167 				ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2168 			}
2169 			break;
2170 
2171 		case BPF_STX | BPF_ATOMIC | BPF_B:
2172 		case BPF_STX | BPF_ATOMIC | BPF_H:
2173 			if (!bpf_atomic_is_load_store(insn)) {
2174 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2175 				return -EFAULT;
2176 			}
2177 			fallthrough;
2178 		case BPF_STX | BPF_ATOMIC | BPF_W:
2179 		case BPF_STX | BPF_ATOMIC | BPF_DW:
2180 			if (insn->imm == (BPF_AND | BPF_FETCH) ||
2181 			    insn->imm == (BPF_OR | BPF_FETCH) ||
2182 			    insn->imm == (BPF_XOR | BPF_FETCH)) {
2183 				bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2184 				u32 real_src_reg = src_reg;
2185 				u32 real_dst_reg = dst_reg;
2186 				u8 *branch_target;
2187 
2188 				/*
2189 				 * Can't be implemented with a single x86 insn.
2190 				 * Need to do a CMPXCHG loop.
2191 				 */
2192 
2193 				/* Will need RAX as a CMPXCHG operand so save R0 */
2194 				emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2195 				if (src_reg == BPF_REG_0)
2196 					real_src_reg = BPF_REG_AX;
2197 				if (dst_reg == BPF_REG_0)
2198 					real_dst_reg = BPF_REG_AX;
2199 
2200 				branch_target = prog;
2201 				/* Load old value */
2202 				emit_ldx(&prog, BPF_SIZE(insn->code),
2203 					 BPF_REG_0, real_dst_reg, insn->off);
2204 				/*
2205 				 * Perform the (commutative) operation locally,
2206 				 * put the result in the AUX_REG.
2207 				 */
2208 				emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2209 				maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2210 				EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2211 				      add_2reg(0xC0, AUX_REG, real_src_reg));
2212 				/* Attempt to swap in new value */
2213 				err = emit_atomic_rmw(&prog, BPF_CMPXCHG,
2214 						      real_dst_reg, AUX_REG,
2215 						      insn->off,
2216 						      BPF_SIZE(insn->code));
2217 				if (WARN_ON(err))
2218 					return err;
2219 				/*
2220 				 * ZF tells us whether we won the race. If it's
2221 				 * cleared we need to try again.
2222 				 */
2223 				EMIT2(X86_JNE, -(prog - branch_target) - 2);
2224 				/* Return the pre-modification value */
2225 				emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2226 				/* Restore R0 after clobbering RAX */
2227 				emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2228 				break;
2229 			}
2230 
2231 			if (bpf_atomic_is_load_store(insn))
2232 				err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg,
2233 							insn->off, BPF_SIZE(insn->code));
2234 			else
2235 				err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg,
2236 						      insn->off, BPF_SIZE(insn->code));
2237 			if (err)
2238 				return err;
2239 			break;
2240 
2241 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_B:
2242 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_H:
2243 			if (!bpf_atomic_is_load_store(insn)) {
2244 				pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n");
2245 				return -EFAULT;
2246 			}
2247 			fallthrough;
2248 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2249 		case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2250 			start_of_ldx = prog;
2251 
2252 			if (bpf_atomic_is_load_store(insn))
2253 				err = emit_atomic_ld_st_index(&prog, insn->imm,
2254 							      BPF_SIZE(insn->code), dst_reg,
2255 							      src_reg, X86_REG_R12, insn->off);
2256 			else
2257 				err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code),
2258 							    dst_reg, src_reg, X86_REG_R12,
2259 							    insn->off);
2260 			if (err)
2261 				return err;
2262 			goto populate_extable;
2263 
2264 			/* call */
2265 		case BPF_JMP | BPF_CALL: {
2266 			u8 *ip = image + addrs[i - 1];
2267 
2268 			func = (u8 *) __bpf_call_base + imm32;
2269 			if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) {
2270 				LOAD_TAIL_CALL_CNT_PTR(stack_depth);
2271 				ip += 7;
2272 			}
2273 			if (!imm32)
2274 				return -EINVAL;
2275 			if (priv_frame_ptr) {
2276 				push_r9(&prog);
2277 				ip += 2;
2278 			}
2279 			ip += x86_call_depth_emit_accounting(&prog, func, ip);
2280 			if (emit_call(&prog, func, ip))
2281 				return -EINVAL;
2282 			if (priv_frame_ptr)
2283 				pop_r9(&prog);
2284 			break;
2285 		}
2286 
2287 		case BPF_JMP | BPF_TAIL_CALL:
2288 			if (imm32)
2289 				emit_bpf_tail_call_direct(bpf_prog,
2290 							  &bpf_prog->aux->poke_tab[imm32 - 1],
2291 							  &prog, image + addrs[i - 1],
2292 							  callee_regs_used,
2293 							  stack_depth,
2294 							  ctx);
2295 			else
2296 				emit_bpf_tail_call_indirect(bpf_prog,
2297 							    &prog,
2298 							    callee_regs_used,
2299 							    stack_depth,
2300 							    image + addrs[i - 1],
2301 							    ctx);
2302 			break;
2303 
2304 			/* cond jump */
2305 		case BPF_JMP | BPF_JEQ | BPF_X:
2306 		case BPF_JMP | BPF_JNE | BPF_X:
2307 		case BPF_JMP | BPF_JGT | BPF_X:
2308 		case BPF_JMP | BPF_JLT | BPF_X:
2309 		case BPF_JMP | BPF_JGE | BPF_X:
2310 		case BPF_JMP | BPF_JLE | BPF_X:
2311 		case BPF_JMP | BPF_JSGT | BPF_X:
2312 		case BPF_JMP | BPF_JSLT | BPF_X:
2313 		case BPF_JMP | BPF_JSGE | BPF_X:
2314 		case BPF_JMP | BPF_JSLE | BPF_X:
2315 		case BPF_JMP32 | BPF_JEQ | BPF_X:
2316 		case BPF_JMP32 | BPF_JNE | BPF_X:
2317 		case BPF_JMP32 | BPF_JGT | BPF_X:
2318 		case BPF_JMP32 | BPF_JLT | BPF_X:
2319 		case BPF_JMP32 | BPF_JGE | BPF_X:
2320 		case BPF_JMP32 | BPF_JLE | BPF_X:
2321 		case BPF_JMP32 | BPF_JSGT | BPF_X:
2322 		case BPF_JMP32 | BPF_JSLT | BPF_X:
2323 		case BPF_JMP32 | BPF_JSGE | BPF_X:
2324 		case BPF_JMP32 | BPF_JSLE | BPF_X:
2325 			/* cmp dst_reg, src_reg */
2326 			maybe_emit_mod(&prog, dst_reg, src_reg,
2327 				       BPF_CLASS(insn->code) == BPF_JMP);
2328 			EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2329 			goto emit_cond_jmp;
2330 
2331 		case BPF_JMP | BPF_JSET | BPF_X:
2332 		case BPF_JMP32 | BPF_JSET | BPF_X:
2333 			/* test dst_reg, src_reg */
2334 			maybe_emit_mod(&prog, dst_reg, src_reg,
2335 				       BPF_CLASS(insn->code) == BPF_JMP);
2336 			EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2337 			goto emit_cond_jmp;
2338 
2339 		case BPF_JMP | BPF_JSET | BPF_K:
2340 		case BPF_JMP32 | BPF_JSET | BPF_K:
2341 			/* test dst_reg, imm32 */
2342 			maybe_emit_1mod(&prog, dst_reg,
2343 					BPF_CLASS(insn->code) == BPF_JMP);
2344 			EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2345 			goto emit_cond_jmp;
2346 
2347 		case BPF_JMP | BPF_JEQ | BPF_K:
2348 		case BPF_JMP | BPF_JNE | BPF_K:
2349 		case BPF_JMP | BPF_JGT | BPF_K:
2350 		case BPF_JMP | BPF_JLT | BPF_K:
2351 		case BPF_JMP | BPF_JGE | BPF_K:
2352 		case BPF_JMP | BPF_JLE | BPF_K:
2353 		case BPF_JMP | BPF_JSGT | BPF_K:
2354 		case BPF_JMP | BPF_JSLT | BPF_K:
2355 		case BPF_JMP | BPF_JSGE | BPF_K:
2356 		case BPF_JMP | BPF_JSLE | BPF_K:
2357 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2358 		case BPF_JMP32 | BPF_JNE | BPF_K:
2359 		case BPF_JMP32 | BPF_JGT | BPF_K:
2360 		case BPF_JMP32 | BPF_JLT | BPF_K:
2361 		case BPF_JMP32 | BPF_JGE | BPF_K:
2362 		case BPF_JMP32 | BPF_JLE | BPF_K:
2363 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2364 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2365 		case BPF_JMP32 | BPF_JSGE | BPF_K:
2366 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2367 			/* test dst_reg, dst_reg to save one extra byte */
2368 			if (imm32 == 0) {
2369 				maybe_emit_mod(&prog, dst_reg, dst_reg,
2370 					       BPF_CLASS(insn->code) == BPF_JMP);
2371 				EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2372 				goto emit_cond_jmp;
2373 			}
2374 
2375 			/* cmp dst_reg, imm8/32 */
2376 			maybe_emit_1mod(&prog, dst_reg,
2377 					BPF_CLASS(insn->code) == BPF_JMP);
2378 
2379 			if (is_imm8(imm32))
2380 				EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2381 			else
2382 				EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2383 
2384 emit_cond_jmp:		/* Convert BPF opcode to x86 */
2385 			switch (BPF_OP(insn->code)) {
2386 			case BPF_JEQ:
2387 				jmp_cond = X86_JE;
2388 				break;
2389 			case BPF_JSET:
2390 			case BPF_JNE:
2391 				jmp_cond = X86_JNE;
2392 				break;
2393 			case BPF_JGT:
2394 				/* GT is unsigned '>', JA in x86 */
2395 				jmp_cond = X86_JA;
2396 				break;
2397 			case BPF_JLT:
2398 				/* LT is unsigned '<', JB in x86 */
2399 				jmp_cond = X86_JB;
2400 				break;
2401 			case BPF_JGE:
2402 				/* GE is unsigned '>=', JAE in x86 */
2403 				jmp_cond = X86_JAE;
2404 				break;
2405 			case BPF_JLE:
2406 				/* LE is unsigned '<=', JBE in x86 */
2407 				jmp_cond = X86_JBE;
2408 				break;
2409 			case BPF_JSGT:
2410 				/* Signed '>', GT in x86 */
2411 				jmp_cond = X86_JG;
2412 				break;
2413 			case BPF_JSLT:
2414 				/* Signed '<', LT in x86 */
2415 				jmp_cond = X86_JL;
2416 				break;
2417 			case BPF_JSGE:
2418 				/* Signed '>=', GE in x86 */
2419 				jmp_cond = X86_JGE;
2420 				break;
2421 			case BPF_JSLE:
2422 				/* Signed '<=', LE in x86 */
2423 				jmp_cond = X86_JLE;
2424 				break;
2425 			default: /* to silence GCC warning */
2426 				return -EFAULT;
2427 			}
2428 			jmp_offset = addrs[i + insn->off] - addrs[i];
2429 			if (is_imm8_jmp_offset(jmp_offset)) {
2430 				if (jmp_padding) {
2431 					/* To keep the jmp_offset valid, the extra bytes are
2432 					 * padded before the jump insn, so we subtract the
2433 					 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2434 					 *
2435 					 * If the previous pass already emits an imm8
2436 					 * jmp_cond, then this BPF insn won't shrink, so
2437 					 * "nops" is 0.
2438 					 *
2439 					 * On the other hand, if the previous pass emits an
2440 					 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2441 					 * keep the image from shrinking further.
2442 					 *
2443 					 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2444 					 *     is 2 bytes, so the size difference is 4 bytes.
2445 					 */
2446 					nops = INSN_SZ_DIFF - 2;
2447 					if (nops != 0 && nops != 4) {
2448 						pr_err("unexpected jmp_cond padding: %d bytes\n",
2449 						       nops);
2450 						return -EFAULT;
2451 					}
2452 					emit_nops(&prog, nops);
2453 				}
2454 				EMIT2(jmp_cond, jmp_offset);
2455 			} else if (is_simm32(jmp_offset)) {
2456 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2457 			} else {
2458 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2459 				return -EFAULT;
2460 			}
2461 
2462 			break;
2463 
2464 		case BPF_JMP | BPF_JA:
2465 		case BPF_JMP32 | BPF_JA:
2466 			if (BPF_CLASS(insn->code) == BPF_JMP) {
2467 				if (insn->off == -1)
2468 					/* -1 jmp instructions will always jump
2469 					 * backwards two bytes. Explicitly handling
2470 					 * this case avoids wasting too many passes
2471 					 * when there are long sequences of replaced
2472 					 * dead code.
2473 					 */
2474 					jmp_offset = -2;
2475 				else
2476 					jmp_offset = addrs[i + insn->off] - addrs[i];
2477 			} else {
2478 				if (insn->imm == -1)
2479 					jmp_offset = -2;
2480 				else
2481 					jmp_offset = addrs[i + insn->imm] - addrs[i];
2482 			}
2483 
2484 			if (!jmp_offset) {
2485 				/*
2486 				 * If jmp_padding is enabled, the extra nops will
2487 				 * be inserted. Otherwise, optimize out nop jumps.
2488 				 */
2489 				if (jmp_padding) {
2490 					/* There are 3 possible conditions.
2491 					 * (1) This BPF_JA is already optimized out in
2492 					 *     the previous run, so there is no need
2493 					 *     to pad any extra byte (0 byte).
2494 					 * (2) The previous pass emits an imm8 jmp,
2495 					 *     so we pad 2 bytes to match the previous
2496 					 *     insn size.
2497 					 * (3) Similarly, the previous pass emits an
2498 					 *     imm32 jmp, and 5 bytes is padded.
2499 					 */
2500 					nops = INSN_SZ_DIFF;
2501 					if (nops != 0 && nops != 2 && nops != 5) {
2502 						pr_err("unexpected nop jump padding: %d bytes\n",
2503 						       nops);
2504 						return -EFAULT;
2505 					}
2506 					emit_nops(&prog, nops);
2507 				}
2508 				break;
2509 			}
2510 emit_jmp:
2511 			if (is_imm8_jmp_offset(jmp_offset)) {
2512 				if (jmp_padding) {
2513 					/* To avoid breaking jmp_offset, the extra bytes
2514 					 * are padded before the actual jmp insn, so
2515 					 * 2 bytes is subtracted from INSN_SZ_DIFF.
2516 					 *
2517 					 * If the previous pass already emits an imm8
2518 					 * jmp, there is nothing to pad (0 byte).
2519 					 *
2520 					 * If it emits an imm32 jmp (5 bytes) previously
2521 					 * and now an imm8 jmp (2 bytes), then we pad
2522 					 * (5 - 2 = 3) bytes to stop the image from
2523 					 * shrinking further.
2524 					 */
2525 					nops = INSN_SZ_DIFF - 2;
2526 					if (nops != 0 && nops != 3) {
2527 						pr_err("unexpected jump padding: %d bytes\n",
2528 						       nops);
2529 						return -EFAULT;
2530 					}
2531 					emit_nops(&prog, INSN_SZ_DIFF - 2);
2532 				}
2533 				EMIT2(0xEB, jmp_offset);
2534 			} else if (is_simm32(jmp_offset)) {
2535 				EMIT1_off32(0xE9, jmp_offset);
2536 			} else {
2537 				pr_err("jmp gen bug %llx\n", jmp_offset);
2538 				return -EFAULT;
2539 			}
2540 			break;
2541 
2542 		case BPF_JMP | BPF_EXIT:
2543 			if (seen_exit) {
2544 				jmp_offset = ctx->cleanup_addr - addrs[i];
2545 				goto emit_jmp;
2546 			}
2547 			seen_exit = true;
2548 			/* Update cleanup_addr */
2549 			ctx->cleanup_addr = proglen;
2550 			if (bpf_prog->aux->exception_boundary) {
2551 				pop_callee_regs(&prog, all_callee_regs_used);
2552 				pop_r12(&prog);
2553 			} else {
2554 				pop_callee_regs(&prog, callee_regs_used);
2555 				if (arena_vm_start)
2556 					pop_r12(&prog);
2557 			}
2558 			EMIT1(0xC9);         /* leave */
2559 			emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2560 			break;
2561 
2562 		default:
2563 			/*
2564 			 * By design x86-64 JIT should support all BPF instructions.
2565 			 * This error will be seen if new instruction was added
2566 			 * to the interpreter, but not to the JIT, or if there is
2567 			 * junk in bpf_prog.
2568 			 */
2569 			pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2570 			return -EINVAL;
2571 		}
2572 
2573 		ilen = prog - temp;
2574 		if (ilen > BPF_MAX_INSN_SIZE) {
2575 			pr_err("bpf_jit: fatal insn size error\n");
2576 			return -EFAULT;
2577 		}
2578 
2579 		if (image) {
2580 			/*
2581 			 * When populating the image, assert that:
2582 			 *
2583 			 *  i) We do not write beyond the allocated space, and
2584 			 * ii) addrs[i] did not change from the prior run, in order
2585 			 *     to validate assumptions made for computing branch
2586 			 *     displacements.
2587 			 */
2588 			if (unlikely(proglen + ilen > oldproglen ||
2589 				     proglen + ilen != addrs[i])) {
2590 				pr_err("bpf_jit: fatal error\n");
2591 				return -EFAULT;
2592 			}
2593 			memcpy(rw_image + proglen, temp, ilen);
2594 		}
2595 		proglen += ilen;
2596 		addrs[i] = proglen;
2597 		prog = temp;
2598 	}
2599 
2600 	if (image && excnt != bpf_prog->aux->num_exentries) {
2601 		pr_err("extable is not populated\n");
2602 		return -EFAULT;
2603 	}
2604 	return proglen;
2605 }
2606 
2607 static void clean_stack_garbage(const struct btf_func_model *m,
2608 				u8 **pprog, int nr_stack_slots,
2609 				int stack_size)
2610 {
2611 	int arg_size, off;
2612 	u8 *prog;
2613 
2614 	/* Generally speaking, the compiler will pass the arguments
2615 	 * on-stack with "push" instruction, which will take 8-byte
2616 	 * on the stack. In this case, there won't be garbage values
2617 	 * while we copy the arguments from origin stack frame to current
2618 	 * in BPF_DW.
2619 	 *
2620 	 * However, sometimes the compiler will only allocate 4-byte on
2621 	 * the stack for the arguments. For now, this case will only
2622 	 * happen if there is only one argument on-stack and its size
2623 	 * not more than 4 byte. In this case, there will be garbage
2624 	 * values on the upper 4-byte where we store the argument on
2625 	 * current stack frame.
2626 	 *
2627 	 * arguments on origin stack:
2628 	 *
2629 	 * stack_arg_1(4-byte) xxx(4-byte)
2630 	 *
2631 	 * what we copy:
2632 	 *
2633 	 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2634 	 *
2635 	 * and the xxx is the garbage values which we should clean here.
2636 	 */
2637 	if (nr_stack_slots != 1)
2638 		return;
2639 
2640 	/* the size of the last argument */
2641 	arg_size = m->arg_size[m->nr_args - 1];
2642 	if (arg_size <= 4) {
2643 		off = -(stack_size - 4);
2644 		prog = *pprog;
2645 		/* mov DWORD PTR [rbp + off], 0 */
2646 		if (!is_imm8(off))
2647 			EMIT2_off32(0xC7, 0x85, off);
2648 		else
2649 			EMIT3(0xC7, 0x45, off);
2650 		EMIT(0, 4);
2651 		*pprog = prog;
2652 	}
2653 }
2654 
2655 /* get the count of the regs that are used to pass arguments */
2656 static int get_nr_used_regs(const struct btf_func_model *m)
2657 {
2658 	int i, arg_regs, nr_used_regs = 0;
2659 
2660 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2661 		arg_regs = (m->arg_size[i] + 7) / 8;
2662 		if (nr_used_regs + arg_regs <= 6)
2663 			nr_used_regs += arg_regs;
2664 
2665 		if (nr_used_regs >= 6)
2666 			break;
2667 	}
2668 
2669 	return nr_used_regs;
2670 }
2671 
2672 static void save_args(const struct btf_func_model *m, u8 **prog,
2673 		      int stack_size, bool for_call_origin)
2674 {
2675 	int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2676 	int i, j;
2677 
2678 	/* Store function arguments to stack.
2679 	 * For a function that accepts two pointers the sequence will be:
2680 	 * mov QWORD PTR [rbp-0x10],rdi
2681 	 * mov QWORD PTR [rbp-0x8],rsi
2682 	 */
2683 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2684 		arg_regs = (m->arg_size[i] + 7) / 8;
2685 
2686 		/* According to the research of Yonghong, struct members
2687 		 * should be all in register or all on the stack.
2688 		 * Meanwhile, the compiler will pass the argument on regs
2689 		 * if the remaining regs can hold the argument.
2690 		 *
2691 		 * Disorder of the args can happen. For example:
2692 		 *
2693 		 * struct foo_struct {
2694 		 *     long a;
2695 		 *     int b;
2696 		 * };
2697 		 * int foo(char, char, char, char, char, struct foo_struct,
2698 		 *         char);
2699 		 *
2700 		 * the arg1-5,arg7 will be passed by regs, and arg6 will
2701 		 * by stack.
2702 		 */
2703 		if (nr_regs + arg_regs > 6) {
2704 			/* copy function arguments from origin stack frame
2705 			 * into current stack frame.
2706 			 *
2707 			 * The starting address of the arguments on-stack
2708 			 * is:
2709 			 *   rbp + 8(push rbp) +
2710 			 *   8(return addr of origin call) +
2711 			 *   8(return addr of the caller)
2712 			 * which means: rbp + 24
2713 			 */
2714 			for (j = 0; j < arg_regs; j++) {
2715 				emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2716 					 nr_stack_slots * 8 + 0x18);
2717 				emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2718 					 -stack_size);
2719 
2720 				if (!nr_stack_slots)
2721 					first_off = stack_size;
2722 				stack_size -= 8;
2723 				nr_stack_slots++;
2724 			}
2725 		} else {
2726 			/* Only copy the arguments on-stack to current
2727 			 * 'stack_size' and ignore the regs, used to
2728 			 * prepare the arguments on-stack for origin call.
2729 			 */
2730 			if (for_call_origin) {
2731 				nr_regs += arg_regs;
2732 				continue;
2733 			}
2734 
2735 			/* copy the arguments from regs into stack */
2736 			for (j = 0; j < arg_regs; j++) {
2737 				emit_stx(prog, BPF_DW, BPF_REG_FP,
2738 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2739 					 -stack_size);
2740 				stack_size -= 8;
2741 				nr_regs++;
2742 			}
2743 		}
2744 	}
2745 
2746 	clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2747 }
2748 
2749 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2750 			 int stack_size)
2751 {
2752 	int i, j, arg_regs, nr_regs = 0;
2753 
2754 	/* Restore function arguments from stack.
2755 	 * For a function that accepts two pointers the sequence will be:
2756 	 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2757 	 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2758 	 *
2759 	 * The logic here is similar to what we do in save_args()
2760 	 */
2761 	for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2762 		arg_regs = (m->arg_size[i] + 7) / 8;
2763 		if (nr_regs + arg_regs <= 6) {
2764 			for (j = 0; j < arg_regs; j++) {
2765 				emit_ldx(prog, BPF_DW,
2766 					 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2767 					 BPF_REG_FP,
2768 					 -stack_size);
2769 				stack_size -= 8;
2770 				nr_regs++;
2771 			}
2772 		} else {
2773 			stack_size -= 8 * arg_regs;
2774 		}
2775 
2776 		if (nr_regs >= 6)
2777 			break;
2778 	}
2779 }
2780 
2781 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2782 			   struct bpf_tramp_link *l, int stack_size,
2783 			   int run_ctx_off, bool save_ret,
2784 			   void *image, void *rw_image)
2785 {
2786 	u8 *prog = *pprog;
2787 	u8 *jmp_insn;
2788 	int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2789 	struct bpf_prog *p = l->link.prog;
2790 	u64 cookie = l->cookie;
2791 
2792 	/* mov rdi, cookie */
2793 	emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2794 
2795 	/* Prepare struct bpf_tramp_run_ctx.
2796 	 *
2797 	 * bpf_tramp_run_ctx is already preserved by
2798 	 * arch_prepare_bpf_trampoline().
2799 	 *
2800 	 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2801 	 */
2802 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2803 
2804 	/* arg1: mov rdi, progs[i] */
2805 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2806 	/* arg2: lea rsi, [rbp - ctx_cookie_off] */
2807 	if (!is_imm8(-run_ctx_off))
2808 		EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2809 	else
2810 		EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2811 
2812 	if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2813 		return -EINVAL;
2814 	/* remember prog start time returned by __bpf_prog_enter */
2815 	emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2816 
2817 	/* if (__bpf_prog_enter*(prog) == 0)
2818 	 *	goto skip_exec_of_prog;
2819 	 */
2820 	EMIT3(0x48, 0x85, 0xC0);  /* test rax,rax */
2821 	/* emit 2 nops that will be replaced with JE insn */
2822 	jmp_insn = prog;
2823 	emit_nops(&prog, 2);
2824 
2825 	/* arg1: lea rdi, [rbp - stack_size] */
2826 	if (!is_imm8(-stack_size))
2827 		EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2828 	else
2829 		EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2830 	/* arg2: progs[i]->insnsi for interpreter */
2831 	if (!p->jited)
2832 		emit_mov_imm64(&prog, BPF_REG_2,
2833 			       (long) p->insnsi >> 32,
2834 			       (u32) (long) p->insnsi);
2835 	/* call JITed bpf program or interpreter */
2836 	if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2837 		return -EINVAL;
2838 
2839 	/*
2840 	 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2841 	 * of the previous call which is then passed on the stack to
2842 	 * the next BPF program.
2843 	 *
2844 	 * BPF_TRAMP_FENTRY trampoline may need to return the return
2845 	 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2846 	 */
2847 	if (save_ret)
2848 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2849 
2850 	/* replace 2 nops with JE insn, since jmp target is known */
2851 	jmp_insn[0] = X86_JE;
2852 	jmp_insn[1] = prog - jmp_insn - 2;
2853 
2854 	/* arg1: mov rdi, progs[i] */
2855 	emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2856 	/* arg2: mov rsi, rbx <- start time in nsec */
2857 	emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2858 	/* arg3: lea rdx, [rbp - run_ctx_off] */
2859 	if (!is_imm8(-run_ctx_off))
2860 		EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2861 	else
2862 		EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2863 	if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2864 		return -EINVAL;
2865 
2866 	*pprog = prog;
2867 	return 0;
2868 }
2869 
2870 static void emit_align(u8 **pprog, u32 align)
2871 {
2872 	u8 *target, *prog = *pprog;
2873 
2874 	target = PTR_ALIGN(prog, align);
2875 	if (target != prog)
2876 		emit_nops(&prog, target - prog);
2877 
2878 	*pprog = prog;
2879 }
2880 
2881 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2882 {
2883 	u8 *prog = *pprog;
2884 	s64 offset;
2885 
2886 	offset = func - (ip + 2 + 4);
2887 	if (!is_simm32(offset)) {
2888 		pr_err("Target %p is out of range\n", func);
2889 		return -EINVAL;
2890 	}
2891 	EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2892 	*pprog = prog;
2893 	return 0;
2894 }
2895 
2896 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2897 		      struct bpf_tramp_links *tl, int stack_size,
2898 		      int run_ctx_off, bool save_ret,
2899 		      void *image, void *rw_image)
2900 {
2901 	int i;
2902 	u8 *prog = *pprog;
2903 
2904 	for (i = 0; i < tl->nr_links; i++) {
2905 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2906 				    run_ctx_off, save_ret, image, rw_image))
2907 			return -EINVAL;
2908 	}
2909 	*pprog = prog;
2910 	return 0;
2911 }
2912 
2913 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2914 			      struct bpf_tramp_links *tl, int stack_size,
2915 			      int run_ctx_off, u8 **branches,
2916 			      void *image, void *rw_image)
2917 {
2918 	u8 *prog = *pprog;
2919 	int i;
2920 
2921 	/* The first fmod_ret program will receive a garbage return value.
2922 	 * Set this to 0 to avoid confusing the program.
2923 	 */
2924 	emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2925 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2926 	for (i = 0; i < tl->nr_links; i++) {
2927 		if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2928 				    image, rw_image))
2929 			return -EINVAL;
2930 
2931 		/* mod_ret prog stored return value into [rbp - 8]. Emit:
2932 		 * if (*(u64 *)(rbp - 8) !=  0)
2933 		 *	goto do_fexit;
2934 		 */
2935 		/* cmp QWORD PTR [rbp - 0x8], 0x0 */
2936 		EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2937 
2938 		/* Save the location of the branch and Generate 6 nops
2939 		 * (4 bytes for an offset and 2 bytes for the jump) These nops
2940 		 * are replaced with a conditional jump once do_fexit (i.e. the
2941 		 * start of the fexit invocation) is finalized.
2942 		 */
2943 		branches[i] = prog;
2944 		emit_nops(&prog, 4 + 2);
2945 	}
2946 
2947 	*pprog = prog;
2948 	return 0;
2949 }
2950 
2951 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
2952 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack)	\
2953 	__LOAD_TCC_PTR(-round_up(stack, 8) - 8)
2954 
2955 /* Example:
2956  * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2957  * its 'struct btf_func_model' will be nr_args=2
2958  * The assembly code when eth_type_trans is executing after trampoline:
2959  *
2960  * push rbp
2961  * mov rbp, rsp
2962  * sub rsp, 16                     // space for skb and dev
2963  * push rbx                        // temp regs to pass start time
2964  * mov qword ptr [rbp - 16], rdi   // save skb pointer to stack
2965  * mov qword ptr [rbp - 8], rsi    // save dev pointer to stack
2966  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2967  * mov rbx, rax                    // remember start time in bpf stats are enabled
2968  * lea rdi, [rbp - 16]             // R1==ctx of bpf prog
2969  * call addr_of_jited_FENTRY_prog
2970  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2971  * mov rsi, rbx                    // prog start time
2972  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2973  * mov rdi, qword ptr [rbp - 16]   // restore skb pointer from stack
2974  * mov rsi, qword ptr [rbp - 8]    // restore dev pointer from stack
2975  * pop rbx
2976  * leave
2977  * ret
2978  *
2979  * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2980  * replaced with 'call generated_bpf_trampoline'. When it returns
2981  * eth_type_trans will continue executing with original skb and dev pointers.
2982  *
2983  * The assembly code when eth_type_trans is called from trampoline:
2984  *
2985  * push rbp
2986  * mov rbp, rsp
2987  * sub rsp, 24                     // space for skb, dev, return value
2988  * push rbx                        // temp regs to pass start time
2989  * mov qword ptr [rbp - 24], rdi   // save skb pointer to stack
2990  * mov qword ptr [rbp - 16], rsi   // save dev pointer to stack
2991  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
2992  * mov rbx, rax                    // remember start time if bpf stats are enabled
2993  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
2994  * call addr_of_jited_FENTRY_prog  // bpf prog can access skb and dev
2995  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
2996  * mov rsi, rbx                    // prog start time
2997  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
2998  * mov rdi, qword ptr [rbp - 24]   // restore skb pointer from stack
2999  * mov rsi, qword ptr [rbp - 16]   // restore dev pointer from stack
3000  * call eth_type_trans+5           // execute body of eth_type_trans
3001  * mov qword ptr [rbp - 8], rax    // save return value
3002  * call __bpf_prog_enter           // rcu_read_lock and preempt_disable
3003  * mov rbx, rax                    // remember start time in bpf stats are enabled
3004  * lea rdi, [rbp - 24]             // R1==ctx of bpf prog
3005  * call addr_of_jited_FEXIT_prog   // bpf prog can access skb, dev, return value
3006  * movabsq rdi, 64bit_addr_of_struct_bpf_prog  // unused if bpf stats are off
3007  * mov rsi, rbx                    // prog start time
3008  * call __bpf_prog_exit            // rcu_read_unlock, preempt_enable and stats math
3009  * mov rax, qword ptr [rbp - 8]    // restore eth_type_trans's return value
3010  * pop rbx
3011  * leave
3012  * add rsp, 8                      // skip eth_type_trans's frame
3013  * ret                             // return to its caller
3014  */
3015 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
3016 					 void *rw_image_end, void *image,
3017 					 const struct btf_func_model *m, u32 flags,
3018 					 struct bpf_tramp_links *tlinks,
3019 					 void *func_addr)
3020 {
3021 	int i, ret, nr_regs = m->nr_args, stack_size = 0;
3022 	int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
3023 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
3024 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
3025 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
3026 	void *orig_call = func_addr;
3027 	u8 **branches = NULL;
3028 	u8 *prog;
3029 	bool save_ret;
3030 
3031 	/*
3032 	 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
3033 	 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
3034 	 * because @func_addr.
3035 	 */
3036 	WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
3037 		     (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
3038 
3039 	/* extra registers for struct arguments */
3040 	for (i = 0; i < m->nr_args; i++) {
3041 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
3042 			nr_regs += (m->arg_size[i] + 7) / 8 - 1;
3043 	}
3044 
3045 	/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
3046 	 * are passed through regs, the remains are through stack.
3047 	 */
3048 	if (nr_regs > MAX_BPF_FUNC_ARGS)
3049 		return -ENOTSUPP;
3050 
3051 	/* Generated trampoline stack layout:
3052 	 *
3053 	 * RBP + 8         [ return address  ]
3054 	 * RBP + 0         [ RBP             ]
3055 	 *
3056 	 * RBP - 8         [ return value    ]  BPF_TRAMP_F_CALL_ORIG or
3057 	 *                                      BPF_TRAMP_F_RET_FENTRY_RET flags
3058 	 *
3059 	 *                 [ reg_argN        ]  always
3060 	 *                 [ ...             ]
3061 	 * RBP - regs_off  [ reg_arg1        ]  program's ctx pointer
3062 	 *
3063 	 * RBP - nregs_off [ regs count	     ]  always
3064 	 *
3065 	 * RBP - ip_off    [ traced function ]  BPF_TRAMP_F_IP_ARG flag
3066 	 *
3067 	 * RBP - rbx_off   [ rbx value       ]  always
3068 	 *
3069 	 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
3070 	 *
3071 	 *                     [ stack_argN ]  BPF_TRAMP_F_CALL_ORIG
3072 	 *                     [ ...        ]
3073 	 *                     [ stack_arg2 ]
3074 	 * RBP - arg_stack_off [ stack_arg1 ]
3075 	 * RSP                 [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
3076 	 */
3077 
3078 	/* room for return value of orig_call or fentry prog */
3079 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
3080 	if (save_ret)
3081 		stack_size += 8;
3082 
3083 	stack_size += nr_regs * 8;
3084 	regs_off = stack_size;
3085 
3086 	/* regs count  */
3087 	stack_size += 8;
3088 	nregs_off = stack_size;
3089 
3090 	if (flags & BPF_TRAMP_F_IP_ARG)
3091 		stack_size += 8; /* room for IP address argument */
3092 
3093 	ip_off = stack_size;
3094 
3095 	stack_size += 8;
3096 	rbx_off = stack_size;
3097 
3098 	stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
3099 	run_ctx_off = stack_size;
3100 
3101 	if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
3102 		/* the space that used to pass arguments on-stack */
3103 		stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
3104 		/* make sure the stack pointer is 16-byte aligned if we
3105 		 * need pass arguments on stack, which means
3106 		 *  [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
3107 		 * should be 16-byte aligned. Following code depend on
3108 		 * that stack_size is already 8-byte aligned.
3109 		 */
3110 		stack_size += (stack_size % 16) ? 0 : 8;
3111 	}
3112 
3113 	arg_stack_off = stack_size;
3114 
3115 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3116 		/* skip patched call instruction and point orig_call to actual
3117 		 * body of the kernel function.
3118 		 */
3119 		if (is_endbr(orig_call))
3120 			orig_call += ENDBR_INSN_SIZE;
3121 		orig_call += X86_PATCH_SIZE;
3122 	}
3123 
3124 	prog = rw_image;
3125 
3126 	if (flags & BPF_TRAMP_F_INDIRECT) {
3127 		/*
3128 		 * Indirect call for bpf_struct_ops
3129 		 */
3130 		emit_cfi(&prog, image,
3131 			 cfi_get_func_hash(func_addr),
3132 			 cfi_get_func_arity(func_addr));
3133 	} else {
3134 		/*
3135 		 * Direct-call fentry stub, as such it needs accounting for the
3136 		 * __fentry__ call.
3137 		 */
3138 		x86_call_depth_emit_accounting(&prog, NULL, image);
3139 	}
3140 	EMIT1(0x55);		 /* push rbp */
3141 	EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
3142 	if (!is_imm8(stack_size)) {
3143 		/* sub rsp, stack_size */
3144 		EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
3145 	} else {
3146 		/* sub rsp, stack_size */
3147 		EMIT4(0x48, 0x83, 0xEC, stack_size);
3148 	}
3149 	if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3150 		EMIT1(0x50);		/* push rax */
3151 	/* mov QWORD PTR [rbp - rbx_off], rbx */
3152 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3153 
3154 	/* Store number of argument registers of the traced function:
3155 	 *   mov rax, nr_regs
3156 	 *   mov QWORD PTR [rbp - nregs_off], rax
3157 	 */
3158 	emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3159 	emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3160 
3161 	if (flags & BPF_TRAMP_F_IP_ARG) {
3162 		/* Store IP address of the traced function:
3163 		 * movabsq rax, func_addr
3164 		 * mov QWORD PTR [rbp - ip_off], rax
3165 		 */
3166 		emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3167 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3168 	}
3169 
3170 	save_args(m, &prog, regs_off, false);
3171 
3172 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3173 		/* arg1: mov rdi, im */
3174 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3175 		if (emit_rsb_call(&prog, __bpf_tramp_enter,
3176 				  image + (prog - (u8 *)rw_image))) {
3177 			ret = -EINVAL;
3178 			goto cleanup;
3179 		}
3180 	}
3181 
3182 	if (fentry->nr_links) {
3183 		if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3184 			       flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3185 			return -EINVAL;
3186 	}
3187 
3188 	if (fmod_ret->nr_links) {
3189 		branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3190 				   GFP_KERNEL);
3191 		if (!branches)
3192 			return -ENOMEM;
3193 
3194 		if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3195 				       run_ctx_off, branches, image, rw_image)) {
3196 			ret = -EINVAL;
3197 			goto cleanup;
3198 		}
3199 	}
3200 
3201 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3202 		restore_regs(m, &prog, regs_off);
3203 		save_args(m, &prog, arg_stack_off, true);
3204 
3205 		if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3206 			/* Before calling the original function, load the
3207 			 * tail_call_cnt_ptr from stack to rax.
3208 			 */
3209 			LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3210 		}
3211 
3212 		if (flags & BPF_TRAMP_F_ORIG_STACK) {
3213 			emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3214 			EMIT2(0xff, 0xd3); /* call *rbx */
3215 		} else {
3216 			/* call original function */
3217 			if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3218 				ret = -EINVAL;
3219 				goto cleanup;
3220 			}
3221 		}
3222 		/* remember return value in a stack for bpf prog to access */
3223 		emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3224 		im->ip_after_call = image + (prog - (u8 *)rw_image);
3225 		emit_nops(&prog, X86_PATCH_SIZE);
3226 	}
3227 
3228 	if (fmod_ret->nr_links) {
3229 		/* From Intel 64 and IA-32 Architectures Optimization
3230 		 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3231 		 * Coding Rule 11: All branch targets should be 16-byte
3232 		 * aligned.
3233 		 */
3234 		emit_align(&prog, 16);
3235 		/* Update the branches saved in invoke_bpf_mod_ret with the
3236 		 * aligned address of do_fexit.
3237 		 */
3238 		for (i = 0; i < fmod_ret->nr_links; i++) {
3239 			emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3240 					    image + (branches[i] - (u8 *)rw_image), X86_JNE);
3241 		}
3242 	}
3243 
3244 	if (fexit->nr_links) {
3245 		if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3246 			       false, image, rw_image)) {
3247 			ret = -EINVAL;
3248 			goto cleanup;
3249 		}
3250 	}
3251 
3252 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
3253 		restore_regs(m, &prog, regs_off);
3254 
3255 	/* This needs to be done regardless. If there were fmod_ret programs,
3256 	 * the return value is only updated on the stack and still needs to be
3257 	 * restored to R0.
3258 	 */
3259 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
3260 		im->ip_epilogue = image + (prog - (u8 *)rw_image);
3261 		/* arg1: mov rdi, im */
3262 		emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3263 		if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3264 			ret = -EINVAL;
3265 			goto cleanup;
3266 		}
3267 	} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3268 		/* Before running the original function, load the
3269 		 * tail_call_cnt_ptr from stack to rax.
3270 		 */
3271 		LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3272 	}
3273 
3274 	/* restore return value of orig_call or fentry prog back into RAX */
3275 	if (save_ret)
3276 		emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3277 
3278 	emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3279 	EMIT1(0xC9); /* leave */
3280 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3281 		/* skip our return address and return to parent */
3282 		EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3283 	}
3284 	emit_return(&prog, image + (prog - (u8 *)rw_image));
3285 	/* Make sure the trampoline generation logic doesn't overflow */
3286 	if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3287 		ret = -EFAULT;
3288 		goto cleanup;
3289 	}
3290 	ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3291 
3292 cleanup:
3293 	kfree(branches);
3294 	return ret;
3295 }
3296 
3297 void *arch_alloc_bpf_trampoline(unsigned int size)
3298 {
3299 	return bpf_prog_pack_alloc(size, jit_fill_hole);
3300 }
3301 
3302 void arch_free_bpf_trampoline(void *image, unsigned int size)
3303 {
3304 	bpf_prog_pack_free(image, size);
3305 }
3306 
3307 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3308 {
3309 	return 0;
3310 }
3311 
3312 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3313 				const struct btf_func_model *m, u32 flags,
3314 				struct bpf_tramp_links *tlinks,
3315 				void *func_addr)
3316 {
3317 	void *rw_image, *tmp;
3318 	int ret;
3319 	u32 size = image_end - image;
3320 
3321 	/* rw_image doesn't need to be in module memory range, so we can
3322 	 * use kvmalloc.
3323 	 */
3324 	rw_image = kvmalloc(size, GFP_KERNEL);
3325 	if (!rw_image)
3326 		return -ENOMEM;
3327 
3328 	ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3329 					    flags, tlinks, func_addr);
3330 	if (ret < 0)
3331 		goto out;
3332 
3333 	tmp = bpf_arch_text_copy(image, rw_image, size);
3334 	if (IS_ERR(tmp))
3335 		ret = PTR_ERR(tmp);
3336 out:
3337 	kvfree(rw_image);
3338 	return ret;
3339 }
3340 
3341 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3342 			     struct bpf_tramp_links *tlinks, void *func_addr)
3343 {
3344 	struct bpf_tramp_image im;
3345 	void *image;
3346 	int ret;
3347 
3348 	/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3349 	 * This will NOT cause fragmentation in direct map, as we do not
3350 	 * call set_memory_*() on this buffer.
3351 	 *
3352 	 * We cannot use kvmalloc here, because we need image to be in
3353 	 * module memory range.
3354 	 */
3355 	image = bpf_jit_alloc_exec(PAGE_SIZE);
3356 	if (!image)
3357 		return -ENOMEM;
3358 
3359 	ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3360 					    m, flags, tlinks, func_addr);
3361 	bpf_jit_free_exec(image);
3362 	return ret;
3363 }
3364 
3365 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3366 {
3367 	u8 *jg_reloc, *prog = *pprog;
3368 	int pivot, err, jg_bytes = 1;
3369 	s64 jg_offset;
3370 
3371 	if (a == b) {
3372 		/* Leaf node of recursion, i.e. not a range of indices
3373 		 * anymore.
3374 		 */
3375 		EMIT1(add_1mod(0x48, BPF_REG_3));	/* cmp rdx,func */
3376 		if (!is_simm32(progs[a]))
3377 			return -1;
3378 		EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3379 			    progs[a]);
3380 		err = emit_cond_near_jump(&prog,	/* je func */
3381 					  (void *)progs[a], image + (prog - buf),
3382 					  X86_JE);
3383 		if (err)
3384 			return err;
3385 
3386 		emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3387 
3388 		*pprog = prog;
3389 		return 0;
3390 	}
3391 
3392 	/* Not a leaf node, so we pivot, and recursively descend into
3393 	 * the lower and upper ranges.
3394 	 */
3395 	pivot = (b - a) / 2;
3396 	EMIT1(add_1mod(0x48, BPF_REG_3));		/* cmp rdx,func */
3397 	if (!is_simm32(progs[a + pivot]))
3398 		return -1;
3399 	EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3400 
3401 	if (pivot > 2) {				/* jg upper_part */
3402 		/* Require near jump. */
3403 		jg_bytes = 4;
3404 		EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3405 	} else {
3406 		EMIT2(X86_JG, 0);
3407 	}
3408 	jg_reloc = prog;
3409 
3410 	err = emit_bpf_dispatcher(&prog, a, a + pivot,	/* emit lower_part */
3411 				  progs, image, buf);
3412 	if (err)
3413 		return err;
3414 
3415 	/* From Intel 64 and IA-32 Architectures Optimization
3416 	 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3417 	 * Coding Rule 11: All branch targets should be 16-byte
3418 	 * aligned.
3419 	 */
3420 	emit_align(&prog, 16);
3421 	jg_offset = prog - jg_reloc;
3422 	emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3423 
3424 	err = emit_bpf_dispatcher(&prog, a + pivot + 1,	/* emit upper_part */
3425 				  b, progs, image, buf);
3426 	if (err)
3427 		return err;
3428 
3429 	*pprog = prog;
3430 	return 0;
3431 }
3432 
3433 static int cmp_ips(const void *a, const void *b)
3434 {
3435 	const s64 *ipa = a;
3436 	const s64 *ipb = b;
3437 
3438 	if (*ipa > *ipb)
3439 		return 1;
3440 	if (*ipa < *ipb)
3441 		return -1;
3442 	return 0;
3443 }
3444 
3445 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3446 {
3447 	u8 *prog = buf;
3448 
3449 	sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3450 	return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3451 }
3452 
3453 static const char *bpf_get_prog_name(struct bpf_prog *prog)
3454 {
3455 	if (prog->aux->ksym.prog)
3456 		return prog->aux->ksym.name;
3457 	return prog->aux->name;
3458 }
3459 
3460 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size)
3461 {
3462 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3463 	u64 *stack_ptr;
3464 
3465 	for_each_possible_cpu(cpu) {
3466 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3467 		stack_ptr[0] = PRIV_STACK_GUARD_VAL;
3468 		stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL;
3469 	}
3470 }
3471 
3472 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size,
3473 				   struct bpf_prog *prog)
3474 {
3475 	int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3;
3476 	u64 *stack_ptr;
3477 
3478 	for_each_possible_cpu(cpu) {
3479 		stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu);
3480 		if (stack_ptr[0] != PRIV_STACK_GUARD_VAL ||
3481 		    stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) {
3482 			pr_err("BPF private stack overflow/underflow detected for prog %sx\n",
3483 			       bpf_get_prog_name(prog));
3484 			break;
3485 		}
3486 	}
3487 }
3488 
3489 struct x64_jit_data {
3490 	struct bpf_binary_header *rw_header;
3491 	struct bpf_binary_header *header;
3492 	int *addrs;
3493 	u8 *image;
3494 	int proglen;
3495 	struct jit_context ctx;
3496 };
3497 
3498 #define MAX_PASSES 20
3499 #define PADDING_PASSES (MAX_PASSES - 5)
3500 
3501 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3502 {
3503 	struct bpf_binary_header *rw_header = NULL;
3504 	struct bpf_binary_header *header = NULL;
3505 	struct bpf_prog *tmp, *orig_prog = prog;
3506 	void __percpu *priv_stack_ptr = NULL;
3507 	struct x64_jit_data *jit_data;
3508 	int priv_stack_alloc_sz;
3509 	int proglen, oldproglen = 0;
3510 	struct jit_context ctx = {};
3511 	bool tmp_blinded = false;
3512 	bool extra_pass = false;
3513 	bool padding = false;
3514 	u8 *rw_image = NULL;
3515 	u8 *image = NULL;
3516 	int *addrs;
3517 	int pass;
3518 	int i;
3519 
3520 	if (!prog->jit_requested)
3521 		return orig_prog;
3522 
3523 	tmp = bpf_jit_blind_constants(prog);
3524 	/*
3525 	 * If blinding was requested and we failed during blinding,
3526 	 * we must fall back to the interpreter.
3527 	 */
3528 	if (IS_ERR(tmp))
3529 		return orig_prog;
3530 	if (tmp != prog) {
3531 		tmp_blinded = true;
3532 		prog = tmp;
3533 	}
3534 
3535 	jit_data = prog->aux->jit_data;
3536 	if (!jit_data) {
3537 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3538 		if (!jit_data) {
3539 			prog = orig_prog;
3540 			goto out;
3541 		}
3542 		prog->aux->jit_data = jit_data;
3543 	}
3544 	priv_stack_ptr = prog->aux->priv_stack_ptr;
3545 	if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) {
3546 		/* Allocate actual private stack size with verifier-calculated
3547 		 * stack size plus two memory guards to protect overflow and
3548 		 * underflow.
3549 		 */
3550 		priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3551 				      2 * PRIV_STACK_GUARD_SZ;
3552 		priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL);
3553 		if (!priv_stack_ptr) {
3554 			prog = orig_prog;
3555 			goto out_priv_stack;
3556 		}
3557 
3558 		priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz);
3559 		prog->aux->priv_stack_ptr = priv_stack_ptr;
3560 	}
3561 	addrs = jit_data->addrs;
3562 	if (addrs) {
3563 		ctx = jit_data->ctx;
3564 		oldproglen = jit_data->proglen;
3565 		image = jit_data->image;
3566 		header = jit_data->header;
3567 		rw_header = jit_data->rw_header;
3568 		rw_image = (void *)rw_header + ((void *)image - (void *)header);
3569 		extra_pass = true;
3570 		padding = true;
3571 		goto skip_init_addrs;
3572 	}
3573 	addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3574 	if (!addrs) {
3575 		prog = orig_prog;
3576 		goto out_addrs;
3577 	}
3578 
3579 	/*
3580 	 * Before first pass, make a rough estimation of addrs[]
3581 	 * each BPF instruction is translated to less than 64 bytes
3582 	 */
3583 	for (proglen = 0, i = 0; i <= prog->len; i++) {
3584 		proglen += 64;
3585 		addrs[i] = proglen;
3586 	}
3587 	ctx.cleanup_addr = proglen;
3588 skip_init_addrs:
3589 
3590 	/*
3591 	 * JITed image shrinks with every pass and the loop iterates
3592 	 * until the image stops shrinking. Very large BPF programs
3593 	 * may converge on the last pass. In such case do one more
3594 	 * pass to emit the final image.
3595 	 */
3596 	for (pass = 0; pass < MAX_PASSES || image; pass++) {
3597 		if (!padding && pass >= PADDING_PASSES)
3598 			padding = true;
3599 		proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3600 		if (proglen <= 0) {
3601 out_image:
3602 			image = NULL;
3603 			if (header) {
3604 				bpf_arch_text_copy(&header->size, &rw_header->size,
3605 						   sizeof(rw_header->size));
3606 				bpf_jit_binary_pack_free(header, rw_header);
3607 			}
3608 			/* Fall back to interpreter mode */
3609 			prog = orig_prog;
3610 			if (extra_pass) {
3611 				prog->bpf_func = NULL;
3612 				prog->jited = 0;
3613 				prog->jited_len = 0;
3614 			}
3615 			goto out_addrs;
3616 		}
3617 		if (image) {
3618 			if (proglen != oldproglen) {
3619 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3620 				       proglen, oldproglen);
3621 				goto out_image;
3622 			}
3623 			break;
3624 		}
3625 		if (proglen == oldproglen) {
3626 			/*
3627 			 * The number of entries in extable is the number of BPF_LDX
3628 			 * insns that access kernel memory via "pointer to BTF type".
3629 			 * The verifier changed their opcode from LDX|MEM|size
3630 			 * to LDX|PROBE_MEM|size to make JITing easier.
3631 			 */
3632 			u32 align = __alignof__(struct exception_table_entry);
3633 			u32 extable_size = prog->aux->num_exentries *
3634 				sizeof(struct exception_table_entry);
3635 
3636 			/* allocate module memory for x86 insns and extable */
3637 			header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3638 							   &image, align, &rw_header, &rw_image,
3639 							   jit_fill_hole);
3640 			if (!header) {
3641 				prog = orig_prog;
3642 				goto out_addrs;
3643 			}
3644 			prog->aux->extable = (void *) image + roundup(proglen, align);
3645 		}
3646 		oldproglen = proglen;
3647 		cond_resched();
3648 	}
3649 
3650 	if (bpf_jit_enable > 1)
3651 		bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3652 
3653 	if (image) {
3654 		if (!prog->is_func || extra_pass) {
3655 			/*
3656 			 * bpf_jit_binary_pack_finalize fails in two scenarios:
3657 			 *   1) header is not pointing to proper module memory;
3658 			 *   2) the arch doesn't support bpf_arch_text_copy().
3659 			 *
3660 			 * Both cases are serious bugs and justify WARN_ON.
3661 			 */
3662 			if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3663 				/* header has been freed */
3664 				header = NULL;
3665 				goto out_image;
3666 			}
3667 
3668 			bpf_tail_call_direct_fixup(prog);
3669 		} else {
3670 			jit_data->addrs = addrs;
3671 			jit_data->ctx = ctx;
3672 			jit_data->proglen = proglen;
3673 			jit_data->image = image;
3674 			jit_data->header = header;
3675 			jit_data->rw_header = rw_header;
3676 		}
3677 		/*
3678 		 * ctx.prog_offset is used when CFI preambles put code *before*
3679 		 * the function. See emit_cfi(). For FineIBT specifically this code
3680 		 * can also be executed and bpf_prog_kallsyms_add() will
3681 		 * generate an additional symbol to cover this, hence also
3682 		 * decrement proglen.
3683 		 */
3684 		prog->bpf_func = (void *)image + cfi_get_offset();
3685 		prog->jited = 1;
3686 		prog->jited_len = proglen - cfi_get_offset();
3687 	} else {
3688 		prog = orig_prog;
3689 	}
3690 
3691 	if (!image || !prog->is_func || extra_pass) {
3692 		if (image)
3693 			bpf_prog_fill_jited_linfo(prog, addrs + 1);
3694 out_addrs:
3695 		kvfree(addrs);
3696 		if (!image && priv_stack_ptr) {
3697 			free_percpu(priv_stack_ptr);
3698 			prog->aux->priv_stack_ptr = NULL;
3699 		}
3700 out_priv_stack:
3701 		kfree(jit_data);
3702 		prog->aux->jit_data = NULL;
3703 	}
3704 out:
3705 	if (tmp_blinded)
3706 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
3707 					   tmp : orig_prog);
3708 	return prog;
3709 }
3710 
3711 bool bpf_jit_supports_kfunc_call(void)
3712 {
3713 	return true;
3714 }
3715 
3716 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3717 {
3718 	if (text_poke_copy(dst, src, len) == NULL)
3719 		return ERR_PTR(-EINVAL);
3720 	return dst;
3721 }
3722 
3723 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3724 bool bpf_jit_supports_subprog_tailcalls(void)
3725 {
3726 	return true;
3727 }
3728 
3729 bool bpf_jit_supports_percpu_insn(void)
3730 {
3731 	return true;
3732 }
3733 
3734 void bpf_jit_free(struct bpf_prog *prog)
3735 {
3736 	if (prog->jited) {
3737 		struct x64_jit_data *jit_data = prog->aux->jit_data;
3738 		struct bpf_binary_header *hdr;
3739 		void __percpu *priv_stack_ptr;
3740 		int priv_stack_alloc_sz;
3741 
3742 		/*
3743 		 * If we fail the final pass of JIT (from jit_subprogs),
3744 		 * the program may not be finalized yet. Call finalize here
3745 		 * before freeing it.
3746 		 */
3747 		if (jit_data) {
3748 			bpf_jit_binary_pack_finalize(jit_data->header,
3749 						     jit_data->rw_header);
3750 			kvfree(jit_data->addrs);
3751 			kfree(jit_data);
3752 		}
3753 		prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3754 		hdr = bpf_jit_binary_pack_hdr(prog);
3755 		bpf_jit_binary_pack_free(hdr, NULL);
3756 		priv_stack_ptr = prog->aux->priv_stack_ptr;
3757 		if (priv_stack_ptr) {
3758 			priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) +
3759 					      2 * PRIV_STACK_GUARD_SZ;
3760 			priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog);
3761 			free_percpu(prog->aux->priv_stack_ptr);
3762 		}
3763 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3764 	}
3765 
3766 	bpf_prog_unlock_free(prog);
3767 }
3768 
3769 bool bpf_jit_supports_exceptions(void)
3770 {
3771 	/* We unwind through both kernel frames (starting from within bpf_throw
3772 	 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3773 	 * to walk kernel frames and reach BPF frames in the stack trace.
3774 	 */
3775 	return IS_ENABLED(CONFIG_UNWINDER_ORC);
3776 }
3777 
3778 bool bpf_jit_supports_private_stack(void)
3779 {
3780 	return true;
3781 }
3782 
3783 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3784 {
3785 #if defined(CONFIG_UNWINDER_ORC)
3786 	struct unwind_state state;
3787 	unsigned long addr;
3788 
3789 	for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3790 	     unwind_next_frame(&state)) {
3791 		addr = unwind_get_return_address(&state);
3792 		if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3793 			break;
3794 	}
3795 	return;
3796 #endif
3797 	WARN(1, "verification of programs using bpf_throw should have failed\n");
3798 }
3799 
3800 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3801 			       struct bpf_prog *new, struct bpf_prog *old)
3802 {
3803 	u8 *old_addr, *new_addr, *old_bypass_addr;
3804 	int ret;
3805 
3806 	old_bypass_addr = old ? NULL : poke->bypass_addr;
3807 	old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3808 	new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3809 
3810 	/*
3811 	 * On program loading or teardown, the program's kallsym entry
3812 	 * might not be in place, so we use __bpf_arch_text_poke to skip
3813 	 * the kallsyms check.
3814 	 */
3815 	if (new) {
3816 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3817 					   BPF_MOD_JUMP,
3818 					   old_addr, new_addr);
3819 		BUG_ON(ret < 0);
3820 		if (!old) {
3821 			ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3822 						   BPF_MOD_JUMP,
3823 						   poke->bypass_addr,
3824 						   NULL);
3825 			BUG_ON(ret < 0);
3826 		}
3827 	} else {
3828 		ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3829 					   BPF_MOD_JUMP,
3830 					   old_bypass_addr,
3831 					   poke->bypass_addr);
3832 		BUG_ON(ret < 0);
3833 		/* let other CPUs finish the execution of program
3834 		 * so that it will not possible to expose them
3835 		 * to invalid nop, stack unwind, nop state
3836 		 */
3837 		if (!ret)
3838 			synchronize_rcu();
3839 		ret = __bpf_arch_text_poke(poke->tailcall_target,
3840 					   BPF_MOD_JUMP,
3841 					   old_addr, NULL);
3842 		BUG_ON(ret < 0);
3843 	}
3844 }
3845 
3846 bool bpf_jit_supports_arena(void)
3847 {
3848 	return true;
3849 }
3850 
3851 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3852 {
3853 	if (!in_arena)
3854 		return true;
3855 	switch (insn->code) {
3856 	case BPF_STX | BPF_ATOMIC | BPF_W:
3857 	case BPF_STX | BPF_ATOMIC | BPF_DW:
3858 		if (insn->imm == (BPF_AND | BPF_FETCH) ||
3859 		    insn->imm == (BPF_OR | BPF_FETCH) ||
3860 		    insn->imm == (BPF_XOR | BPF_FETCH))
3861 			return false;
3862 	}
3863 	return true;
3864 }
3865 
3866 bool bpf_jit_supports_ptr_xchg(void)
3867 {
3868 	return true;
3869 }
3870 
3871 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3872 u64 bpf_arch_uaddress_limit(void)
3873 {
3874 	return 0;
3875 }
3876 
3877 bool bpf_jit_supports_timed_may_goto(void)
3878 {
3879 	return true;
3880 }
3881