1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler 4 * 5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) 6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 7 */ 8 #include <linux/netdevice.h> 9 #include <linux/filter.h> 10 #include <linux/if_vlan.h> 11 #include <linux/bitfield.h> 12 #include <linux/bpf.h> 13 #include <linux/memory.h> 14 #include <linux/sort.h> 15 #include <asm/extable.h> 16 #include <asm/ftrace.h> 17 #include <asm/set_memory.h> 18 #include <asm/nospec-branch.h> 19 #include <asm/text-patching.h> 20 #include <asm/unwind.h> 21 #include <asm/cfi.h> 22 23 static bool all_callee_regs_used[4] = {true, true, true, true}; 24 25 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) 26 { 27 if (len == 1) 28 *ptr = bytes; 29 else if (len == 2) 30 *(u16 *)ptr = bytes; 31 else { 32 *(u32 *)ptr = bytes; 33 barrier(); 34 } 35 return ptr + len; 36 } 37 38 #define EMIT(bytes, len) \ 39 do { prog = emit_code(prog, bytes, len); } while (0) 40 41 #define EMIT1(b1) EMIT(b1, 1) 42 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) 43 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) 44 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) 45 #define EMIT5(b1, b2, b3, b4, b5) \ 46 do { EMIT1(b1); EMIT4(b2, b3, b4, b5); } while (0) 47 48 #define EMIT1_off32(b1, off) \ 49 do { EMIT1(b1); EMIT(off, 4); } while (0) 50 #define EMIT2_off32(b1, b2, off) \ 51 do { EMIT2(b1, b2); EMIT(off, 4); } while (0) 52 #define EMIT3_off32(b1, b2, b3, off) \ 53 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) 54 #define EMIT4_off32(b1, b2, b3, b4, off) \ 55 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) 56 57 #ifdef CONFIG_X86_KERNEL_IBT 58 #define EMIT_ENDBR() EMIT(gen_endbr(), 4) 59 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4) 60 #else 61 #define EMIT_ENDBR() 62 #define EMIT_ENDBR_POISON() 63 #endif 64 65 static bool is_imm8(int value) 66 { 67 return value <= 127 && value >= -128; 68 } 69 70 /* 71 * Let us limit the positive offset to be <= 123. 72 * This is to ensure eventual jit convergence For the following patterns: 73 * ... 74 * pass4, final_proglen=4391: 75 * ... 76 * 20e: 48 85 ff test rdi,rdi 77 * 211: 74 7d je 0x290 78 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 79 * ... 80 * 289: 48 85 ff test rdi,rdi 81 * 28c: 74 17 je 0x2a5 82 * 28e: e9 7f ff ff ff jmp 0x212 83 * 293: bf 03 00 00 00 mov edi,0x3 84 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125) 85 * and insn at 0x28e is 5-byte jmp insn with offset -129. 86 * 87 * pass5, final_proglen=4392: 88 * ... 89 * 20e: 48 85 ff test rdi,rdi 90 * 211: 0f 84 80 00 00 00 je 0x297 91 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0] 92 * ... 93 * 28d: 48 85 ff test rdi,rdi 94 * 290: 74 1a je 0x2ac 95 * 292: eb 84 jmp 0x218 96 * 294: bf 03 00 00 00 mov edi,0x3 97 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset 98 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80). 99 * At the same time, insn at 0x292 is a 2-byte insn since its offset is 100 * -124. 101 * 102 * pass6 will repeat the same code as in pass4 and this will prevent 103 * eventual convergence. 104 * 105 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes) 106 * cycle in the above. In the above example je offset <= 0x7c should work. 107 * 108 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence 109 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should 110 * avoid no convergence issue. 111 * 112 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn 113 * to maximum 123 (0x7b). This way, the jit pass can eventually converge. 114 */ 115 static bool is_imm8_jmp_offset(int value) 116 { 117 return value <= 123 && value >= -128; 118 } 119 120 static bool is_simm32(s64 value) 121 { 122 return value == (s64)(s32)value; 123 } 124 125 static bool is_uimm32(u64 value) 126 { 127 return value == (u64)(u32)value; 128 } 129 130 /* mov dst, src */ 131 #define EMIT_mov(DST, SRC) \ 132 do { \ 133 if (DST != SRC) \ 134 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ 135 } while (0) 136 137 static int bpf_size_to_x86_bytes(int bpf_size) 138 { 139 if (bpf_size == BPF_W) 140 return 4; 141 else if (bpf_size == BPF_H) 142 return 2; 143 else if (bpf_size == BPF_B) 144 return 1; 145 else if (bpf_size == BPF_DW) 146 return 4; /* imm32 */ 147 else 148 return 0; 149 } 150 151 /* 152 * List of x86 cond jumps opcodes (. + s8) 153 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) 154 */ 155 #define X86_JB 0x72 156 #define X86_JAE 0x73 157 #define X86_JE 0x74 158 #define X86_JNE 0x75 159 #define X86_JBE 0x76 160 #define X86_JA 0x77 161 #define X86_JL 0x7C 162 #define X86_JGE 0x7D 163 #define X86_JLE 0x7E 164 #define X86_JG 0x7F 165 166 /* Pick a register outside of BPF range for JIT internal work */ 167 #define AUX_REG (MAX_BPF_JIT_REG + 1) 168 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) 169 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3) 170 171 /* 172 * The following table maps BPF registers to x86-64 registers. 173 * 174 * x86-64 register R12 is unused, since if used as base address 175 * register in load/store instructions, it always needs an 176 * extra byte of encoding and is callee saved. 177 * 178 * x86-64 register R9 is not used by BPF programs, but can be used by BPF 179 * trampoline. x86-64 register R10 is used for blinding (if enabled). 180 */ 181 static const int reg2hex[] = { 182 [BPF_REG_0] = 0, /* RAX */ 183 [BPF_REG_1] = 7, /* RDI */ 184 [BPF_REG_2] = 6, /* RSI */ 185 [BPF_REG_3] = 2, /* RDX */ 186 [BPF_REG_4] = 1, /* RCX */ 187 [BPF_REG_5] = 0, /* R8 */ 188 [BPF_REG_6] = 3, /* RBX callee saved */ 189 [BPF_REG_7] = 5, /* R13 callee saved */ 190 [BPF_REG_8] = 6, /* R14 callee saved */ 191 [BPF_REG_9] = 7, /* R15 callee saved */ 192 [BPF_REG_FP] = 5, /* RBP readonly */ 193 [BPF_REG_AX] = 2, /* R10 temp register */ 194 [AUX_REG] = 3, /* R11 temp register */ 195 [X86_REG_R9] = 1, /* R9 register, 6th function argument */ 196 [X86_REG_R12] = 4, /* R12 callee saved */ 197 }; 198 199 static const int reg2pt_regs[] = { 200 [BPF_REG_0] = offsetof(struct pt_regs, ax), 201 [BPF_REG_1] = offsetof(struct pt_regs, di), 202 [BPF_REG_2] = offsetof(struct pt_regs, si), 203 [BPF_REG_3] = offsetof(struct pt_regs, dx), 204 [BPF_REG_4] = offsetof(struct pt_regs, cx), 205 [BPF_REG_5] = offsetof(struct pt_regs, r8), 206 [BPF_REG_6] = offsetof(struct pt_regs, bx), 207 [BPF_REG_7] = offsetof(struct pt_regs, r13), 208 [BPF_REG_8] = offsetof(struct pt_regs, r14), 209 [BPF_REG_9] = offsetof(struct pt_regs, r15), 210 }; 211 212 /* 213 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 214 * which need extra byte of encoding. 215 * rax,rcx,...,rbp have simpler encoding 216 */ 217 static bool is_ereg(u32 reg) 218 { 219 return (1 << reg) & (BIT(BPF_REG_5) | 220 BIT(AUX_REG) | 221 BIT(BPF_REG_7) | 222 BIT(BPF_REG_8) | 223 BIT(BPF_REG_9) | 224 BIT(X86_REG_R9) | 225 BIT(X86_REG_R12) | 226 BIT(BPF_REG_AX)); 227 } 228 229 /* 230 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 231 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte 232 * of encoding. al,cl,dl,bl have simpler encoding. 233 */ 234 static bool is_ereg_8l(u32 reg) 235 { 236 return is_ereg(reg) || 237 (1 << reg) & (BIT(BPF_REG_1) | 238 BIT(BPF_REG_2) | 239 BIT(BPF_REG_FP)); 240 } 241 242 static bool is_axreg(u32 reg) 243 { 244 return reg == BPF_REG_0; 245 } 246 247 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ 248 static u8 add_1mod(u8 byte, u32 reg) 249 { 250 if (is_ereg(reg)) 251 byte |= 1; 252 return byte; 253 } 254 255 static u8 add_2mod(u8 byte, u32 r1, u32 r2) 256 { 257 if (is_ereg(r1)) 258 byte |= 1; 259 if (is_ereg(r2)) 260 byte |= 4; 261 return byte; 262 } 263 264 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index) 265 { 266 if (is_ereg(r1)) 267 byte |= 1; 268 if (is_ereg(index)) 269 byte |= 2; 270 if (is_ereg(r2)) 271 byte |= 4; 272 return byte; 273 } 274 275 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ 276 static u8 add_1reg(u8 byte, u32 dst_reg) 277 { 278 return byte + reg2hex[dst_reg]; 279 } 280 281 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ 282 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) 283 { 284 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); 285 } 286 287 /* Some 1-byte opcodes for binary ALU operations */ 288 static u8 simple_alu_opcodes[] = { 289 [BPF_ADD] = 0x01, 290 [BPF_SUB] = 0x29, 291 [BPF_AND] = 0x21, 292 [BPF_OR] = 0x09, 293 [BPF_XOR] = 0x31, 294 [BPF_LSH] = 0xE0, 295 [BPF_RSH] = 0xE8, 296 [BPF_ARSH] = 0xF8, 297 }; 298 299 static void jit_fill_hole(void *area, unsigned int size) 300 { 301 /* Fill whole space with INT3 instructions */ 302 memset(area, 0xcc, size); 303 } 304 305 int bpf_arch_text_invalidate(void *dst, size_t len) 306 { 307 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len)); 308 } 309 310 struct jit_context { 311 int cleanup_addr; /* Epilogue code offset */ 312 313 /* 314 * Program specific offsets of labels in the code; these rely on the 315 * JIT doing at least 2 passes, recording the position on the first 316 * pass, only to generate the correct offset on the second pass. 317 */ 318 int tail_call_direct_label; 319 int tail_call_indirect_label; 320 }; 321 322 /* Maximum number of bytes emitted while JITing one eBPF insn */ 323 #define BPF_MAX_INSN_SIZE 128 324 #define BPF_INSN_SAFETY 64 325 326 /* Number of bytes emit_patch() needs to generate instructions */ 327 #define X86_PATCH_SIZE 5 328 /* Number of bytes that will be skipped on tailcall */ 329 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE) 330 331 static void push_r9(u8 **pprog) 332 { 333 u8 *prog = *pprog; 334 335 EMIT2(0x41, 0x51); /* push r9 */ 336 *pprog = prog; 337 } 338 339 static void pop_r9(u8 **pprog) 340 { 341 u8 *prog = *pprog; 342 343 EMIT2(0x41, 0x59); /* pop r9 */ 344 *pprog = prog; 345 } 346 347 static void push_r12(u8 **pprog) 348 { 349 u8 *prog = *pprog; 350 351 EMIT2(0x41, 0x54); /* push r12 */ 352 *pprog = prog; 353 } 354 355 static void push_callee_regs(u8 **pprog, bool *callee_regs_used) 356 { 357 u8 *prog = *pprog; 358 359 if (callee_regs_used[0]) 360 EMIT1(0x53); /* push rbx */ 361 if (callee_regs_used[1]) 362 EMIT2(0x41, 0x55); /* push r13 */ 363 if (callee_regs_used[2]) 364 EMIT2(0x41, 0x56); /* push r14 */ 365 if (callee_regs_used[3]) 366 EMIT2(0x41, 0x57); /* push r15 */ 367 *pprog = prog; 368 } 369 370 static void pop_r12(u8 **pprog) 371 { 372 u8 *prog = *pprog; 373 374 EMIT2(0x41, 0x5C); /* pop r12 */ 375 *pprog = prog; 376 } 377 378 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) 379 { 380 u8 *prog = *pprog; 381 382 if (callee_regs_used[3]) 383 EMIT2(0x41, 0x5F); /* pop r15 */ 384 if (callee_regs_used[2]) 385 EMIT2(0x41, 0x5E); /* pop r14 */ 386 if (callee_regs_used[1]) 387 EMIT2(0x41, 0x5D); /* pop r13 */ 388 if (callee_regs_used[0]) 389 EMIT1(0x5B); /* pop rbx */ 390 *pprog = prog; 391 } 392 393 static void emit_nops(u8 **pprog, int len) 394 { 395 u8 *prog = *pprog; 396 int i, noplen; 397 398 while (len > 0) { 399 noplen = len; 400 401 if (noplen > ASM_NOP_MAX) 402 noplen = ASM_NOP_MAX; 403 404 for (i = 0; i < noplen; i++) 405 EMIT1(x86_nops[noplen][i]); 406 len -= noplen; 407 } 408 409 *pprog = prog; 410 } 411 412 /* 413 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT 414 * in arch/x86/kernel/alternative.c 415 */ 416 static int emit_call(u8 **prog, void *func, void *ip); 417 418 static void emit_fineibt(u8 **pprog, u8 *ip, u32 hash, int arity) 419 { 420 u8 *prog = *pprog; 421 422 EMIT_ENDBR(); 423 EMIT1_off32(0x2d, hash); /* subl $hash, %eax */ 424 if (cfi_bhi) { 425 EMIT2(0x2e, 0x2e); /* cs cs */ 426 emit_call(&prog, __bhi_args[arity], ip + 11); 427 } else { 428 EMIT3_off32(0x2e, 0x0f, 0x85, 3); /* jne.d32,pn 3 */ 429 } 430 EMIT_ENDBR_POISON(); 431 432 *pprog = prog; 433 } 434 435 static void emit_kcfi(u8 **pprog, u32 hash) 436 { 437 u8 *prog = *pprog; 438 439 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */ 440 #ifdef CONFIG_CALL_PADDING 441 EMIT1(0x90); 442 EMIT1(0x90); 443 EMIT1(0x90); 444 EMIT1(0x90); 445 EMIT1(0x90); 446 EMIT1(0x90); 447 EMIT1(0x90); 448 EMIT1(0x90); 449 EMIT1(0x90); 450 EMIT1(0x90); 451 EMIT1(0x90); 452 #endif 453 EMIT_ENDBR(); 454 455 *pprog = prog; 456 } 457 458 static void emit_cfi(u8 **pprog, u8 *ip, u32 hash, int arity) 459 { 460 u8 *prog = *pprog; 461 462 switch (cfi_mode) { 463 case CFI_FINEIBT: 464 emit_fineibt(&prog, ip, hash, arity); 465 break; 466 467 case CFI_KCFI: 468 emit_kcfi(&prog, hash); 469 break; 470 471 default: 472 EMIT_ENDBR(); 473 break; 474 } 475 476 *pprog = prog; 477 } 478 479 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog) 480 { 481 u8 *prog = *pprog; 482 483 if (!is_subprog) { 484 /* cmp rax, MAX_TAIL_CALL_CNT */ 485 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT); 486 EMIT2(X86_JA, 6); /* ja 6 */ 487 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT. 488 * case1: entry of main prog. 489 * case2: tail callee of main prog. 490 */ 491 EMIT1(0x50); /* push rax */ 492 /* Make rax as tail_call_cnt_ptr. */ 493 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */ 494 EMIT2(0xEB, 1); /* jmp 1 */ 495 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT. 496 * case: tail callee of subprog. 497 */ 498 EMIT1(0x50); /* push rax */ 499 /* push tail_call_cnt_ptr */ 500 EMIT1(0x50); /* push rax */ 501 } else { /* is_subprog */ 502 /* rax is tail_call_cnt_ptr. */ 503 EMIT1(0x50); /* push rax */ 504 EMIT1(0x50); /* push rax */ 505 } 506 507 *pprog = prog; 508 } 509 510 /* 511 * Emit x86-64 prologue code for BPF program. 512 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes 513 * while jumping to another program 514 */ 515 static void emit_prologue(u8 **pprog, u8 *ip, u32 stack_depth, bool ebpf_from_cbpf, 516 bool tail_call_reachable, bool is_subprog, 517 bool is_exception_cb) 518 { 519 u8 *prog = *pprog; 520 521 if (is_subprog) { 522 emit_cfi(&prog, ip, cfi_bpf_subprog_hash, 5); 523 } else { 524 emit_cfi(&prog, ip, cfi_bpf_hash, 1); 525 } 526 /* BPF trampoline can be made to work without these nops, 527 * but let's waste 5 bytes for now and optimize later 528 */ 529 emit_nops(&prog, X86_PATCH_SIZE); 530 if (!ebpf_from_cbpf) { 531 if (tail_call_reachable && !is_subprog) 532 /* When it's the entry of the whole tailcall context, 533 * zeroing rax means initialising tail_call_cnt. 534 */ 535 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */ 536 else 537 /* Keep the same instruction layout. */ 538 emit_nops(&prog, 3); /* nop3 */ 539 } 540 /* Exception callback receives FP as third parameter */ 541 if (is_exception_cb) { 542 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */ 543 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */ 544 /* The main frame must have exception_boundary as true, so we 545 * first restore those callee-saved regs from stack, before 546 * reusing the stack frame. 547 */ 548 pop_callee_regs(&prog, all_callee_regs_used); 549 pop_r12(&prog); 550 /* Reset the stack frame. */ 551 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */ 552 } else { 553 EMIT1(0x55); /* push rbp */ 554 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 555 } 556 557 /* X86_TAIL_CALL_OFFSET is here */ 558 EMIT_ENDBR(); 559 560 /* sub rsp, rounded_stack_depth */ 561 if (stack_depth) 562 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); 563 if (tail_call_reachable) 564 emit_prologue_tail_call(&prog, is_subprog); 565 *pprog = prog; 566 } 567 568 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) 569 { 570 u8 *prog = *pprog; 571 s64 offset; 572 573 offset = func - (ip + X86_PATCH_SIZE); 574 if (!is_simm32(offset)) { 575 pr_err("Target call %p is out of range\n", func); 576 return -ERANGE; 577 } 578 EMIT1_off32(opcode, offset); 579 *pprog = prog; 580 return 0; 581 } 582 583 static int emit_call(u8 **pprog, void *func, void *ip) 584 { 585 return emit_patch(pprog, func, ip, 0xE8); 586 } 587 588 static int emit_rsb_call(u8 **pprog, void *func, void *ip) 589 { 590 OPTIMIZER_HIDE_VAR(func); 591 ip += x86_call_depth_emit_accounting(pprog, func, ip); 592 return emit_patch(pprog, func, ip, 0xE8); 593 } 594 595 static int emit_jump(u8 **pprog, void *func, void *ip) 596 { 597 return emit_patch(pprog, func, ip, 0xE9); 598 } 599 600 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t, 601 enum bpf_text_poke_type new_t, 602 void *old_addr, void *new_addr) 603 { 604 const u8 *nop_insn = x86_nops[5]; 605 u8 old_insn[X86_PATCH_SIZE]; 606 u8 new_insn[X86_PATCH_SIZE]; 607 u8 *prog; 608 int ret; 609 610 memcpy(old_insn, nop_insn, X86_PATCH_SIZE); 611 if (old_t != BPF_MOD_NOP && old_addr) { 612 prog = old_insn; 613 ret = old_t == BPF_MOD_CALL ? 614 emit_call(&prog, old_addr, ip) : 615 emit_jump(&prog, old_addr, ip); 616 if (ret) 617 return ret; 618 } 619 620 memcpy(new_insn, nop_insn, X86_PATCH_SIZE); 621 if (new_t != BPF_MOD_NOP && new_addr) { 622 prog = new_insn; 623 ret = new_t == BPF_MOD_CALL ? 624 emit_call(&prog, new_addr, ip) : 625 emit_jump(&prog, new_addr, ip); 626 if (ret) 627 return ret; 628 } 629 630 ret = -EBUSY; 631 mutex_lock(&text_mutex); 632 if (memcmp(ip, old_insn, X86_PATCH_SIZE)) 633 goto out; 634 ret = 1; 635 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { 636 smp_text_poke_single(ip, new_insn, X86_PATCH_SIZE, NULL); 637 ret = 0; 638 } 639 out: 640 mutex_unlock(&text_mutex); 641 return ret; 642 } 643 644 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t, 645 enum bpf_text_poke_type new_t, void *old_addr, 646 void *new_addr) 647 { 648 if (!is_kernel_text((long)ip) && 649 !is_bpf_text_address((long)ip)) 650 /* BPF poking in modules is not supported */ 651 return -EINVAL; 652 653 /* 654 * See emit_prologue(), for IBT builds the trampoline hook is preceded 655 * with an ENDBR instruction. 656 */ 657 if (is_endbr(ip)) 658 ip += ENDBR_INSN_SIZE; 659 660 return __bpf_arch_text_poke(ip, old_t, new_t, old_addr, new_addr); 661 } 662 663 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) 664 665 static void __emit_indirect_jump(u8 **pprog, int reg, bool ereg) 666 { 667 u8 *prog = *pprog; 668 669 if (ereg) 670 EMIT1(0x41); 671 672 EMIT2(0xFF, 0xE0 + reg); 673 674 *pprog = prog; 675 } 676 677 static void emit_indirect_jump(u8 **pprog, int bpf_reg, u8 *ip) 678 { 679 u8 *prog = *pprog; 680 int reg = reg2hex[bpf_reg]; 681 bool ereg = is_ereg(bpf_reg); 682 683 if (cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) { 684 OPTIMIZER_HIDE_VAR(reg); 685 emit_jump(&prog, its_static_thunk(reg + 8*ereg), ip); 686 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 687 EMIT_LFENCE(); 688 __emit_indirect_jump(&prog, reg, ereg); 689 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { 690 OPTIMIZER_HIDE_VAR(reg); 691 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 692 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg + 8*ereg], ip); 693 else 694 emit_jump(&prog, &__x86_indirect_thunk_array[reg + 8*ereg], ip); 695 } else { 696 __emit_indirect_jump(&prog, reg, ereg); 697 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS)) 698 EMIT1(0xCC); /* int3 */ 699 } 700 701 *pprog = prog; 702 } 703 704 static void emit_return(u8 **pprog, u8 *ip) 705 { 706 u8 *prog = *pprog; 707 708 if (cpu_wants_rethunk()) { 709 emit_jump(&prog, x86_return_thunk, ip); 710 } else { 711 EMIT1(0xC3); /* ret */ 712 if (IS_ENABLED(CONFIG_MITIGATION_SLS)) 713 EMIT1(0xCC); /* int3 */ 714 } 715 716 *pprog = prog; 717 } 718 719 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8)) 720 721 /* 722 * Generate the following code: 723 * 724 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... 725 * if (index >= array->map.max_entries) 726 * goto out; 727 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 728 * goto out; 729 * prog = array->ptrs[index]; 730 * if (prog == NULL) 731 * goto out; 732 * goto *(prog->bpf_func + prologue_size); 733 * out: 734 */ 735 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog, 736 u8 **pprog, bool *callee_regs_used, 737 u32 stack_depth, u8 *ip, 738 struct jit_context *ctx) 739 { 740 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 741 u8 *prog = *pprog, *start = *pprog; 742 int offset; 743 744 /* 745 * rdi - pointer to ctx 746 * rsi - pointer to bpf_array 747 * rdx - index in bpf_array 748 */ 749 750 /* 751 * if (index >= array->map.max_entries) 752 * goto out; 753 */ 754 EMIT2(0x89, 0xD2); /* mov edx, edx */ 755 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ 756 offsetof(struct bpf_array, map.max_entries)); 757 758 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 759 EMIT2(X86_JBE, offset); /* jbe out */ 760 761 /* 762 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 763 * goto out; 764 */ 765 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 766 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 767 768 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 769 EMIT2(X86_JAE, offset); /* jae out */ 770 771 /* prog = array->ptrs[index]; */ 772 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ 773 offsetof(struct bpf_array, ptrs)); 774 775 /* 776 * if (prog == NULL) 777 * goto out; 778 */ 779 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ 780 781 offset = ctx->tail_call_indirect_label - (prog + 2 - start); 782 EMIT2(X86_JE, offset); /* je out */ 783 784 /* Inc tail_call_cnt if the slot is populated. */ 785 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 786 787 if (bpf_prog->aux->exception_boundary) { 788 pop_callee_regs(&prog, all_callee_regs_used); 789 pop_r12(&prog); 790 } else { 791 pop_callee_regs(&prog, callee_regs_used); 792 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 793 pop_r12(&prog); 794 } 795 796 /* Pop tail_call_cnt_ptr. */ 797 EMIT1(0x58); /* pop rax */ 798 /* Pop tail_call_cnt, if it's main prog. 799 * Pop tail_call_cnt_ptr, if it's subprog. 800 */ 801 EMIT1(0x58); /* pop rax */ 802 if (stack_depth) 803 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ 804 round_up(stack_depth, 8)); 805 806 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ 807 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ 808 offsetof(struct bpf_prog, bpf_func)); 809 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ 810 X86_TAIL_CALL_OFFSET); 811 /* 812 * Now we're ready to jump into next BPF program 813 * rdi == ctx (1st arg) 814 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET 815 */ 816 emit_indirect_jump(&prog, BPF_REG_4 /* R4 -> rcx */, ip + (prog - start)); 817 818 /* out: */ 819 ctx->tail_call_indirect_label = prog - start; 820 *pprog = prog; 821 } 822 823 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog, 824 struct bpf_jit_poke_descriptor *poke, 825 u8 **pprog, u8 *ip, 826 bool *callee_regs_used, u32 stack_depth, 827 struct jit_context *ctx) 828 { 829 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth); 830 u8 *prog = *pprog, *start = *pprog; 831 int offset; 832 833 /* 834 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT) 835 * goto out; 836 */ 837 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */ 838 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */ 839 840 offset = ctx->tail_call_direct_label - (prog + 2 - start); 841 EMIT2(X86_JAE, offset); /* jae out */ 842 843 poke->tailcall_bypass = ip + (prog - start); 844 poke->adj_off = X86_TAIL_CALL_OFFSET; 845 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; 846 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; 847 848 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, 849 poke->tailcall_bypass); 850 851 /* Inc tail_call_cnt if the slot is populated. */ 852 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */ 853 854 if (bpf_prog->aux->exception_boundary) { 855 pop_callee_regs(&prog, all_callee_regs_used); 856 pop_r12(&prog); 857 } else { 858 pop_callee_regs(&prog, callee_regs_used); 859 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena)) 860 pop_r12(&prog); 861 } 862 863 /* Pop tail_call_cnt_ptr. */ 864 EMIT1(0x58); /* pop rax */ 865 /* Pop tail_call_cnt, if it's main prog. 866 * Pop tail_call_cnt_ptr, if it's subprog. 867 */ 868 EMIT1(0x58); /* pop rax */ 869 if (stack_depth) 870 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); 871 872 emit_nops(&prog, X86_PATCH_SIZE); 873 874 /* out: */ 875 ctx->tail_call_direct_label = prog - start; 876 877 *pprog = prog; 878 } 879 880 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) 881 { 882 struct bpf_jit_poke_descriptor *poke; 883 struct bpf_array *array; 884 struct bpf_prog *target; 885 int i, ret; 886 887 for (i = 0; i < prog->aux->size_poke_tab; i++) { 888 poke = &prog->aux->poke_tab[i]; 889 if (poke->aux && poke->aux != prog->aux) 890 continue; 891 892 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); 893 894 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 895 continue; 896 897 array = container_of(poke->tail_call.map, struct bpf_array, map); 898 mutex_lock(&array->aux->poke_mutex); 899 target = array->ptrs[poke->tail_call.key]; 900 if (target) { 901 ret = __bpf_arch_text_poke(poke->tailcall_target, 902 BPF_MOD_NOP, BPF_MOD_JUMP, 903 NULL, 904 (u8 *)target->bpf_func + 905 poke->adj_off); 906 BUG_ON(ret < 0); 907 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 908 BPF_MOD_JUMP, BPF_MOD_NOP, 909 (u8 *)poke->tailcall_target + 910 X86_PATCH_SIZE, NULL); 911 BUG_ON(ret < 0); 912 } 913 WRITE_ONCE(poke->tailcall_target_stable, true); 914 mutex_unlock(&array->aux->poke_mutex); 915 } 916 } 917 918 static void emit_mov_imm32(u8 **pprog, bool sign_propagate, 919 u32 dst_reg, const u32 imm32) 920 { 921 u8 *prog = *pprog; 922 u8 b1, b2, b3; 923 924 /* 925 * Optimization: if imm32 is positive, use 'mov %eax, imm32' 926 * (which zero-extends imm32) to save 2 bytes. 927 */ 928 if (sign_propagate && (s32)imm32 < 0) { 929 /* 'mov %rax, imm32' sign extends imm32 */ 930 b1 = add_1mod(0x48, dst_reg); 931 b2 = 0xC7; 932 b3 = 0xC0; 933 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); 934 goto done; 935 } 936 937 /* 938 * Optimization: if imm32 is zero, use 'xor %eax, %eax' 939 * to save 3 bytes. 940 */ 941 if (imm32 == 0) { 942 if (is_ereg(dst_reg)) 943 EMIT1(add_2mod(0x40, dst_reg, dst_reg)); 944 b2 = 0x31; /* xor */ 945 b3 = 0xC0; 946 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); 947 goto done; 948 } 949 950 /* mov %eax, imm32 */ 951 if (is_ereg(dst_reg)) 952 EMIT1(add_1mod(0x40, dst_reg)); 953 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); 954 done: 955 *pprog = prog; 956 } 957 958 static void emit_mov_imm64(u8 **pprog, u32 dst_reg, 959 const u32 imm32_hi, const u32 imm32_lo) 960 { 961 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo; 962 u8 *prog = *pprog; 963 964 if (is_uimm32(imm64)) { 965 /* 966 * For emitting plain u32, where sign bit must not be 967 * propagated LLVM tends to load imm64 over mov32 968 * directly, so save couple of bytes by just doing 969 * 'mov %eax, imm32' instead. 970 */ 971 emit_mov_imm32(&prog, false, dst_reg, imm32_lo); 972 } else if (is_simm32(imm64)) { 973 emit_mov_imm32(&prog, true, dst_reg, imm32_lo); 974 } else { 975 /* movabsq rax, imm64 */ 976 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); 977 EMIT(imm32_lo, 4); 978 EMIT(imm32_hi, 4); 979 } 980 981 *pprog = prog; 982 } 983 984 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) 985 { 986 u8 *prog = *pprog; 987 988 if (is64) { 989 /* mov dst, src */ 990 EMIT_mov(dst_reg, src_reg); 991 } else { 992 /* mov32 dst, src */ 993 if (is_ereg(dst_reg) || is_ereg(src_reg)) 994 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 995 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); 996 } 997 998 *pprog = prog; 999 } 1000 1001 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg, 1002 u32 src_reg) 1003 { 1004 u8 *prog = *pprog; 1005 1006 if (is64) { 1007 /* movs[b,w,l]q dst, src */ 1008 if (num_bits == 8) 1009 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe, 1010 add_2reg(0xC0, src_reg, dst_reg)); 1011 else if (num_bits == 16) 1012 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf, 1013 add_2reg(0xC0, src_reg, dst_reg)); 1014 else if (num_bits == 32) 1015 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63, 1016 add_2reg(0xC0, src_reg, dst_reg)); 1017 } else { 1018 /* movs[b,w]l dst, src */ 1019 if (num_bits == 8) { 1020 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe, 1021 add_2reg(0xC0, src_reg, dst_reg)); 1022 } else if (num_bits == 16) { 1023 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1024 EMIT1(add_2mod(0x40, src_reg, dst_reg)); 1025 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf, 1026 add_2reg(0xC0, src_reg, dst_reg)); 1027 } 1028 } 1029 1030 *pprog = prog; 1031 } 1032 1033 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ 1034 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) 1035 { 1036 u8 *prog = *pprog; 1037 1038 if (is_imm8(off)) { 1039 /* 1-byte signed displacement. 1040 * 1041 * If off == 0 we could skip this and save one extra byte, but 1042 * special case of x86 R13 which always needs an offset is not 1043 * worth the hassle 1044 */ 1045 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); 1046 } else { 1047 /* 4-byte signed displacement */ 1048 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); 1049 } 1050 *pprog = prog; 1051 } 1052 1053 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off) 1054 { 1055 u8 *prog = *pprog; 1056 1057 if (is_imm8(off)) { 1058 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1059 } else { 1060 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off); 1061 } 1062 *pprog = prog; 1063 } 1064 1065 /* 1066 * Emit a REX byte if it will be necessary to address these registers 1067 */ 1068 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) 1069 { 1070 u8 *prog = *pprog; 1071 1072 if (is64) 1073 EMIT1(add_2mod(0x48, dst_reg, src_reg)); 1074 else if (is_ereg(dst_reg) || is_ereg(src_reg)) 1075 EMIT1(add_2mod(0x40, dst_reg, src_reg)); 1076 *pprog = prog; 1077 } 1078 1079 /* 1080 * Similar version of maybe_emit_mod() for a single register 1081 */ 1082 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64) 1083 { 1084 u8 *prog = *pprog; 1085 1086 if (is64) 1087 EMIT1(add_1mod(0x48, reg)); 1088 else if (is_ereg(reg)) 1089 EMIT1(add_1mod(0x40, reg)); 1090 *pprog = prog; 1091 } 1092 1093 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 1094 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1095 { 1096 u8 *prog = *pprog; 1097 1098 switch (size) { 1099 case BPF_B: 1100 /* Emit 'movzx rax, byte ptr [rax + off]' */ 1101 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); 1102 break; 1103 case BPF_H: 1104 /* Emit 'movzx rax, word ptr [rax + off]' */ 1105 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); 1106 break; 1107 case BPF_W: 1108 /* Emit 'mov eax, dword ptr [rax+0x14]' */ 1109 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1110 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); 1111 else 1112 EMIT1(0x8B); 1113 break; 1114 case BPF_DW: 1115 /* Emit 'mov rax, qword ptr [rax+0x14]' */ 1116 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); 1117 break; 1118 } 1119 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1120 *pprog = prog; 1121 } 1122 1123 /* LDSX: dst_reg = *(s8*)(src_reg + off) */ 1124 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1125 { 1126 u8 *prog = *pprog; 1127 1128 switch (size) { 1129 case BPF_B: 1130 /* Emit 'movsx rax, byte ptr [rax + off]' */ 1131 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE); 1132 break; 1133 case BPF_H: 1134 /* Emit 'movsx rax, word ptr [rax + off]' */ 1135 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF); 1136 break; 1137 case BPF_W: 1138 /* Emit 'movsx rax, dword ptr [rax+0x14]' */ 1139 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63); 1140 break; 1141 } 1142 emit_insn_suffix(&prog, src_reg, dst_reg, off); 1143 *pprog = prog; 1144 } 1145 1146 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1147 { 1148 u8 *prog = *pprog; 1149 1150 switch (size) { 1151 case BPF_B: 1152 /* movzx rax, byte ptr [rax + r12 + off] */ 1153 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6); 1154 break; 1155 case BPF_H: 1156 /* movzx rax, word ptr [rax + r12 + off] */ 1157 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7); 1158 break; 1159 case BPF_W: 1160 /* mov eax, dword ptr [rax + r12 + off] */ 1161 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B); 1162 break; 1163 case BPF_DW: 1164 /* mov rax, qword ptr [rax + r12 + off] */ 1165 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B); 1166 break; 1167 } 1168 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1169 *pprog = prog; 1170 } 1171 1172 static void emit_ldsx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1173 { 1174 u8 *prog = *pprog; 1175 1176 switch (size) { 1177 case BPF_B: 1178 /* movsx rax, byte ptr [rax + r12 + off] */ 1179 EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBE); 1180 break; 1181 case BPF_H: 1182 /* movsx rax, word ptr [rax + r12 + off] */ 1183 EMIT3(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x0F, 0xBF); 1184 break; 1185 case BPF_W: 1186 /* movsx rax, dword ptr [rax + r12 + off] */ 1187 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x63); 1188 break; 1189 } 1190 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off); 1191 *pprog = prog; 1192 } 1193 1194 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1195 { 1196 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1197 } 1198 1199 static void emit_ldsx_r12(u8 **prog, u32 size, u32 dst_reg, u32 src_reg, int off) 1200 { 1201 emit_ldsx_index(prog, size, dst_reg, src_reg, X86_REG_R12, off); 1202 } 1203 1204 /* STX: *(u8*)(dst_reg + off) = src_reg */ 1205 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1206 { 1207 u8 *prog = *pprog; 1208 1209 switch (size) { 1210 case BPF_B: 1211 /* Emit 'mov byte ptr [rax + off], al' */ 1212 if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) 1213 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ 1214 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); 1215 else 1216 EMIT1(0x88); 1217 break; 1218 case BPF_H: 1219 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1220 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); 1221 else 1222 EMIT2(0x66, 0x89); 1223 break; 1224 case BPF_W: 1225 if (is_ereg(dst_reg) || is_ereg(src_reg)) 1226 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); 1227 else 1228 EMIT1(0x89); 1229 break; 1230 case BPF_DW: 1231 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); 1232 break; 1233 } 1234 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1235 *pprog = prog; 1236 } 1237 1238 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */ 1239 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off) 1240 { 1241 u8 *prog = *pprog; 1242 1243 switch (size) { 1244 case BPF_B: 1245 /* mov byte ptr [rax + r12 + off], al */ 1246 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88); 1247 break; 1248 case BPF_H: 1249 /* mov word ptr [rax + r12 + off], ax */ 1250 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1251 break; 1252 case BPF_W: 1253 /* mov dword ptr [rax + r12 + 1], eax */ 1254 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89); 1255 break; 1256 case BPF_DW: 1257 /* mov qword ptr [rax + r12 + 1], rax */ 1258 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89); 1259 break; 1260 } 1261 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1262 *pprog = prog; 1263 } 1264 1265 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) 1266 { 1267 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off); 1268 } 1269 1270 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */ 1271 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm) 1272 { 1273 u8 *prog = *pprog; 1274 1275 switch (size) { 1276 case BPF_B: 1277 /* mov byte ptr [rax + r12 + off], imm8 */ 1278 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6); 1279 break; 1280 case BPF_H: 1281 /* mov word ptr [rax + r12 + off], imm16 */ 1282 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1283 break; 1284 case BPF_W: 1285 /* mov dword ptr [rax + r12 + 1], imm32 */ 1286 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7); 1287 break; 1288 case BPF_DW: 1289 /* mov qword ptr [rax + r12 + 1], imm32 */ 1290 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7); 1291 break; 1292 } 1293 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off); 1294 EMIT(imm, bpf_size_to_x86_bytes(size)); 1295 *pprog = prog; 1296 } 1297 1298 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm) 1299 { 1300 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm); 1301 } 1302 1303 static int emit_atomic_rmw(u8 **pprog, u32 atomic_op, 1304 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) 1305 { 1306 u8 *prog = *pprog; 1307 1308 EMIT1(0xF0); /* lock prefix */ 1309 1310 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); 1311 1312 /* emit opcode */ 1313 switch (atomic_op) { 1314 case BPF_ADD: 1315 case BPF_AND: 1316 case BPF_OR: 1317 case BPF_XOR: 1318 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ 1319 EMIT1(simple_alu_opcodes[atomic_op]); 1320 break; 1321 case BPF_ADD | BPF_FETCH: 1322 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ 1323 EMIT2(0x0F, 0xC1); 1324 break; 1325 case BPF_XCHG: 1326 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 1327 EMIT1(0x87); 1328 break; 1329 case BPF_CMPXCHG: 1330 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 1331 EMIT2(0x0F, 0xB1); 1332 break; 1333 default: 1334 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1335 return -EFAULT; 1336 } 1337 1338 emit_insn_suffix(&prog, dst_reg, src_reg, off); 1339 1340 *pprog = prog; 1341 return 0; 1342 } 1343 1344 static int emit_atomic_rmw_index(u8 **pprog, u32 atomic_op, u32 size, 1345 u32 dst_reg, u32 src_reg, u32 index_reg, 1346 int off) 1347 { 1348 u8 *prog = *pprog; 1349 1350 EMIT1(0xF0); /* lock prefix */ 1351 switch (size) { 1352 case BPF_W: 1353 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg)); 1354 break; 1355 case BPF_DW: 1356 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg)); 1357 break; 1358 default: 1359 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 1360 return -EFAULT; 1361 } 1362 1363 /* emit opcode */ 1364 switch (atomic_op) { 1365 case BPF_ADD: 1366 case BPF_AND: 1367 case BPF_OR: 1368 case BPF_XOR: 1369 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */ 1370 EMIT1(simple_alu_opcodes[atomic_op]); 1371 break; 1372 case BPF_ADD | BPF_FETCH: 1373 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */ 1374 EMIT2(0x0F, 0xC1); 1375 break; 1376 case BPF_XCHG: 1377 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */ 1378 EMIT1(0x87); 1379 break; 1380 case BPF_CMPXCHG: 1381 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */ 1382 EMIT2(0x0F, 0xB1); 1383 break; 1384 default: 1385 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); 1386 return -EFAULT; 1387 } 1388 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off); 1389 *pprog = prog; 1390 return 0; 1391 } 1392 1393 static int emit_atomic_ld_st(u8 **pprog, u32 atomic_op, u32 dst_reg, 1394 u32 src_reg, s16 off, u8 bpf_size) 1395 { 1396 switch (atomic_op) { 1397 case BPF_LOAD_ACQ: 1398 /* dst_reg = smp_load_acquire(src_reg + off16) */ 1399 emit_ldx(pprog, bpf_size, dst_reg, src_reg, off); 1400 break; 1401 case BPF_STORE_REL: 1402 /* smp_store_release(dst_reg + off16, src_reg) */ 1403 emit_stx(pprog, bpf_size, dst_reg, src_reg, off); 1404 break; 1405 default: 1406 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1407 atomic_op); 1408 return -EFAULT; 1409 } 1410 1411 return 0; 1412 } 1413 1414 static int emit_atomic_ld_st_index(u8 **pprog, u32 atomic_op, u32 size, 1415 u32 dst_reg, u32 src_reg, u32 index_reg, 1416 int off) 1417 { 1418 switch (atomic_op) { 1419 case BPF_LOAD_ACQ: 1420 /* dst_reg = smp_load_acquire(src_reg + idx_reg + off16) */ 1421 emit_ldx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1422 break; 1423 case BPF_STORE_REL: 1424 /* smp_store_release(dst_reg + idx_reg + off16, src_reg) */ 1425 emit_stx_index(pprog, size, dst_reg, src_reg, index_reg, off); 1426 break; 1427 default: 1428 pr_err("bpf_jit: unknown atomic load/store opcode %02x\n", 1429 atomic_op); 1430 return -EFAULT; 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Metadata encoding for exception handling in JITed code. 1438 * 1439 * Format of `fixup` and `data` fields in `struct exception_table_entry`: 1440 * 1441 * Bit layout of `fixup` (32-bit): 1442 * 1443 * +-----------+--------+-----------+---------+----------+ 1444 * | 31 | 30-24 | 23-16 | 15-8 | 7-0 | 1445 * | | | | | | 1446 * | ARENA_ACC | Unused | ARENA_REG | DST_REG | INSN_LEN | 1447 * +-----------+--------+-----------+---------+----------+ 1448 * 1449 * - INSN_LEN (8 bits): Length of faulting insn (max x86 insn = 15 bytes (fits in 8 bits)). 1450 * - DST_REG (8 bits): Offset of dst_reg from reg2pt_regs[] (max offset = 112 (fits in 8 bits)). 1451 * This is set to DONT_CLEAR if the insn is a store. 1452 * - ARENA_REG (8 bits): Offset of the register that is used to calculate the 1453 * address for load/store when accessing the arena region. 1454 * - ARENA_ACCESS (1 bit): This bit is set when the faulting instruction accessed the arena region. 1455 * 1456 * Bit layout of `data` (32-bit): 1457 * 1458 * +--------------+--------+--------------+ 1459 * | 31-16 | 15-8 | 7-0 | 1460 * | | | | 1461 * | ARENA_OFFSET | Unused | EX_TYPE_BPF | 1462 * +--------------+--------+--------------+ 1463 * 1464 * - ARENA_OFFSET (16 bits): Offset used to calculate the address for load/store when 1465 * accessing the arena region. 1466 */ 1467 1468 #define DONT_CLEAR 1 1469 #define FIXUP_INSN_LEN_MASK GENMASK(7, 0) 1470 #define FIXUP_REG_MASK GENMASK(15, 8) 1471 #define FIXUP_ARENA_REG_MASK GENMASK(23, 16) 1472 #define FIXUP_ARENA_ACCESS BIT(31) 1473 #define DATA_ARENA_OFFSET_MASK GENMASK(31, 16) 1474 1475 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) 1476 { 1477 u32 reg = FIELD_GET(FIXUP_REG_MASK, x->fixup); 1478 u32 insn_len = FIELD_GET(FIXUP_INSN_LEN_MASK, x->fixup); 1479 bool is_arena = !!(x->fixup & FIXUP_ARENA_ACCESS); 1480 bool is_write = (reg == DONT_CLEAR); 1481 unsigned long addr; 1482 s16 off; 1483 u32 arena_reg; 1484 1485 if (is_arena) { 1486 arena_reg = FIELD_GET(FIXUP_ARENA_REG_MASK, x->fixup); 1487 off = FIELD_GET(DATA_ARENA_OFFSET_MASK, x->data); 1488 addr = *(unsigned long *)((void *)regs + arena_reg) + off; 1489 bpf_prog_report_arena_violation(is_write, addr, regs->ip); 1490 } 1491 1492 /* jump over faulting load and clear dest register */ 1493 if (reg != DONT_CLEAR) 1494 *(unsigned long *)((void *)regs + reg) = 0; 1495 regs->ip += insn_len; 1496 1497 return true; 1498 } 1499 1500 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, 1501 bool *regs_used) 1502 { 1503 int i; 1504 1505 for (i = 1; i <= insn_cnt; i++, insn++) { 1506 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 1507 regs_used[0] = true; 1508 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 1509 regs_used[1] = true; 1510 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 1511 regs_used[2] = true; 1512 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 1513 regs_used[3] = true; 1514 } 1515 } 1516 1517 /* emit the 3-byte VEX prefix 1518 * 1519 * r: same as rex.r, extra bit for ModRM reg field 1520 * x: same as rex.x, extra bit for SIB index field 1521 * b: same as rex.b, extra bit for ModRM r/m, or SIB base 1522 * m: opcode map select, encoding escape bytes e.g. 0x0f38 1523 * w: same as rex.w (32 bit or 64 bit) or opcode specific 1524 * src_reg2: additional source reg (encoded as BPF reg) 1525 * l: vector length (128 bit or 256 bit) or reserved 1526 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3) 1527 */ 1528 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m, 1529 bool w, u8 src_reg2, bool l, u8 pp) 1530 { 1531 u8 *prog = *pprog; 1532 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */ 1533 u8 b1, b2; 1534 u8 vvvv = reg2hex[src_reg2]; 1535 1536 /* reg2hex gives only the lower 3 bit of vvvv */ 1537 if (is_ereg(src_reg2)) 1538 vvvv |= 1 << 3; 1539 1540 /* 1541 * 2nd byte of 3-byte VEX prefix 1542 * ~ means bit inverted encoding 1543 * 1544 * 7 0 1545 * +---+---+---+---+---+---+---+---+ 1546 * |~R |~X |~B | m | 1547 * +---+---+---+---+---+---+---+---+ 1548 */ 1549 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f); 1550 /* 1551 * 3rd byte of 3-byte VEX prefix 1552 * 1553 * 7 0 1554 * +---+---+---+---+---+---+---+---+ 1555 * | W | ~vvvv | L | pp | 1556 * +---+---+---+---+---+---+---+---+ 1557 */ 1558 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3); 1559 1560 EMIT3(b0, b1, b2); 1561 *pprog = prog; 1562 } 1563 1564 /* emit BMI2 shift instruction */ 1565 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op) 1566 { 1567 u8 *prog = *pprog; 1568 bool r = is_ereg(dst_reg); 1569 u8 m = 2; /* escape code 0f38 */ 1570 1571 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op); 1572 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg)); 1573 *pprog = prog; 1574 } 1575 1576 static void emit_priv_frame_ptr(u8 **pprog, void __percpu *priv_frame_ptr) 1577 { 1578 u8 *prog = *pprog; 1579 1580 /* movabs r9, priv_frame_ptr */ 1581 emit_mov_imm64(&prog, X86_REG_R9, (__force long) priv_frame_ptr >> 32, 1582 (u32) (__force long) priv_frame_ptr); 1583 1584 #ifdef CONFIG_SMP 1585 /* add <r9>, gs:[<off>] */ 1586 EMIT2(0x65, 0x4c); 1587 EMIT3(0x03, 0x0c, 0x25); 1588 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1589 #endif 1590 1591 *pprog = prog; 1592 } 1593 1594 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) 1595 1596 #define __LOAD_TCC_PTR(off) \ 1597 EMIT3_off32(0x48, 0x8B, 0x85, off) 1598 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */ 1599 #define LOAD_TAIL_CALL_CNT_PTR(stack) \ 1600 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack)) 1601 1602 /* Memory size/value to protect private stack overflow/underflow */ 1603 #define PRIV_STACK_GUARD_SZ 8 1604 #define PRIV_STACK_GUARD_VAL 0xEB9F12345678eb9fULL 1605 1606 static int emit_spectre_bhb_barrier(u8 **pprog, u8 *ip, 1607 struct bpf_prog *bpf_prog) 1608 { 1609 u8 *prog = *pprog; 1610 u8 *func; 1611 1612 if (cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP)) { 1613 /* The clearing sequence clobbers eax and ecx. */ 1614 EMIT1(0x50); /* push rax */ 1615 EMIT1(0x51); /* push rcx */ 1616 ip += 2; 1617 1618 func = (u8 *)clear_bhb_loop; 1619 ip += x86_call_depth_emit_accounting(&prog, func, ip); 1620 1621 if (emit_call(&prog, func, ip)) 1622 return -EINVAL; 1623 EMIT1(0x59); /* pop rcx */ 1624 EMIT1(0x58); /* pop rax */ 1625 } 1626 /* Insert IBHF instruction */ 1627 if ((cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_LOOP) && 1628 cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) || 1629 cpu_feature_enabled(X86_FEATURE_CLEAR_BHB_HW)) { 1630 /* 1631 * Add an Indirect Branch History Fence (IBHF). IBHF acts as a 1632 * fence preventing branch history from before the fence from 1633 * affecting indirect branches after the fence. This is 1634 * specifically used in cBPF jitted code to prevent Intra-mode 1635 * BHI attacks. The IBHF instruction is designed to be a NOP on 1636 * hardware that doesn't need or support it. The REP and REX.W 1637 * prefixes are required by the microcode, and they also ensure 1638 * that the NOP is unlikely to be used in existing code. 1639 * 1640 * IBHF is not a valid instruction in 32-bit mode. 1641 */ 1642 EMIT5(0xF3, 0x48, 0x0F, 0x1E, 0xF8); /* ibhf */ 1643 } 1644 *pprog = prog; 1645 return 0; 1646 } 1647 1648 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image, 1649 int oldproglen, struct jit_context *ctx, bool jmp_padding) 1650 { 1651 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; 1652 struct bpf_insn *insn = bpf_prog->insnsi; 1653 bool callee_regs_used[4] = {}; 1654 int insn_cnt = bpf_prog->len; 1655 bool seen_exit = false; 1656 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; 1657 void __percpu *priv_frame_ptr = NULL; 1658 u64 arena_vm_start, user_vm_start; 1659 void __percpu *priv_stack_ptr; 1660 int i, excnt = 0; 1661 int ilen, proglen = 0; 1662 u8 *prog = temp; 1663 u32 stack_depth; 1664 int err; 1665 1666 stack_depth = bpf_prog->aux->stack_depth; 1667 priv_stack_ptr = bpf_prog->aux->priv_stack_ptr; 1668 if (priv_stack_ptr) { 1669 priv_frame_ptr = priv_stack_ptr + PRIV_STACK_GUARD_SZ + round_up(stack_depth, 8); 1670 stack_depth = 0; 1671 } 1672 1673 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena); 1674 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena); 1675 1676 detect_reg_usage(insn, insn_cnt, callee_regs_used); 1677 1678 emit_prologue(&prog, image, stack_depth, 1679 bpf_prog_was_classic(bpf_prog), tail_call_reachable, 1680 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb); 1681 /* Exception callback will clobber callee regs for its own use, and 1682 * restore the original callee regs from main prog's stack frame. 1683 */ 1684 if (bpf_prog->aux->exception_boundary) { 1685 /* We also need to save r12, which is not mapped to any BPF 1686 * register, as we throw after entry into the kernel, which may 1687 * overwrite r12. 1688 */ 1689 push_r12(&prog); 1690 push_callee_regs(&prog, all_callee_regs_used); 1691 } else { 1692 if (arena_vm_start) 1693 push_r12(&prog); 1694 push_callee_regs(&prog, callee_regs_used); 1695 } 1696 if (arena_vm_start) 1697 emit_mov_imm64(&prog, X86_REG_R12, 1698 arena_vm_start >> 32, (u32) arena_vm_start); 1699 1700 if (priv_frame_ptr) 1701 emit_priv_frame_ptr(&prog, priv_frame_ptr); 1702 1703 ilen = prog - temp; 1704 if (rw_image) 1705 memcpy(rw_image + proglen, temp, ilen); 1706 proglen += ilen; 1707 addrs[0] = proglen; 1708 prog = temp; 1709 1710 for (i = 1; i <= insn_cnt; i++, insn++) { 1711 const s32 imm32 = insn->imm; 1712 u32 dst_reg = insn->dst_reg; 1713 u32 src_reg = insn->src_reg; 1714 u8 b2 = 0, b3 = 0; 1715 u8 *start_of_ldx; 1716 s64 jmp_offset; 1717 s16 insn_off; 1718 u8 jmp_cond; 1719 u8 *func; 1720 int nops; 1721 1722 if (priv_frame_ptr) { 1723 if (src_reg == BPF_REG_FP) 1724 src_reg = X86_REG_R9; 1725 1726 if (dst_reg == BPF_REG_FP) 1727 dst_reg = X86_REG_R9; 1728 } 1729 1730 switch (insn->code) { 1731 /* ALU */ 1732 case BPF_ALU | BPF_ADD | BPF_X: 1733 case BPF_ALU | BPF_SUB | BPF_X: 1734 case BPF_ALU | BPF_AND | BPF_X: 1735 case BPF_ALU | BPF_OR | BPF_X: 1736 case BPF_ALU | BPF_XOR | BPF_X: 1737 case BPF_ALU64 | BPF_ADD | BPF_X: 1738 case BPF_ALU64 | BPF_SUB | BPF_X: 1739 case BPF_ALU64 | BPF_AND | BPF_X: 1740 case BPF_ALU64 | BPF_OR | BPF_X: 1741 case BPF_ALU64 | BPF_XOR | BPF_X: 1742 maybe_emit_mod(&prog, dst_reg, src_reg, 1743 BPF_CLASS(insn->code) == BPF_ALU64); 1744 b2 = simple_alu_opcodes[BPF_OP(insn->code)]; 1745 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); 1746 break; 1747 1748 case BPF_ALU64 | BPF_MOV | BPF_X: 1749 if (insn_is_cast_user(insn)) { 1750 if (dst_reg != src_reg) 1751 /* 32-bit mov */ 1752 emit_mov_reg(&prog, false, dst_reg, src_reg); 1753 /* shl dst_reg, 32 */ 1754 maybe_emit_1mod(&prog, dst_reg, true); 1755 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32); 1756 1757 /* or dst_reg, user_vm_start */ 1758 maybe_emit_1mod(&prog, dst_reg, true); 1759 if (is_axreg(dst_reg)) 1760 EMIT1_off32(0x0D, user_vm_start >> 32); 1761 else 1762 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32); 1763 1764 /* rol dst_reg, 32 */ 1765 maybe_emit_1mod(&prog, dst_reg, true); 1766 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32); 1767 1768 /* xor r11, r11 */ 1769 EMIT3(0x4D, 0x31, 0xDB); 1770 1771 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */ 1772 maybe_emit_mod(&prog, dst_reg, dst_reg, false); 1773 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 1774 1775 /* cmove r11, dst_reg; if so, set dst_reg to zero */ 1776 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */ 1777 maybe_emit_mod(&prog, AUX_REG, dst_reg, true); 1778 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg)); 1779 break; 1780 } else if (insn_is_mov_percpu_addr(insn)) { 1781 /* mov <dst>, <src> (if necessary) */ 1782 EMIT_mov(dst_reg, src_reg); 1783 #ifdef CONFIG_SMP 1784 /* add <dst>, gs:[<off>] */ 1785 EMIT2(0x65, add_1mod(0x48, dst_reg)); 1786 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25); 1787 EMIT((u32)(unsigned long)&this_cpu_off, 4); 1788 #endif 1789 break; 1790 } 1791 fallthrough; 1792 case BPF_ALU | BPF_MOV | BPF_X: 1793 if (insn->off == 0) 1794 emit_mov_reg(&prog, 1795 BPF_CLASS(insn->code) == BPF_ALU64, 1796 dst_reg, src_reg); 1797 else 1798 emit_movsx_reg(&prog, insn->off, 1799 BPF_CLASS(insn->code) == BPF_ALU64, 1800 dst_reg, src_reg); 1801 break; 1802 1803 /* neg dst */ 1804 case BPF_ALU | BPF_NEG: 1805 case BPF_ALU64 | BPF_NEG: 1806 maybe_emit_1mod(&prog, dst_reg, 1807 BPF_CLASS(insn->code) == BPF_ALU64); 1808 EMIT2(0xF7, add_1reg(0xD8, dst_reg)); 1809 break; 1810 1811 case BPF_ALU | BPF_ADD | BPF_K: 1812 case BPF_ALU | BPF_SUB | BPF_K: 1813 case BPF_ALU | BPF_AND | BPF_K: 1814 case BPF_ALU | BPF_OR | BPF_K: 1815 case BPF_ALU | BPF_XOR | BPF_K: 1816 case BPF_ALU64 | BPF_ADD | BPF_K: 1817 case BPF_ALU64 | BPF_SUB | BPF_K: 1818 case BPF_ALU64 | BPF_AND | BPF_K: 1819 case BPF_ALU64 | BPF_OR | BPF_K: 1820 case BPF_ALU64 | BPF_XOR | BPF_K: 1821 maybe_emit_1mod(&prog, dst_reg, 1822 BPF_CLASS(insn->code) == BPF_ALU64); 1823 1824 /* 1825 * b3 holds 'normal' opcode, b2 short form only valid 1826 * in case dst is eax/rax. 1827 */ 1828 switch (BPF_OP(insn->code)) { 1829 case BPF_ADD: 1830 b3 = 0xC0; 1831 b2 = 0x05; 1832 break; 1833 case BPF_SUB: 1834 b3 = 0xE8; 1835 b2 = 0x2D; 1836 break; 1837 case BPF_AND: 1838 b3 = 0xE0; 1839 b2 = 0x25; 1840 break; 1841 case BPF_OR: 1842 b3 = 0xC8; 1843 b2 = 0x0D; 1844 break; 1845 case BPF_XOR: 1846 b3 = 0xF0; 1847 b2 = 0x35; 1848 break; 1849 } 1850 1851 if (is_imm8(imm32)) 1852 EMIT3(0x83, add_1reg(b3, dst_reg), imm32); 1853 else if (is_axreg(dst_reg)) 1854 EMIT1_off32(b2, imm32); 1855 else 1856 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); 1857 break; 1858 1859 case BPF_ALU64 | BPF_MOV | BPF_K: 1860 case BPF_ALU | BPF_MOV | BPF_K: 1861 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, 1862 dst_reg, imm32); 1863 break; 1864 1865 case BPF_LD | BPF_IMM | BPF_DW: 1866 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); 1867 insn++; 1868 i++; 1869 break; 1870 1871 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ 1872 case BPF_ALU | BPF_MOD | BPF_X: 1873 case BPF_ALU | BPF_DIV | BPF_X: 1874 case BPF_ALU | BPF_MOD | BPF_K: 1875 case BPF_ALU | BPF_DIV | BPF_K: 1876 case BPF_ALU64 | BPF_MOD | BPF_X: 1877 case BPF_ALU64 | BPF_DIV | BPF_X: 1878 case BPF_ALU64 | BPF_MOD | BPF_K: 1879 case BPF_ALU64 | BPF_DIV | BPF_K: { 1880 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 1881 1882 if (dst_reg != BPF_REG_0) 1883 EMIT1(0x50); /* push rax */ 1884 if (dst_reg != BPF_REG_3) 1885 EMIT1(0x52); /* push rdx */ 1886 1887 if (BPF_SRC(insn->code) == BPF_X) { 1888 if (src_reg == BPF_REG_0 || 1889 src_reg == BPF_REG_3) { 1890 /* mov r11, src_reg */ 1891 EMIT_mov(AUX_REG, src_reg); 1892 src_reg = AUX_REG; 1893 } 1894 } else { 1895 /* mov r11, imm32 */ 1896 EMIT3_off32(0x49, 0xC7, 0xC3, imm32); 1897 src_reg = AUX_REG; 1898 } 1899 1900 if (dst_reg != BPF_REG_0) 1901 /* mov rax, dst_reg */ 1902 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg); 1903 1904 if (insn->off == 0) { 1905 /* 1906 * xor edx, edx 1907 * equivalent to 'xor rdx, rdx', but one byte less 1908 */ 1909 EMIT2(0x31, 0xd2); 1910 1911 /* div src_reg */ 1912 maybe_emit_1mod(&prog, src_reg, is64); 1913 EMIT2(0xF7, add_1reg(0xF0, src_reg)); 1914 } else { 1915 if (BPF_CLASS(insn->code) == BPF_ALU) 1916 EMIT1(0x99); /* cdq */ 1917 else 1918 EMIT2(0x48, 0x99); /* cqo */ 1919 1920 /* idiv src_reg */ 1921 maybe_emit_1mod(&prog, src_reg, is64); 1922 EMIT2(0xF7, add_1reg(0xF8, src_reg)); 1923 } 1924 1925 if (BPF_OP(insn->code) == BPF_MOD && 1926 dst_reg != BPF_REG_3) 1927 /* mov dst_reg, rdx */ 1928 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3); 1929 else if (BPF_OP(insn->code) == BPF_DIV && 1930 dst_reg != BPF_REG_0) 1931 /* mov dst_reg, rax */ 1932 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0); 1933 1934 if (dst_reg != BPF_REG_3) 1935 EMIT1(0x5A); /* pop rdx */ 1936 if (dst_reg != BPF_REG_0) 1937 EMIT1(0x58); /* pop rax */ 1938 break; 1939 } 1940 1941 case BPF_ALU | BPF_MUL | BPF_K: 1942 case BPF_ALU64 | BPF_MUL | BPF_K: 1943 maybe_emit_mod(&prog, dst_reg, dst_reg, 1944 BPF_CLASS(insn->code) == BPF_ALU64); 1945 1946 if (is_imm8(imm32)) 1947 /* imul dst_reg, dst_reg, imm8 */ 1948 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg), 1949 imm32); 1950 else 1951 /* imul dst_reg, dst_reg, imm32 */ 1952 EMIT2_off32(0x69, 1953 add_2reg(0xC0, dst_reg, dst_reg), 1954 imm32); 1955 break; 1956 1957 case BPF_ALU | BPF_MUL | BPF_X: 1958 case BPF_ALU64 | BPF_MUL | BPF_X: 1959 maybe_emit_mod(&prog, src_reg, dst_reg, 1960 BPF_CLASS(insn->code) == BPF_ALU64); 1961 1962 /* imul dst_reg, src_reg */ 1963 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg)); 1964 break; 1965 1966 /* Shifts */ 1967 case BPF_ALU | BPF_LSH | BPF_K: 1968 case BPF_ALU | BPF_RSH | BPF_K: 1969 case BPF_ALU | BPF_ARSH | BPF_K: 1970 case BPF_ALU64 | BPF_LSH | BPF_K: 1971 case BPF_ALU64 | BPF_RSH | BPF_K: 1972 case BPF_ALU64 | BPF_ARSH | BPF_K: 1973 maybe_emit_1mod(&prog, dst_reg, 1974 BPF_CLASS(insn->code) == BPF_ALU64); 1975 1976 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 1977 if (imm32 == 1) 1978 EMIT2(0xD1, add_1reg(b3, dst_reg)); 1979 else 1980 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); 1981 break; 1982 1983 case BPF_ALU | BPF_LSH | BPF_X: 1984 case BPF_ALU | BPF_RSH | BPF_X: 1985 case BPF_ALU | BPF_ARSH | BPF_X: 1986 case BPF_ALU64 | BPF_LSH | BPF_X: 1987 case BPF_ALU64 | BPF_RSH | BPF_X: 1988 case BPF_ALU64 | BPF_ARSH | BPF_X: 1989 /* BMI2 shifts aren't better when shift count is already in rcx */ 1990 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) { 1991 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */ 1992 bool w = (BPF_CLASS(insn->code) == BPF_ALU64); 1993 u8 op; 1994 1995 switch (BPF_OP(insn->code)) { 1996 case BPF_LSH: 1997 op = 1; /* prefix 0x66 */ 1998 break; 1999 case BPF_RSH: 2000 op = 3; /* prefix 0xf2 */ 2001 break; 2002 case BPF_ARSH: 2003 op = 2; /* prefix 0xf3 */ 2004 break; 2005 } 2006 2007 emit_shiftx(&prog, dst_reg, src_reg, w, op); 2008 2009 break; 2010 } 2011 2012 if (src_reg != BPF_REG_4) { /* common case */ 2013 /* Check for bad case when dst_reg == rcx */ 2014 if (dst_reg == BPF_REG_4) { 2015 /* mov r11, dst_reg */ 2016 EMIT_mov(AUX_REG, dst_reg); 2017 dst_reg = AUX_REG; 2018 } else { 2019 EMIT1(0x51); /* push rcx */ 2020 } 2021 /* mov rcx, src_reg */ 2022 EMIT_mov(BPF_REG_4, src_reg); 2023 } 2024 2025 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ 2026 maybe_emit_1mod(&prog, dst_reg, 2027 BPF_CLASS(insn->code) == BPF_ALU64); 2028 2029 b3 = simple_alu_opcodes[BPF_OP(insn->code)]; 2030 EMIT2(0xD3, add_1reg(b3, dst_reg)); 2031 2032 if (src_reg != BPF_REG_4) { 2033 if (insn->dst_reg == BPF_REG_4) 2034 /* mov dst_reg, r11 */ 2035 EMIT_mov(insn->dst_reg, AUX_REG); 2036 else 2037 EMIT1(0x59); /* pop rcx */ 2038 } 2039 2040 break; 2041 2042 case BPF_ALU | BPF_END | BPF_FROM_BE: 2043 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 2044 switch (imm32) { 2045 case 16: 2046 /* Emit 'ror %ax, 8' to swap lower 2 bytes */ 2047 EMIT1(0x66); 2048 if (is_ereg(dst_reg)) 2049 EMIT1(0x41); 2050 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); 2051 2052 /* Emit 'movzwl eax, ax' */ 2053 if (is_ereg(dst_reg)) 2054 EMIT3(0x45, 0x0F, 0xB7); 2055 else 2056 EMIT2(0x0F, 0xB7); 2057 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 2058 break; 2059 case 32: 2060 /* Emit 'bswap eax' to swap lower 4 bytes */ 2061 if (is_ereg(dst_reg)) 2062 EMIT2(0x41, 0x0F); 2063 else 2064 EMIT1(0x0F); 2065 EMIT1(add_1reg(0xC8, dst_reg)); 2066 break; 2067 case 64: 2068 /* Emit 'bswap rax' to swap 8 bytes */ 2069 EMIT3(add_1mod(0x48, dst_reg), 0x0F, 2070 add_1reg(0xC8, dst_reg)); 2071 break; 2072 } 2073 break; 2074 2075 case BPF_ALU | BPF_END | BPF_FROM_LE: 2076 switch (imm32) { 2077 case 16: 2078 /* 2079 * Emit 'movzwl eax, ax' to zero extend 16-bit 2080 * into 64 bit 2081 */ 2082 if (is_ereg(dst_reg)) 2083 EMIT3(0x45, 0x0F, 0xB7); 2084 else 2085 EMIT2(0x0F, 0xB7); 2086 EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); 2087 break; 2088 case 32: 2089 /* Emit 'mov eax, eax' to clear upper 32-bits */ 2090 if (is_ereg(dst_reg)) 2091 EMIT1(0x45); 2092 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); 2093 break; 2094 case 64: 2095 /* nop */ 2096 break; 2097 } 2098 break; 2099 2100 /* speculation barrier */ 2101 case BPF_ST | BPF_NOSPEC: 2102 EMIT_LFENCE(); 2103 break; 2104 2105 /* ST: *(u8*)(dst_reg + off) = imm */ 2106 case BPF_ST | BPF_MEM | BPF_B: 2107 if (is_ereg(dst_reg)) 2108 EMIT2(0x41, 0xC6); 2109 else 2110 EMIT1(0xC6); 2111 goto st; 2112 case BPF_ST | BPF_MEM | BPF_H: 2113 if (is_ereg(dst_reg)) 2114 EMIT3(0x66, 0x41, 0xC7); 2115 else 2116 EMIT2(0x66, 0xC7); 2117 goto st; 2118 case BPF_ST | BPF_MEM | BPF_W: 2119 if (is_ereg(dst_reg)) 2120 EMIT2(0x41, 0xC7); 2121 else 2122 EMIT1(0xC7); 2123 goto st; 2124 case BPF_ST | BPF_MEM | BPF_DW: 2125 EMIT2(add_1mod(0x48, dst_reg), 0xC7); 2126 2127 st: if (is_imm8(insn->off)) 2128 EMIT2(add_1reg(0x40, dst_reg), insn->off); 2129 else 2130 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); 2131 2132 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); 2133 break; 2134 2135 /* STX: *(u8*)(dst_reg + off) = src_reg */ 2136 case BPF_STX | BPF_MEM | BPF_B: 2137 case BPF_STX | BPF_MEM | BPF_H: 2138 case BPF_STX | BPF_MEM | BPF_W: 2139 case BPF_STX | BPF_MEM | BPF_DW: 2140 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2141 break; 2142 2143 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 2144 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 2145 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 2146 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 2147 start_of_ldx = prog; 2148 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm); 2149 goto populate_extable; 2150 2151 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */ 2152 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 2153 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 2154 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 2155 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 2156 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_B: 2157 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_H: 2158 case BPF_LDX | BPF_PROBE_MEM32SX | BPF_W: 2159 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 2160 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 2161 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 2162 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 2163 start_of_ldx = prog; 2164 if (BPF_CLASS(insn->code) == BPF_LDX) { 2165 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32SX) 2166 emit_ldsx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2167 else 2168 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2169 } else { 2170 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); 2171 } 2172 populate_extable: 2173 { 2174 struct exception_table_entry *ex; 2175 u8 *_insn = image + proglen + (start_of_ldx - temp); 2176 u32 arena_reg, fixup_reg; 2177 s64 delta; 2178 2179 if (!bpf_prog->aux->extable) 2180 break; 2181 2182 if (excnt >= bpf_prog->aux->num_exentries) { 2183 pr_err("mem32 extable bug\n"); 2184 return -EFAULT; 2185 } 2186 ex = &bpf_prog->aux->extable[excnt++]; 2187 2188 delta = _insn - (u8 *)&ex->insn; 2189 /* switch ex to rw buffer for writes */ 2190 ex = (void *)rw_image + ((void *)ex - (void *)image); 2191 2192 ex->insn = delta; 2193 2194 ex->data = EX_TYPE_BPF; 2195 2196 /* 2197 * src_reg/dst_reg holds the address in the arena region with upper 2198 * 32-bits being zero because of a preceding addr_space_cast(r<n>, 2199 * 0x0, 0x1) instruction. This address is adjusted with the addition 2200 * of arena_vm_start (see the implementation of BPF_PROBE_MEM32 and 2201 * BPF_PROBE_ATOMIC) before being used for the memory access. Pass 2202 * the reg holding the unmodified 32-bit address to 2203 * ex_handler_bpf(). 2204 */ 2205 if (BPF_CLASS(insn->code) == BPF_LDX) { 2206 arena_reg = reg2pt_regs[src_reg]; 2207 fixup_reg = reg2pt_regs[dst_reg]; 2208 } else { 2209 arena_reg = reg2pt_regs[dst_reg]; 2210 fixup_reg = DONT_CLEAR; 2211 } 2212 2213 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) | 2214 FIELD_PREP(FIXUP_ARENA_REG_MASK, arena_reg) | 2215 FIELD_PREP(FIXUP_REG_MASK, fixup_reg); 2216 ex->fixup |= FIXUP_ARENA_ACCESS; 2217 2218 ex->data |= FIELD_PREP(DATA_ARENA_OFFSET_MASK, insn->off); 2219 } 2220 break; 2221 2222 /* LDX: dst_reg = *(u8*)(src_reg + off) */ 2223 case BPF_LDX | BPF_MEM | BPF_B: 2224 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 2225 case BPF_LDX | BPF_MEM | BPF_H: 2226 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 2227 case BPF_LDX | BPF_MEM | BPF_W: 2228 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 2229 case BPF_LDX | BPF_MEM | BPF_DW: 2230 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 2231 /* LDXS: dst_reg = *(s8*)(src_reg + off) */ 2232 case BPF_LDX | BPF_MEMSX | BPF_B: 2233 case BPF_LDX | BPF_MEMSX | BPF_H: 2234 case BPF_LDX | BPF_MEMSX | BPF_W: 2235 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 2236 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 2237 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 2238 insn_off = insn->off; 2239 2240 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2241 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2242 /* Conservatively check that src_reg + insn->off is a kernel address: 2243 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE 2244 * and 2245 * src_reg + insn->off < VSYSCALL_ADDR 2246 */ 2247 2248 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR; 2249 u8 *end_of_jmp; 2250 2251 /* movabsq r10, VSYSCALL_ADDR */ 2252 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32, 2253 (u32)(long)VSYSCALL_ADDR); 2254 2255 /* mov src_reg, r11 */ 2256 EMIT_mov(AUX_REG, src_reg); 2257 2258 if (insn->off) { 2259 /* add r11, insn->off */ 2260 maybe_emit_1mod(&prog, AUX_REG, true); 2261 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off); 2262 } 2263 2264 /* sub r11, r10 */ 2265 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2266 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2267 2268 /* movabsq r10, limit */ 2269 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32, 2270 (u32)(long)limit); 2271 2272 /* cmp r10, r11 */ 2273 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true); 2274 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX)); 2275 2276 /* if unsigned '>', goto load */ 2277 EMIT2(X86_JA, 0); 2278 end_of_jmp = prog; 2279 2280 /* xor dst_reg, dst_reg */ 2281 emit_mov_imm32(&prog, false, dst_reg, 0); 2282 /* jmp byte_after_ldx */ 2283 EMIT2(0xEB, 0); 2284 2285 /* populate jmp_offset for JAE above to jump to start_of_ldx */ 2286 start_of_ldx = prog; 2287 end_of_jmp[-1] = start_of_ldx - end_of_jmp; 2288 } 2289 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX || 2290 BPF_MODE(insn->code) == BPF_MEMSX) 2291 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2292 else 2293 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off); 2294 if (BPF_MODE(insn->code) == BPF_PROBE_MEM || 2295 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) { 2296 struct exception_table_entry *ex; 2297 u8 *_insn = image + proglen + (start_of_ldx - temp); 2298 s64 delta; 2299 2300 /* populate jmp_offset for JMP above */ 2301 start_of_ldx[-1] = prog - start_of_ldx; 2302 2303 if (!bpf_prog->aux->extable) 2304 break; 2305 2306 if (excnt >= bpf_prog->aux->num_exentries) { 2307 pr_err("ex gen bug\n"); 2308 return -EFAULT; 2309 } 2310 ex = &bpf_prog->aux->extable[excnt++]; 2311 2312 delta = _insn - (u8 *)&ex->insn; 2313 if (!is_simm32(delta)) { 2314 pr_err("extable->insn doesn't fit into 32-bit\n"); 2315 return -EFAULT; 2316 } 2317 /* switch ex to rw buffer for writes */ 2318 ex = (void *)rw_image + ((void *)ex - (void *)image); 2319 2320 ex->insn = delta; 2321 2322 ex->data = EX_TYPE_BPF; 2323 2324 if (dst_reg > BPF_REG_9) { 2325 pr_err("verifier error\n"); 2326 return -EFAULT; 2327 } 2328 /* 2329 * Compute size of x86 insn and its target dest x86 register. 2330 * ex_handler_bpf() will use lower 8 bits to adjust 2331 * pt_regs->ip to jump over this x86 instruction 2332 * and upper bits to figure out which pt_regs to zero out. 2333 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" 2334 * of 4 bytes will be ignored and rbx will be zero inited. 2335 */ 2336 ex->fixup = FIELD_PREP(FIXUP_INSN_LEN_MASK, prog - start_of_ldx) | 2337 FIELD_PREP(FIXUP_REG_MASK, reg2pt_regs[dst_reg]); 2338 } 2339 break; 2340 2341 case BPF_STX | BPF_ATOMIC | BPF_B: 2342 case BPF_STX | BPF_ATOMIC | BPF_H: 2343 if (!bpf_atomic_is_load_store(insn)) { 2344 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2345 return -EFAULT; 2346 } 2347 fallthrough; 2348 case BPF_STX | BPF_ATOMIC | BPF_W: 2349 case BPF_STX | BPF_ATOMIC | BPF_DW: 2350 if (insn->imm == (BPF_AND | BPF_FETCH) || 2351 insn->imm == (BPF_OR | BPF_FETCH) || 2352 insn->imm == (BPF_XOR | BPF_FETCH)) { 2353 bool is64 = BPF_SIZE(insn->code) == BPF_DW; 2354 u32 real_src_reg = src_reg; 2355 u32 real_dst_reg = dst_reg; 2356 u8 *branch_target; 2357 2358 /* 2359 * Can't be implemented with a single x86 insn. 2360 * Need to do a CMPXCHG loop. 2361 */ 2362 2363 /* Will need RAX as a CMPXCHG operand so save R0 */ 2364 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); 2365 if (src_reg == BPF_REG_0) 2366 real_src_reg = BPF_REG_AX; 2367 if (dst_reg == BPF_REG_0) 2368 real_dst_reg = BPF_REG_AX; 2369 2370 branch_target = prog; 2371 /* Load old value */ 2372 emit_ldx(&prog, BPF_SIZE(insn->code), 2373 BPF_REG_0, real_dst_reg, insn->off); 2374 /* 2375 * Perform the (commutative) operation locally, 2376 * put the result in the AUX_REG. 2377 */ 2378 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); 2379 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); 2380 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], 2381 add_2reg(0xC0, AUX_REG, real_src_reg)); 2382 /* Attempt to swap in new value */ 2383 err = emit_atomic_rmw(&prog, BPF_CMPXCHG, 2384 real_dst_reg, AUX_REG, 2385 insn->off, 2386 BPF_SIZE(insn->code)); 2387 if (WARN_ON(err)) 2388 return err; 2389 /* 2390 * ZF tells us whether we won the race. If it's 2391 * cleared we need to try again. 2392 */ 2393 EMIT2(X86_JNE, -(prog - branch_target) - 2); 2394 /* Return the pre-modification value */ 2395 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); 2396 /* Restore R0 after clobbering RAX */ 2397 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); 2398 break; 2399 } 2400 2401 if (bpf_atomic_is_load_store(insn)) 2402 err = emit_atomic_ld_st(&prog, insn->imm, dst_reg, src_reg, 2403 insn->off, BPF_SIZE(insn->code)); 2404 else 2405 err = emit_atomic_rmw(&prog, insn->imm, dst_reg, src_reg, 2406 insn->off, BPF_SIZE(insn->code)); 2407 if (err) 2408 return err; 2409 break; 2410 2411 case BPF_STX | BPF_PROBE_ATOMIC | BPF_B: 2412 case BPF_STX | BPF_PROBE_ATOMIC | BPF_H: 2413 if (!bpf_atomic_is_load_store(insn)) { 2414 pr_err("bpf_jit: 1- and 2-byte RMW atomics are not supported\n"); 2415 return -EFAULT; 2416 } 2417 fallthrough; 2418 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 2419 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 2420 start_of_ldx = prog; 2421 2422 if (bpf_atomic_is_load_store(insn)) 2423 err = emit_atomic_ld_st_index(&prog, insn->imm, 2424 BPF_SIZE(insn->code), dst_reg, 2425 src_reg, X86_REG_R12, insn->off); 2426 else 2427 err = emit_atomic_rmw_index(&prog, insn->imm, BPF_SIZE(insn->code), 2428 dst_reg, src_reg, X86_REG_R12, 2429 insn->off); 2430 if (err) 2431 return err; 2432 goto populate_extable; 2433 2434 /* call */ 2435 case BPF_JMP | BPF_CALL: { 2436 u8 *ip = image + addrs[i - 1]; 2437 2438 func = (u8 *) __bpf_call_base + imm32; 2439 if (src_reg == BPF_PSEUDO_CALL && tail_call_reachable) { 2440 LOAD_TAIL_CALL_CNT_PTR(stack_depth); 2441 ip += 7; 2442 } 2443 if (!imm32) 2444 return -EINVAL; 2445 if (priv_frame_ptr) { 2446 push_r9(&prog); 2447 ip += 2; 2448 } 2449 ip += x86_call_depth_emit_accounting(&prog, func, ip); 2450 if (emit_call(&prog, func, ip)) 2451 return -EINVAL; 2452 if (priv_frame_ptr) 2453 pop_r9(&prog); 2454 break; 2455 } 2456 2457 case BPF_JMP | BPF_TAIL_CALL: 2458 if (imm32) 2459 emit_bpf_tail_call_direct(bpf_prog, 2460 &bpf_prog->aux->poke_tab[imm32 - 1], 2461 &prog, image + addrs[i - 1], 2462 callee_regs_used, 2463 stack_depth, 2464 ctx); 2465 else 2466 emit_bpf_tail_call_indirect(bpf_prog, 2467 &prog, 2468 callee_regs_used, 2469 stack_depth, 2470 image + addrs[i - 1], 2471 ctx); 2472 break; 2473 2474 /* cond jump */ 2475 case BPF_JMP | BPF_JEQ | BPF_X: 2476 case BPF_JMP | BPF_JNE | BPF_X: 2477 case BPF_JMP | BPF_JGT | BPF_X: 2478 case BPF_JMP | BPF_JLT | BPF_X: 2479 case BPF_JMP | BPF_JGE | BPF_X: 2480 case BPF_JMP | BPF_JLE | BPF_X: 2481 case BPF_JMP | BPF_JSGT | BPF_X: 2482 case BPF_JMP | BPF_JSLT | BPF_X: 2483 case BPF_JMP | BPF_JSGE | BPF_X: 2484 case BPF_JMP | BPF_JSLE | BPF_X: 2485 case BPF_JMP32 | BPF_JEQ | BPF_X: 2486 case BPF_JMP32 | BPF_JNE | BPF_X: 2487 case BPF_JMP32 | BPF_JGT | BPF_X: 2488 case BPF_JMP32 | BPF_JLT | BPF_X: 2489 case BPF_JMP32 | BPF_JGE | BPF_X: 2490 case BPF_JMP32 | BPF_JLE | BPF_X: 2491 case BPF_JMP32 | BPF_JSGT | BPF_X: 2492 case BPF_JMP32 | BPF_JSLT | BPF_X: 2493 case BPF_JMP32 | BPF_JSGE | BPF_X: 2494 case BPF_JMP32 | BPF_JSLE | BPF_X: 2495 /* cmp dst_reg, src_reg */ 2496 maybe_emit_mod(&prog, dst_reg, src_reg, 2497 BPF_CLASS(insn->code) == BPF_JMP); 2498 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); 2499 goto emit_cond_jmp; 2500 2501 case BPF_JMP | BPF_JSET | BPF_X: 2502 case BPF_JMP32 | BPF_JSET | BPF_X: 2503 /* test dst_reg, src_reg */ 2504 maybe_emit_mod(&prog, dst_reg, src_reg, 2505 BPF_CLASS(insn->code) == BPF_JMP); 2506 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); 2507 goto emit_cond_jmp; 2508 2509 case BPF_JMP | BPF_JSET | BPF_K: 2510 case BPF_JMP32 | BPF_JSET | BPF_K: 2511 /* test dst_reg, imm32 */ 2512 maybe_emit_1mod(&prog, dst_reg, 2513 BPF_CLASS(insn->code) == BPF_JMP); 2514 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); 2515 goto emit_cond_jmp; 2516 2517 case BPF_JMP | BPF_JEQ | BPF_K: 2518 case BPF_JMP | BPF_JNE | BPF_K: 2519 case BPF_JMP | BPF_JGT | BPF_K: 2520 case BPF_JMP | BPF_JLT | BPF_K: 2521 case BPF_JMP | BPF_JGE | BPF_K: 2522 case BPF_JMP | BPF_JLE | BPF_K: 2523 case BPF_JMP | BPF_JSGT | BPF_K: 2524 case BPF_JMP | BPF_JSLT | BPF_K: 2525 case BPF_JMP | BPF_JSGE | BPF_K: 2526 case BPF_JMP | BPF_JSLE | BPF_K: 2527 case BPF_JMP32 | BPF_JEQ | BPF_K: 2528 case BPF_JMP32 | BPF_JNE | BPF_K: 2529 case BPF_JMP32 | BPF_JGT | BPF_K: 2530 case BPF_JMP32 | BPF_JLT | BPF_K: 2531 case BPF_JMP32 | BPF_JGE | BPF_K: 2532 case BPF_JMP32 | BPF_JLE | BPF_K: 2533 case BPF_JMP32 | BPF_JSGT | BPF_K: 2534 case BPF_JMP32 | BPF_JSLT | BPF_K: 2535 case BPF_JMP32 | BPF_JSGE | BPF_K: 2536 case BPF_JMP32 | BPF_JSLE | BPF_K: 2537 /* test dst_reg, dst_reg to save one extra byte */ 2538 if (imm32 == 0) { 2539 maybe_emit_mod(&prog, dst_reg, dst_reg, 2540 BPF_CLASS(insn->code) == BPF_JMP); 2541 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); 2542 goto emit_cond_jmp; 2543 } 2544 2545 /* cmp dst_reg, imm8/32 */ 2546 maybe_emit_1mod(&prog, dst_reg, 2547 BPF_CLASS(insn->code) == BPF_JMP); 2548 2549 if (is_imm8(imm32)) 2550 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); 2551 else 2552 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); 2553 2554 emit_cond_jmp: /* Convert BPF opcode to x86 */ 2555 switch (BPF_OP(insn->code)) { 2556 case BPF_JEQ: 2557 jmp_cond = X86_JE; 2558 break; 2559 case BPF_JSET: 2560 case BPF_JNE: 2561 jmp_cond = X86_JNE; 2562 break; 2563 case BPF_JGT: 2564 /* GT is unsigned '>', JA in x86 */ 2565 jmp_cond = X86_JA; 2566 break; 2567 case BPF_JLT: 2568 /* LT is unsigned '<', JB in x86 */ 2569 jmp_cond = X86_JB; 2570 break; 2571 case BPF_JGE: 2572 /* GE is unsigned '>=', JAE in x86 */ 2573 jmp_cond = X86_JAE; 2574 break; 2575 case BPF_JLE: 2576 /* LE is unsigned '<=', JBE in x86 */ 2577 jmp_cond = X86_JBE; 2578 break; 2579 case BPF_JSGT: 2580 /* Signed '>', GT in x86 */ 2581 jmp_cond = X86_JG; 2582 break; 2583 case BPF_JSLT: 2584 /* Signed '<', LT in x86 */ 2585 jmp_cond = X86_JL; 2586 break; 2587 case BPF_JSGE: 2588 /* Signed '>=', GE in x86 */ 2589 jmp_cond = X86_JGE; 2590 break; 2591 case BPF_JSLE: 2592 /* Signed '<=', LE in x86 */ 2593 jmp_cond = X86_JLE; 2594 break; 2595 default: /* to silence GCC warning */ 2596 return -EFAULT; 2597 } 2598 jmp_offset = addrs[i + insn->off] - addrs[i]; 2599 if (is_imm8_jmp_offset(jmp_offset)) { 2600 if (jmp_padding) { 2601 /* To keep the jmp_offset valid, the extra bytes are 2602 * padded before the jump insn, so we subtract the 2603 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. 2604 * 2605 * If the previous pass already emits an imm8 2606 * jmp_cond, then this BPF insn won't shrink, so 2607 * "nops" is 0. 2608 * 2609 * On the other hand, if the previous pass emits an 2610 * imm32 jmp_cond, the extra 4 bytes(*) is padded to 2611 * keep the image from shrinking further. 2612 * 2613 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond 2614 * is 2 bytes, so the size difference is 4 bytes. 2615 */ 2616 nops = INSN_SZ_DIFF - 2; 2617 if (nops != 0 && nops != 4) { 2618 pr_err("unexpected jmp_cond padding: %d bytes\n", 2619 nops); 2620 return -EFAULT; 2621 } 2622 emit_nops(&prog, nops); 2623 } 2624 EMIT2(jmp_cond, jmp_offset); 2625 } else if (is_simm32(jmp_offset)) { 2626 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); 2627 } else { 2628 pr_err("cond_jmp gen bug %llx\n", jmp_offset); 2629 return -EFAULT; 2630 } 2631 2632 break; 2633 2634 case BPF_JMP | BPF_JA | BPF_X: 2635 emit_indirect_jump(&prog, insn->dst_reg, image + addrs[i - 1]); 2636 break; 2637 case BPF_JMP | BPF_JA: 2638 case BPF_JMP32 | BPF_JA: 2639 if (BPF_CLASS(insn->code) == BPF_JMP) { 2640 if (insn->off == -1) 2641 /* -1 jmp instructions will always jump 2642 * backwards two bytes. Explicitly handling 2643 * this case avoids wasting too many passes 2644 * when there are long sequences of replaced 2645 * dead code. 2646 */ 2647 jmp_offset = -2; 2648 else 2649 jmp_offset = addrs[i + insn->off] - addrs[i]; 2650 } else { 2651 if (insn->imm == -1) 2652 jmp_offset = -2; 2653 else 2654 jmp_offset = addrs[i + insn->imm] - addrs[i]; 2655 } 2656 2657 if (!jmp_offset) { 2658 /* 2659 * If jmp_padding is enabled, the extra nops will 2660 * be inserted. Otherwise, optimize out nop jumps. 2661 */ 2662 if (jmp_padding) { 2663 /* There are 3 possible conditions. 2664 * (1) This BPF_JA is already optimized out in 2665 * the previous run, so there is no need 2666 * to pad any extra byte (0 byte). 2667 * (2) The previous pass emits an imm8 jmp, 2668 * so we pad 2 bytes to match the previous 2669 * insn size. 2670 * (3) Similarly, the previous pass emits an 2671 * imm32 jmp, and 5 bytes is padded. 2672 */ 2673 nops = INSN_SZ_DIFF; 2674 if (nops != 0 && nops != 2 && nops != 5) { 2675 pr_err("unexpected nop jump padding: %d bytes\n", 2676 nops); 2677 return -EFAULT; 2678 } 2679 emit_nops(&prog, nops); 2680 } 2681 break; 2682 } 2683 emit_jmp: 2684 if (is_imm8_jmp_offset(jmp_offset)) { 2685 if (jmp_padding) { 2686 /* To avoid breaking jmp_offset, the extra bytes 2687 * are padded before the actual jmp insn, so 2688 * 2 bytes is subtracted from INSN_SZ_DIFF. 2689 * 2690 * If the previous pass already emits an imm8 2691 * jmp, there is nothing to pad (0 byte). 2692 * 2693 * If it emits an imm32 jmp (5 bytes) previously 2694 * and now an imm8 jmp (2 bytes), then we pad 2695 * (5 - 2 = 3) bytes to stop the image from 2696 * shrinking further. 2697 */ 2698 nops = INSN_SZ_DIFF - 2; 2699 if (nops != 0 && nops != 3) { 2700 pr_err("unexpected jump padding: %d bytes\n", 2701 nops); 2702 return -EFAULT; 2703 } 2704 emit_nops(&prog, INSN_SZ_DIFF - 2); 2705 } 2706 EMIT2(0xEB, jmp_offset); 2707 } else if (is_simm32(jmp_offset)) { 2708 EMIT1_off32(0xE9, jmp_offset); 2709 } else { 2710 pr_err("jmp gen bug %llx\n", jmp_offset); 2711 return -EFAULT; 2712 } 2713 break; 2714 2715 case BPF_JMP | BPF_EXIT: 2716 if (seen_exit) { 2717 jmp_offset = ctx->cleanup_addr - addrs[i]; 2718 goto emit_jmp; 2719 } 2720 seen_exit = true; 2721 /* Update cleanup_addr */ 2722 ctx->cleanup_addr = proglen; 2723 if (bpf_prog_was_classic(bpf_prog) && 2724 !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN)) { 2725 u8 *ip = image + addrs[i - 1]; 2726 2727 if (emit_spectre_bhb_barrier(&prog, ip, bpf_prog)) 2728 return -EINVAL; 2729 } 2730 if (bpf_prog->aux->exception_boundary) { 2731 pop_callee_regs(&prog, all_callee_regs_used); 2732 pop_r12(&prog); 2733 } else { 2734 pop_callee_regs(&prog, callee_regs_used); 2735 if (arena_vm_start) 2736 pop_r12(&prog); 2737 } 2738 EMIT1(0xC9); /* leave */ 2739 emit_return(&prog, image + addrs[i - 1] + (prog - temp)); 2740 break; 2741 2742 default: 2743 /* 2744 * By design x86-64 JIT should support all BPF instructions. 2745 * This error will be seen if new instruction was added 2746 * to the interpreter, but not to the JIT, or if there is 2747 * junk in bpf_prog. 2748 */ 2749 pr_err("bpf_jit: unknown opcode %02x\n", insn->code); 2750 return -EINVAL; 2751 } 2752 2753 ilen = prog - temp; 2754 if (ilen > BPF_MAX_INSN_SIZE) { 2755 pr_err("bpf_jit: fatal insn size error\n"); 2756 return -EFAULT; 2757 } 2758 2759 if (image) { 2760 /* 2761 * When populating the image, assert that: 2762 * 2763 * i) We do not write beyond the allocated space, and 2764 * ii) addrs[i] did not change from the prior run, in order 2765 * to validate assumptions made for computing branch 2766 * displacements. 2767 */ 2768 if (unlikely(proglen + ilen > oldproglen || 2769 proglen + ilen != addrs[i])) { 2770 pr_err("bpf_jit: fatal error\n"); 2771 return -EFAULT; 2772 } 2773 memcpy(rw_image + proglen, temp, ilen); 2774 } 2775 proglen += ilen; 2776 addrs[i] = proglen; 2777 prog = temp; 2778 } 2779 2780 if (image && excnt != bpf_prog->aux->num_exentries) { 2781 pr_err("extable is not populated\n"); 2782 return -EFAULT; 2783 } 2784 return proglen; 2785 } 2786 2787 static void clean_stack_garbage(const struct btf_func_model *m, 2788 u8 **pprog, int nr_stack_slots, 2789 int stack_size) 2790 { 2791 int arg_size, off; 2792 u8 *prog; 2793 2794 /* Generally speaking, the compiler will pass the arguments 2795 * on-stack with "push" instruction, which will take 8-byte 2796 * on the stack. In this case, there won't be garbage values 2797 * while we copy the arguments from origin stack frame to current 2798 * in BPF_DW. 2799 * 2800 * However, sometimes the compiler will only allocate 4-byte on 2801 * the stack for the arguments. For now, this case will only 2802 * happen if there is only one argument on-stack and its size 2803 * not more than 4 byte. In this case, there will be garbage 2804 * values on the upper 4-byte where we store the argument on 2805 * current stack frame. 2806 * 2807 * arguments on origin stack: 2808 * 2809 * stack_arg_1(4-byte) xxx(4-byte) 2810 * 2811 * what we copy: 2812 * 2813 * stack_arg_1(8-byte): stack_arg_1(origin) xxx 2814 * 2815 * and the xxx is the garbage values which we should clean here. 2816 */ 2817 if (nr_stack_slots != 1) 2818 return; 2819 2820 /* the size of the last argument */ 2821 arg_size = m->arg_size[m->nr_args - 1]; 2822 if (arg_size <= 4) { 2823 off = -(stack_size - 4); 2824 prog = *pprog; 2825 /* mov DWORD PTR [rbp + off], 0 */ 2826 if (!is_imm8(off)) 2827 EMIT2_off32(0xC7, 0x85, off); 2828 else 2829 EMIT3(0xC7, 0x45, off); 2830 EMIT(0, 4); 2831 *pprog = prog; 2832 } 2833 } 2834 2835 /* get the count of the regs that are used to pass arguments */ 2836 static int get_nr_used_regs(const struct btf_func_model *m) 2837 { 2838 int i, arg_regs, nr_used_regs = 0; 2839 2840 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2841 arg_regs = (m->arg_size[i] + 7) / 8; 2842 if (nr_used_regs + arg_regs <= 6) 2843 nr_used_regs += arg_regs; 2844 2845 if (nr_used_regs >= 6) 2846 break; 2847 } 2848 2849 return nr_used_regs; 2850 } 2851 2852 static void save_args(const struct btf_func_model *m, u8 **prog, 2853 int stack_size, bool for_call_origin, u32 flags) 2854 { 2855 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0; 2856 bool use_jmp = bpf_trampoline_use_jmp(flags); 2857 int i, j; 2858 2859 /* Store function arguments to stack. 2860 * For a function that accepts two pointers the sequence will be: 2861 * mov QWORD PTR [rbp-0x10],rdi 2862 * mov QWORD PTR [rbp-0x8],rsi 2863 */ 2864 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2865 arg_regs = (m->arg_size[i] + 7) / 8; 2866 2867 /* According to the research of Yonghong, struct members 2868 * should be all in register or all on the stack. 2869 * Meanwhile, the compiler will pass the argument on regs 2870 * if the remaining regs can hold the argument. 2871 * 2872 * Disorder of the args can happen. For example: 2873 * 2874 * struct foo_struct { 2875 * long a; 2876 * int b; 2877 * }; 2878 * int foo(char, char, char, char, char, struct foo_struct, 2879 * char); 2880 * 2881 * the arg1-5,arg7 will be passed by regs, and arg6 will 2882 * by stack. 2883 */ 2884 if (nr_regs + arg_regs > 6) { 2885 /* copy function arguments from origin stack frame 2886 * into current stack frame. 2887 * 2888 * The starting address of the arguments on-stack 2889 * is: 2890 * rbp + 8(push rbp) + 2891 * 8(return addr of origin call) + 2892 * 8(return addr of the caller) 2893 * which means: rbp + 24 2894 */ 2895 for (j = 0; j < arg_regs; j++) { 2896 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 2897 nr_stack_slots * 8 + 16 + (!use_jmp) * 8); 2898 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0, 2899 -stack_size); 2900 2901 if (!nr_stack_slots) 2902 first_off = stack_size; 2903 stack_size -= 8; 2904 nr_stack_slots++; 2905 } 2906 } else { 2907 /* Only copy the arguments on-stack to current 2908 * 'stack_size' and ignore the regs, used to 2909 * prepare the arguments on-stack for origin call. 2910 */ 2911 if (for_call_origin) { 2912 nr_regs += arg_regs; 2913 continue; 2914 } 2915 2916 /* copy the arguments from regs into stack */ 2917 for (j = 0; j < arg_regs; j++) { 2918 emit_stx(prog, BPF_DW, BPF_REG_FP, 2919 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2920 -stack_size); 2921 stack_size -= 8; 2922 nr_regs++; 2923 } 2924 } 2925 } 2926 2927 clean_stack_garbage(m, prog, nr_stack_slots, first_off); 2928 } 2929 2930 static void restore_regs(const struct btf_func_model *m, u8 **prog, 2931 int stack_size) 2932 { 2933 int i, j, arg_regs, nr_regs = 0; 2934 2935 /* Restore function arguments from stack. 2936 * For a function that accepts two pointers the sequence will be: 2937 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] 2938 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] 2939 * 2940 * The logic here is similar to what we do in save_args() 2941 */ 2942 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) { 2943 arg_regs = (m->arg_size[i] + 7) / 8; 2944 if (nr_regs + arg_regs <= 6) { 2945 for (j = 0; j < arg_regs; j++) { 2946 emit_ldx(prog, BPF_DW, 2947 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs, 2948 BPF_REG_FP, 2949 -stack_size); 2950 stack_size -= 8; 2951 nr_regs++; 2952 } 2953 } else { 2954 stack_size -= 8 * arg_regs; 2955 } 2956 2957 if (nr_regs >= 6) 2958 break; 2959 } 2960 } 2961 2962 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, 2963 struct bpf_tramp_link *l, int stack_size, 2964 int run_ctx_off, bool save_ret, 2965 void *image, void *rw_image) 2966 { 2967 u8 *prog = *pprog; 2968 u8 *jmp_insn; 2969 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 2970 struct bpf_prog *p = l->link.prog; 2971 u64 cookie = l->cookie; 2972 2973 /* mov rdi, cookie */ 2974 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie); 2975 2976 /* Prepare struct bpf_tramp_run_ctx. 2977 * 2978 * bpf_tramp_run_ctx is already preserved by 2979 * arch_prepare_bpf_trampoline(). 2980 * 2981 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi 2982 */ 2983 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off); 2984 2985 /* arg1: mov rdi, progs[i] */ 2986 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 2987 /* arg2: lea rsi, [rbp - ctx_cookie_off] */ 2988 if (!is_imm8(-run_ctx_off)) 2989 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off); 2990 else 2991 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off); 2992 2993 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image))) 2994 return -EINVAL; 2995 /* remember prog start time returned by __bpf_prog_enter */ 2996 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); 2997 2998 /* if (__bpf_prog_enter*(prog) == 0) 2999 * goto skip_exec_of_prog; 3000 */ 3001 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ 3002 /* emit 2 nops that will be replaced with JE insn */ 3003 jmp_insn = prog; 3004 emit_nops(&prog, 2); 3005 3006 /* arg1: lea rdi, [rbp - stack_size] */ 3007 if (!is_imm8(-stack_size)) 3008 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size); 3009 else 3010 EMIT4(0x48, 0x8D, 0x7D, -stack_size); 3011 /* arg2: progs[i]->insnsi for interpreter */ 3012 if (!p->jited) 3013 emit_mov_imm64(&prog, BPF_REG_2, 3014 (long) p->insnsi >> 32, 3015 (u32) (long) p->insnsi); 3016 /* call JITed bpf program or interpreter */ 3017 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image))) 3018 return -EINVAL; 3019 3020 /* 3021 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return 3022 * of the previous call which is then passed on the stack to 3023 * the next BPF program. 3024 * 3025 * BPF_TRAMP_FENTRY trampoline may need to return the return 3026 * value of BPF_PROG_TYPE_STRUCT_OPS prog. 3027 */ 3028 if (save_ret) 3029 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3030 3031 /* replace 2 nops with JE insn, since jmp target is known */ 3032 jmp_insn[0] = X86_JE; 3033 jmp_insn[1] = prog - jmp_insn - 2; 3034 3035 /* arg1: mov rdi, progs[i] */ 3036 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); 3037 /* arg2: mov rsi, rbx <- start time in nsec */ 3038 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); 3039 /* arg3: lea rdx, [rbp - run_ctx_off] */ 3040 if (!is_imm8(-run_ctx_off)) 3041 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off); 3042 else 3043 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off); 3044 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image))) 3045 return -EINVAL; 3046 3047 *pprog = prog; 3048 return 0; 3049 } 3050 3051 static void emit_align(u8 **pprog, u32 align) 3052 { 3053 u8 *target, *prog = *pprog; 3054 3055 target = PTR_ALIGN(prog, align); 3056 if (target != prog) 3057 emit_nops(&prog, target - prog); 3058 3059 *pprog = prog; 3060 } 3061 3062 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) 3063 { 3064 u8 *prog = *pprog; 3065 s64 offset; 3066 3067 offset = func - (ip + 2 + 4); 3068 if (!is_simm32(offset)) { 3069 pr_err("Target %p is out of range\n", func); 3070 return -EINVAL; 3071 } 3072 EMIT2_off32(0x0F, jmp_cond + 0x10, offset); 3073 *pprog = prog; 3074 return 0; 3075 } 3076 3077 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, 3078 struct bpf_tramp_links *tl, int stack_size, 3079 int run_ctx_off, bool save_ret, 3080 void *image, void *rw_image) 3081 { 3082 int i; 3083 u8 *prog = *pprog; 3084 3085 for (i = 0; i < tl->nr_links; i++) { 3086 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, 3087 run_ctx_off, save_ret, image, rw_image)) 3088 return -EINVAL; 3089 } 3090 *pprog = prog; 3091 return 0; 3092 } 3093 3094 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, 3095 struct bpf_tramp_links *tl, int stack_size, 3096 int run_ctx_off, u8 **branches, 3097 void *image, void *rw_image) 3098 { 3099 u8 *prog = *pprog; 3100 int i; 3101 3102 /* The first fmod_ret program will receive a garbage return value. 3103 * Set this to 0 to avoid confusing the program. 3104 */ 3105 emit_mov_imm32(&prog, false, BPF_REG_0, 0); 3106 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3107 for (i = 0; i < tl->nr_links; i++) { 3108 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true, 3109 image, rw_image)) 3110 return -EINVAL; 3111 3112 /* mod_ret prog stored return value into [rbp - 8]. Emit: 3113 * if (*(u64 *)(rbp - 8) != 0) 3114 * goto do_fexit; 3115 */ 3116 /* cmp QWORD PTR [rbp - 0x8], 0x0 */ 3117 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); 3118 3119 /* Save the location of the branch and Generate 6 nops 3120 * (4 bytes for an offset and 2 bytes for the jump) These nops 3121 * are replaced with a conditional jump once do_fexit (i.e. the 3122 * start of the fexit invocation) is finalized. 3123 */ 3124 branches[i] = prog; 3125 emit_nops(&prog, 4 + 2); 3126 } 3127 3128 *pprog = prog; 3129 return 0; 3130 } 3131 3132 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */ 3133 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \ 3134 __LOAD_TCC_PTR(-round_up(stack, 8) - 8) 3135 3136 /* Example: 3137 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); 3138 * its 'struct btf_func_model' will be nr_args=2 3139 * The assembly code when eth_type_trans is executing after trampoline: 3140 * 3141 * push rbp 3142 * mov rbp, rsp 3143 * sub rsp, 16 // space for skb and dev 3144 * push rbx // temp regs to pass start time 3145 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack 3146 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack 3147 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3148 * mov rbx, rax // remember start time in bpf stats are enabled 3149 * lea rdi, [rbp - 16] // R1==ctx of bpf prog 3150 * call addr_of_jited_FENTRY_prog 3151 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3152 * mov rsi, rbx // prog start time 3153 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3154 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack 3155 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack 3156 * pop rbx 3157 * leave 3158 * ret 3159 * 3160 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be 3161 * replaced with 'call generated_bpf_trampoline'. When it returns 3162 * eth_type_trans will continue executing with original skb and dev pointers. 3163 * 3164 * The assembly code when eth_type_trans is called from trampoline: 3165 * 3166 * push rbp 3167 * mov rbp, rsp 3168 * sub rsp, 24 // space for skb, dev, return value 3169 * push rbx // temp regs to pass start time 3170 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack 3171 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack 3172 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3173 * mov rbx, rax // remember start time if bpf stats are enabled 3174 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3175 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev 3176 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3177 * mov rsi, rbx // prog start time 3178 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3179 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack 3180 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack 3181 * call eth_type_trans+5 // execute body of eth_type_trans 3182 * mov qword ptr [rbp - 8], rax // save return value 3183 * call __bpf_prog_enter // rcu_read_lock and preempt_disable 3184 * mov rbx, rax // remember start time in bpf stats are enabled 3185 * lea rdi, [rbp - 24] // R1==ctx of bpf prog 3186 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value 3187 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off 3188 * mov rsi, rbx // prog start time 3189 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math 3190 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value 3191 * pop rbx 3192 * leave 3193 * add rsp, 8 // skip eth_type_trans's frame 3194 * ret // return to its caller 3195 */ 3196 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image, 3197 void *rw_image_end, void *image, 3198 const struct btf_func_model *m, u32 flags, 3199 struct bpf_tramp_links *tlinks, 3200 void *func_addr) 3201 { 3202 int i, ret, nr_regs = m->nr_args, stack_size = 0; 3203 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off; 3204 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 3205 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 3206 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 3207 void *orig_call = func_addr; 3208 u8 **branches = NULL; 3209 u8 *prog; 3210 bool save_ret; 3211 3212 /* 3213 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is 3214 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG 3215 * because @func_addr. 3216 */ 3217 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) && 3218 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET))); 3219 3220 /* extra registers for struct arguments */ 3221 for (i = 0; i < m->nr_args; i++) { 3222 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 3223 nr_regs += (m->arg_size[i] + 7) / 8 - 1; 3224 } 3225 3226 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6 3227 * are passed through regs, the remains are through stack. 3228 */ 3229 if (nr_regs > MAX_BPF_FUNC_ARGS) 3230 return -ENOTSUPP; 3231 3232 /* Generated trampoline stack layout: 3233 * 3234 * RBP + 8 [ return address ] 3235 * RBP + 0 [ RBP ] 3236 * 3237 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or 3238 * BPF_TRAMP_F_RET_FENTRY_RET flags 3239 * 3240 * [ reg_argN ] always 3241 * [ ... ] 3242 * RBP - regs_off [ reg_arg1 ] program's ctx pointer 3243 * 3244 * RBP - nregs_off [ regs count ] always 3245 * 3246 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 3247 * 3248 * RBP - rbx_off [ rbx value ] always 3249 * 3250 * RBP - run_ctx_off [ bpf_tramp_run_ctx ] 3251 * 3252 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG 3253 * [ ... ] 3254 * [ stack_arg2 ] 3255 * RBP - arg_stack_off [ stack_arg1 ] 3256 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX 3257 */ 3258 3259 /* room for return value of orig_call or fentry prog */ 3260 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 3261 if (save_ret) 3262 stack_size += 8; 3263 3264 stack_size += nr_regs * 8; 3265 regs_off = stack_size; 3266 3267 /* regs count */ 3268 stack_size += 8; 3269 nregs_off = stack_size; 3270 3271 if (flags & BPF_TRAMP_F_IP_ARG) 3272 stack_size += 8; /* room for IP address argument */ 3273 3274 ip_off = stack_size; 3275 3276 stack_size += 8; 3277 rbx_off = stack_size; 3278 3279 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7; 3280 run_ctx_off = stack_size; 3281 3282 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) { 3283 /* the space that used to pass arguments on-stack */ 3284 stack_size += (nr_regs - get_nr_used_regs(m)) * 8; 3285 /* make sure the stack pointer is 16-byte aligned if we 3286 * need pass arguments on stack, which means 3287 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)] 3288 * should be 16-byte aligned. Following code depend on 3289 * that stack_size is already 8-byte aligned. 3290 */ 3291 if (bpf_trampoline_use_jmp(flags)) { 3292 /* no rip in the "jmp" case */ 3293 stack_size += (stack_size % 16) ? 8 : 0; 3294 } else { 3295 stack_size += (stack_size % 16) ? 0 : 8; 3296 } 3297 } 3298 3299 arg_stack_off = stack_size; 3300 3301 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3302 /* skip patched call instruction and point orig_call to actual 3303 * body of the kernel function. 3304 */ 3305 if (is_endbr(orig_call)) 3306 orig_call += ENDBR_INSN_SIZE; 3307 orig_call += X86_PATCH_SIZE; 3308 } 3309 3310 prog = rw_image; 3311 3312 if (flags & BPF_TRAMP_F_INDIRECT) { 3313 /* 3314 * Indirect call for bpf_struct_ops 3315 */ 3316 emit_cfi(&prog, image, 3317 cfi_get_func_hash(func_addr), 3318 cfi_get_func_arity(func_addr)); 3319 } else { 3320 /* 3321 * Direct-call fentry stub, as such it needs accounting for the 3322 * __fentry__ call. 3323 */ 3324 x86_call_depth_emit_accounting(&prog, NULL, image); 3325 } 3326 EMIT1(0x55); /* push rbp */ 3327 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ 3328 if (!is_imm8(stack_size)) { 3329 /* sub rsp, stack_size */ 3330 EMIT3_off32(0x48, 0x81, 0xEC, stack_size); 3331 } else { 3332 /* sub rsp, stack_size */ 3333 EMIT4(0x48, 0x83, 0xEC, stack_size); 3334 } 3335 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) 3336 EMIT1(0x50); /* push rax */ 3337 /* mov QWORD PTR [rbp - rbx_off], rbx */ 3338 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off); 3339 3340 /* Store number of argument registers of the traced function: 3341 * mov rax, nr_regs 3342 * mov QWORD PTR [rbp - nregs_off], rax 3343 */ 3344 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs); 3345 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off); 3346 3347 if (flags & BPF_TRAMP_F_IP_ARG) { 3348 /* Store IP address of the traced function: 3349 * movabsq rax, func_addr 3350 * mov QWORD PTR [rbp - ip_off], rax 3351 */ 3352 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr); 3353 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off); 3354 } 3355 3356 save_args(m, &prog, regs_off, false, flags); 3357 3358 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3359 /* arg1: mov rdi, im */ 3360 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3361 if (emit_rsb_call(&prog, __bpf_tramp_enter, 3362 image + (prog - (u8 *)rw_image))) { 3363 ret = -EINVAL; 3364 goto cleanup; 3365 } 3366 } 3367 3368 if (fentry->nr_links) { 3369 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off, 3370 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image)) 3371 return -EINVAL; 3372 } 3373 3374 if (fmod_ret->nr_links) { 3375 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *), 3376 GFP_KERNEL); 3377 if (!branches) 3378 return -ENOMEM; 3379 3380 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off, 3381 run_ctx_off, branches, image, rw_image)) { 3382 ret = -EINVAL; 3383 goto cleanup; 3384 } 3385 } 3386 3387 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3388 restore_regs(m, &prog, regs_off); 3389 save_args(m, &prog, arg_stack_off, true, flags); 3390 3391 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3392 /* Before calling the original function, load the 3393 * tail_call_cnt_ptr from stack to rax. 3394 */ 3395 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3396 } 3397 3398 if (flags & BPF_TRAMP_F_ORIG_STACK) { 3399 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8); 3400 EMIT2(0xff, 0xd3); /* call *rbx */ 3401 } else { 3402 /* call original function */ 3403 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) { 3404 ret = -EINVAL; 3405 goto cleanup; 3406 } 3407 } 3408 /* remember return value in a stack for bpf prog to access */ 3409 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); 3410 im->ip_after_call = image + (prog - (u8 *)rw_image); 3411 emit_nops(&prog, X86_PATCH_SIZE); 3412 } 3413 3414 if (fmod_ret->nr_links) { 3415 /* From Intel 64 and IA-32 Architectures Optimization 3416 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3417 * Coding Rule 11: All branch targets should be 16-byte 3418 * aligned. 3419 */ 3420 emit_align(&prog, 16); 3421 /* Update the branches saved in invoke_bpf_mod_ret with the 3422 * aligned address of do_fexit. 3423 */ 3424 for (i = 0; i < fmod_ret->nr_links; i++) { 3425 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image), 3426 image + (branches[i] - (u8 *)rw_image), X86_JNE); 3427 } 3428 } 3429 3430 if (fexit->nr_links) { 3431 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off, 3432 false, image, rw_image)) { 3433 ret = -EINVAL; 3434 goto cleanup; 3435 } 3436 } 3437 3438 if (flags & BPF_TRAMP_F_RESTORE_REGS) 3439 restore_regs(m, &prog, regs_off); 3440 3441 /* This needs to be done regardless. If there were fmod_ret programs, 3442 * the return value is only updated on the stack and still needs to be 3443 * restored to R0. 3444 */ 3445 if (flags & BPF_TRAMP_F_CALL_ORIG) { 3446 im->ip_epilogue = image + (prog - (u8 *)rw_image); 3447 /* arg1: mov rdi, im */ 3448 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); 3449 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) { 3450 ret = -EINVAL; 3451 goto cleanup; 3452 } 3453 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) { 3454 /* Before running the original function, load the 3455 * tail_call_cnt_ptr from stack to rax. 3456 */ 3457 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size); 3458 } 3459 3460 /* restore return value of orig_call or fentry prog back into RAX */ 3461 if (save_ret) 3462 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); 3463 3464 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off); 3465 EMIT1(0xC9); /* leave */ 3466 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 3467 /* skip our return address and return to parent */ 3468 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ 3469 } 3470 emit_return(&prog, image + (prog - (u8 *)rw_image)); 3471 /* Make sure the trampoline generation logic doesn't overflow */ 3472 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) { 3473 ret = -EFAULT; 3474 goto cleanup; 3475 } 3476 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY; 3477 3478 cleanup: 3479 kfree(branches); 3480 return ret; 3481 } 3482 3483 void *arch_alloc_bpf_trampoline(unsigned int size) 3484 { 3485 return bpf_prog_pack_alloc(size, jit_fill_hole); 3486 } 3487 3488 void arch_free_bpf_trampoline(void *image, unsigned int size) 3489 { 3490 bpf_prog_pack_free(image, size); 3491 } 3492 3493 int arch_protect_bpf_trampoline(void *image, unsigned int size) 3494 { 3495 return 0; 3496 } 3497 3498 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 3499 const struct btf_func_model *m, u32 flags, 3500 struct bpf_tramp_links *tlinks, 3501 void *func_addr) 3502 { 3503 void *rw_image, *tmp; 3504 int ret; 3505 u32 size = image_end - image; 3506 3507 /* rw_image doesn't need to be in module memory range, so we can 3508 * use kvmalloc. 3509 */ 3510 rw_image = kvmalloc(size, GFP_KERNEL); 3511 if (!rw_image) 3512 return -ENOMEM; 3513 3514 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m, 3515 flags, tlinks, func_addr); 3516 if (ret < 0) 3517 goto out; 3518 3519 tmp = bpf_arch_text_copy(image, rw_image, size); 3520 if (IS_ERR(tmp)) 3521 ret = PTR_ERR(tmp); 3522 out: 3523 kvfree(rw_image); 3524 return ret; 3525 } 3526 3527 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 3528 struct bpf_tramp_links *tlinks, void *func_addr) 3529 { 3530 struct bpf_tramp_image im; 3531 void *image; 3532 int ret; 3533 3534 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline(). 3535 * This will NOT cause fragmentation in direct map, as we do not 3536 * call set_memory_*() on this buffer. 3537 * 3538 * We cannot use kvmalloc here, because we need image to be in 3539 * module memory range. 3540 */ 3541 image = bpf_jit_alloc_exec(PAGE_SIZE); 3542 if (!image) 3543 return -ENOMEM; 3544 3545 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image, 3546 m, flags, tlinks, func_addr); 3547 bpf_jit_free_exec(image); 3548 return ret; 3549 } 3550 3551 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf) 3552 { 3553 u8 *jg_reloc, *prog = *pprog; 3554 int pivot, err, jg_bytes = 1; 3555 s64 jg_offset; 3556 3557 if (a == b) { 3558 /* Leaf node of recursion, i.e. not a range of indices 3559 * anymore. 3560 */ 3561 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3562 if (!is_simm32(progs[a])) 3563 return -1; 3564 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), 3565 progs[a]); 3566 err = emit_cond_near_jump(&prog, /* je func */ 3567 (void *)progs[a], image + (prog - buf), 3568 X86_JE); 3569 if (err) 3570 return err; 3571 3572 emit_indirect_jump(&prog, BPF_REG_3 /* R3 -> rdx */, image + (prog - buf)); 3573 3574 *pprog = prog; 3575 return 0; 3576 } 3577 3578 /* Not a leaf node, so we pivot, and recursively descend into 3579 * the lower and upper ranges. 3580 */ 3581 pivot = (b - a) / 2; 3582 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ 3583 if (!is_simm32(progs[a + pivot])) 3584 return -1; 3585 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); 3586 3587 if (pivot > 2) { /* jg upper_part */ 3588 /* Require near jump. */ 3589 jg_bytes = 4; 3590 EMIT2_off32(0x0F, X86_JG + 0x10, 0); 3591 } else { 3592 EMIT2(X86_JG, 0); 3593 } 3594 jg_reloc = prog; 3595 3596 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ 3597 progs, image, buf); 3598 if (err) 3599 return err; 3600 3601 /* From Intel 64 and IA-32 Architectures Optimization 3602 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler 3603 * Coding Rule 11: All branch targets should be 16-byte 3604 * aligned. 3605 */ 3606 emit_align(&prog, 16); 3607 jg_offset = prog - jg_reloc; 3608 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); 3609 3610 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ 3611 b, progs, image, buf); 3612 if (err) 3613 return err; 3614 3615 *pprog = prog; 3616 return 0; 3617 } 3618 3619 static int cmp_ips(const void *a, const void *b) 3620 { 3621 const s64 *ipa = a; 3622 const s64 *ipb = b; 3623 3624 if (*ipa > *ipb) 3625 return 1; 3626 if (*ipa < *ipb) 3627 return -1; 3628 return 0; 3629 } 3630 3631 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) 3632 { 3633 u8 *prog = buf; 3634 3635 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); 3636 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf); 3637 } 3638 3639 static void priv_stack_init_guard(void __percpu *priv_stack_ptr, int alloc_size) 3640 { 3641 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3642 u64 *stack_ptr; 3643 3644 for_each_possible_cpu(cpu) { 3645 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3646 stack_ptr[0] = PRIV_STACK_GUARD_VAL; 3647 stack_ptr[underflow_idx] = PRIV_STACK_GUARD_VAL; 3648 } 3649 } 3650 3651 static void priv_stack_check_guard(void __percpu *priv_stack_ptr, int alloc_size, 3652 struct bpf_prog *prog) 3653 { 3654 int cpu, underflow_idx = (alloc_size - PRIV_STACK_GUARD_SZ) >> 3; 3655 u64 *stack_ptr; 3656 3657 for_each_possible_cpu(cpu) { 3658 stack_ptr = per_cpu_ptr(priv_stack_ptr, cpu); 3659 if (stack_ptr[0] != PRIV_STACK_GUARD_VAL || 3660 stack_ptr[underflow_idx] != PRIV_STACK_GUARD_VAL) { 3661 pr_err("BPF private stack overflow/underflow detected for prog %sx\n", 3662 bpf_jit_get_prog_name(prog)); 3663 break; 3664 } 3665 } 3666 } 3667 3668 struct x64_jit_data { 3669 struct bpf_binary_header *rw_header; 3670 struct bpf_binary_header *header; 3671 int *addrs; 3672 u8 *image; 3673 int proglen; 3674 struct jit_context ctx; 3675 }; 3676 3677 #define MAX_PASSES 20 3678 #define PADDING_PASSES (MAX_PASSES - 5) 3679 3680 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 3681 { 3682 struct bpf_binary_header *rw_header = NULL; 3683 struct bpf_binary_header *header = NULL; 3684 struct bpf_prog *tmp, *orig_prog = prog; 3685 void __percpu *priv_stack_ptr = NULL; 3686 struct x64_jit_data *jit_data; 3687 int priv_stack_alloc_sz; 3688 int proglen, oldproglen = 0; 3689 struct jit_context ctx = {}; 3690 bool tmp_blinded = false; 3691 bool extra_pass = false; 3692 bool padding = false; 3693 u8 *rw_image = NULL; 3694 u8 *image = NULL; 3695 int *addrs; 3696 int pass; 3697 int i; 3698 3699 if (!prog->jit_requested) 3700 return orig_prog; 3701 3702 tmp = bpf_jit_blind_constants(prog); 3703 /* 3704 * If blinding was requested and we failed during blinding, 3705 * we must fall back to the interpreter. 3706 */ 3707 if (IS_ERR(tmp)) 3708 return orig_prog; 3709 if (tmp != prog) { 3710 tmp_blinded = true; 3711 prog = tmp; 3712 } 3713 3714 jit_data = prog->aux->jit_data; 3715 if (!jit_data) { 3716 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 3717 if (!jit_data) { 3718 prog = orig_prog; 3719 goto out; 3720 } 3721 prog->aux->jit_data = jit_data; 3722 } 3723 priv_stack_ptr = prog->aux->priv_stack_ptr; 3724 if (!priv_stack_ptr && prog->aux->jits_use_priv_stack) { 3725 /* Allocate actual private stack size with verifier-calculated 3726 * stack size plus two memory guards to protect overflow and 3727 * underflow. 3728 */ 3729 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3730 2 * PRIV_STACK_GUARD_SZ; 3731 priv_stack_ptr = __alloc_percpu_gfp(priv_stack_alloc_sz, 8, GFP_KERNEL); 3732 if (!priv_stack_ptr) { 3733 prog = orig_prog; 3734 goto out_priv_stack; 3735 } 3736 3737 priv_stack_init_guard(priv_stack_ptr, priv_stack_alloc_sz); 3738 prog->aux->priv_stack_ptr = priv_stack_ptr; 3739 } 3740 addrs = jit_data->addrs; 3741 if (addrs) { 3742 ctx = jit_data->ctx; 3743 oldproglen = jit_data->proglen; 3744 image = jit_data->image; 3745 header = jit_data->header; 3746 rw_header = jit_data->rw_header; 3747 rw_image = (void *)rw_header + ((void *)image - (void *)header); 3748 extra_pass = true; 3749 padding = true; 3750 goto skip_init_addrs; 3751 } 3752 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); 3753 if (!addrs) { 3754 prog = orig_prog; 3755 goto out_addrs; 3756 } 3757 3758 /* 3759 * Before first pass, make a rough estimation of addrs[] 3760 * each BPF instruction is translated to less than 64 bytes 3761 */ 3762 for (proglen = 0, i = 0; i <= prog->len; i++) { 3763 proglen += 64; 3764 addrs[i] = proglen; 3765 } 3766 ctx.cleanup_addr = proglen; 3767 skip_init_addrs: 3768 3769 /* 3770 * JITed image shrinks with every pass and the loop iterates 3771 * until the image stops shrinking. Very large BPF programs 3772 * may converge on the last pass. In such case do one more 3773 * pass to emit the final image. 3774 */ 3775 for (pass = 0; pass < MAX_PASSES || image; pass++) { 3776 if (!padding && pass >= PADDING_PASSES) 3777 padding = true; 3778 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding); 3779 if (proglen <= 0) { 3780 out_image: 3781 image = NULL; 3782 if (header) { 3783 bpf_arch_text_copy(&header->size, &rw_header->size, 3784 sizeof(rw_header->size)); 3785 bpf_jit_binary_pack_free(header, rw_header); 3786 } 3787 /* Fall back to interpreter mode */ 3788 prog = orig_prog; 3789 if (extra_pass) { 3790 prog->bpf_func = NULL; 3791 prog->jited = 0; 3792 prog->jited_len = 0; 3793 } 3794 goto out_addrs; 3795 } 3796 if (image) { 3797 if (proglen != oldproglen) { 3798 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", 3799 proglen, oldproglen); 3800 goto out_image; 3801 } 3802 break; 3803 } 3804 if (proglen == oldproglen) { 3805 /* 3806 * The number of entries in extable is the number of BPF_LDX 3807 * insns that access kernel memory via "pointer to BTF type". 3808 * The verifier changed their opcode from LDX|MEM|size 3809 * to LDX|PROBE_MEM|size to make JITing easier. 3810 */ 3811 u32 align = __alignof__(struct exception_table_entry); 3812 u32 extable_size = prog->aux->num_exentries * 3813 sizeof(struct exception_table_entry); 3814 3815 /* allocate module memory for x86 insns and extable */ 3816 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size, 3817 &image, align, &rw_header, &rw_image, 3818 jit_fill_hole); 3819 if (!header) { 3820 prog = orig_prog; 3821 goto out_addrs; 3822 } 3823 prog->aux->extable = (void *) image + roundup(proglen, align); 3824 } 3825 oldproglen = proglen; 3826 cond_resched(); 3827 } 3828 3829 if (bpf_jit_enable > 1) 3830 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image); 3831 3832 if (image) { 3833 if (!prog->is_func || extra_pass) { 3834 /* 3835 * bpf_jit_binary_pack_finalize fails in two scenarios: 3836 * 1) header is not pointing to proper module memory; 3837 * 2) the arch doesn't support bpf_arch_text_copy(). 3838 * 3839 * Both cases are serious bugs and justify WARN_ON. 3840 */ 3841 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) { 3842 /* header has been freed */ 3843 header = NULL; 3844 goto out_image; 3845 } 3846 3847 bpf_tail_call_direct_fixup(prog); 3848 } else { 3849 jit_data->addrs = addrs; 3850 jit_data->ctx = ctx; 3851 jit_data->proglen = proglen; 3852 jit_data->image = image; 3853 jit_data->header = header; 3854 jit_data->rw_header = rw_header; 3855 } 3856 3857 /* 3858 * The bpf_prog_update_insn_ptrs function expects addrs to 3859 * point to the first byte of the jitted instruction (unlike 3860 * the bpf_prog_fill_jited_linfo below, which, for historical 3861 * reasons, expects to point to the next instruction) 3862 */ 3863 bpf_prog_update_insn_ptrs(prog, addrs, image); 3864 3865 /* 3866 * ctx.prog_offset is used when CFI preambles put code *before* 3867 * the function. See emit_cfi(). For FineIBT specifically this code 3868 * can also be executed and bpf_prog_kallsyms_add() will 3869 * generate an additional symbol to cover this, hence also 3870 * decrement proglen. 3871 */ 3872 prog->bpf_func = (void *)image + cfi_get_offset(); 3873 prog->jited = 1; 3874 prog->jited_len = proglen - cfi_get_offset(); 3875 } else { 3876 prog = orig_prog; 3877 } 3878 3879 if (!image || !prog->is_func || extra_pass) { 3880 if (image) 3881 bpf_prog_fill_jited_linfo(prog, addrs + 1); 3882 out_addrs: 3883 kvfree(addrs); 3884 if (!image && priv_stack_ptr) { 3885 free_percpu(priv_stack_ptr); 3886 prog->aux->priv_stack_ptr = NULL; 3887 } 3888 out_priv_stack: 3889 kfree(jit_data); 3890 prog->aux->jit_data = NULL; 3891 } 3892 out: 3893 if (tmp_blinded) 3894 bpf_jit_prog_release_other(prog, prog == orig_prog ? 3895 tmp : orig_prog); 3896 return prog; 3897 } 3898 3899 bool bpf_jit_supports_kfunc_call(void) 3900 { 3901 return true; 3902 } 3903 3904 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 3905 { 3906 if (text_poke_copy(dst, src, len) == NULL) 3907 return ERR_PTR(-EINVAL); 3908 return dst; 3909 } 3910 3911 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 3912 bool bpf_jit_supports_subprog_tailcalls(void) 3913 { 3914 return true; 3915 } 3916 3917 bool bpf_jit_supports_percpu_insn(void) 3918 { 3919 return true; 3920 } 3921 3922 void bpf_jit_free(struct bpf_prog *prog) 3923 { 3924 if (prog->jited) { 3925 struct x64_jit_data *jit_data = prog->aux->jit_data; 3926 struct bpf_binary_header *hdr; 3927 void __percpu *priv_stack_ptr; 3928 int priv_stack_alloc_sz; 3929 3930 /* 3931 * If we fail the final pass of JIT (from jit_subprogs), 3932 * the program may not be finalized yet. Call finalize here 3933 * before freeing it. 3934 */ 3935 if (jit_data) { 3936 bpf_jit_binary_pack_finalize(jit_data->header, 3937 jit_data->rw_header); 3938 kvfree(jit_data->addrs); 3939 kfree(jit_data); 3940 } 3941 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset(); 3942 hdr = bpf_jit_binary_pack_hdr(prog); 3943 bpf_jit_binary_pack_free(hdr, NULL); 3944 priv_stack_ptr = prog->aux->priv_stack_ptr; 3945 if (priv_stack_ptr) { 3946 priv_stack_alloc_sz = round_up(prog->aux->stack_depth, 8) + 3947 2 * PRIV_STACK_GUARD_SZ; 3948 priv_stack_check_guard(priv_stack_ptr, priv_stack_alloc_sz, prog); 3949 free_percpu(prog->aux->priv_stack_ptr); 3950 } 3951 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 3952 } 3953 3954 bpf_prog_unlock_free(prog); 3955 } 3956 3957 bool bpf_jit_supports_exceptions(void) 3958 { 3959 /* We unwind through both kernel frames (starting from within bpf_throw 3960 * call) and BPF frames. Therefore we require ORC unwinder to be enabled 3961 * to walk kernel frames and reach BPF frames in the stack trace. 3962 */ 3963 return IS_ENABLED(CONFIG_UNWINDER_ORC); 3964 } 3965 3966 bool bpf_jit_supports_private_stack(void) 3967 { 3968 return true; 3969 } 3970 3971 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) 3972 { 3973 #if defined(CONFIG_UNWINDER_ORC) 3974 struct unwind_state state; 3975 unsigned long addr; 3976 3977 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state); 3978 unwind_next_frame(&state)) { 3979 addr = unwind_get_return_address(&state); 3980 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp)) 3981 break; 3982 } 3983 return; 3984 #endif 3985 } 3986 3987 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3988 struct bpf_prog *new, struct bpf_prog *old) 3989 { 3990 u8 *old_addr, *new_addr, *old_bypass_addr; 3991 enum bpf_text_poke_type t; 3992 int ret; 3993 3994 old_bypass_addr = old ? NULL : poke->bypass_addr; 3995 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 3996 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 3997 3998 /* 3999 * On program loading or teardown, the program's kallsym entry 4000 * might not be in place, so we use __bpf_arch_text_poke to skip 4001 * the kallsyms check. 4002 */ 4003 if (new) { 4004 t = old_addr ? BPF_MOD_JUMP : BPF_MOD_NOP; 4005 ret = __bpf_arch_text_poke(poke->tailcall_target, 4006 t, BPF_MOD_JUMP, 4007 old_addr, new_addr); 4008 BUG_ON(ret < 0); 4009 if (!old) { 4010 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 4011 BPF_MOD_JUMP, BPF_MOD_NOP, 4012 poke->bypass_addr, 4013 NULL); 4014 BUG_ON(ret < 0); 4015 } 4016 } else { 4017 t = old_bypass_addr ? BPF_MOD_JUMP : BPF_MOD_NOP; 4018 ret = __bpf_arch_text_poke(poke->tailcall_bypass, 4019 t, BPF_MOD_JUMP, old_bypass_addr, 4020 poke->bypass_addr); 4021 BUG_ON(ret < 0); 4022 /* let other CPUs finish the execution of program 4023 * so that it will not possible to expose them 4024 * to invalid nop, stack unwind, nop state 4025 */ 4026 if (!ret) 4027 synchronize_rcu(); 4028 t = old_addr ? BPF_MOD_JUMP : BPF_MOD_NOP; 4029 ret = __bpf_arch_text_poke(poke->tailcall_target, 4030 t, BPF_MOD_NOP, old_addr, NULL); 4031 BUG_ON(ret < 0); 4032 } 4033 } 4034 4035 bool bpf_jit_supports_arena(void) 4036 { 4037 return true; 4038 } 4039 4040 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 4041 { 4042 if (!in_arena) 4043 return true; 4044 switch (insn->code) { 4045 case BPF_STX | BPF_ATOMIC | BPF_W: 4046 case BPF_STX | BPF_ATOMIC | BPF_DW: 4047 if (insn->imm == (BPF_AND | BPF_FETCH) || 4048 insn->imm == (BPF_OR | BPF_FETCH) || 4049 insn->imm == (BPF_XOR | BPF_FETCH)) 4050 return false; 4051 } 4052 return true; 4053 } 4054 4055 bool bpf_jit_supports_ptr_xchg(void) 4056 { 4057 return true; 4058 } 4059 4060 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */ 4061 u64 bpf_arch_uaddress_limit(void) 4062 { 4063 return 0; 4064 } 4065 4066 bool bpf_jit_supports_timed_may_goto(void) 4067 { 4068 return true; 4069 } 4070